
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.68, February 2025

Architectural Trade-Offs in Modulith Architecture: A
Case Study on Dependency and Data Management in

Rewards Systems

Chandra Prakash
Senior Member, IEEE

ABSTRACT
As organizations increasingly shift towards microservices for scal-
ing complex systems, challenges such as managing inter-service
dependencies, efficient communication, and ensuring faster data
access have emerged. This paper explores an alternative archi-
tectural approach, the Modular Monolith or Modulith architec-
ture, for building a highly interdependent online rewards sys-
tem. Through a case study of the system’s development, this re-
search examines the advantages of encapsulating business do-
mains within modular components deployed in a unified, mono-
lithic code base to optimize inter-service communication, per-
formance, and data access. The study highlights the architec-
tural tradeoffs, focusing on the ease of managing dependen-
cies and improving data flow across tightly coupled services.
Preliminary results from the implementation indicate signifi-
cant improvements over a traditional monolith or microservices-
based architecture, reduced complexity, and simplified deploy-
ment processes. This research contributes insights into the suit-
ability of modular monolith architecture for high-demand, data-
intensive applications and offers guidance for organizations con-
sidering alternatives to microservices for similar use cases.

General Terms
Modular Architecture, Architecture Pattern

Keywords
Modulith, Modular Monoliths, Microservices, Event-driven archi-
tecture, Software Architecture

1. INTRODUCTION
Online rewards systems are increasingly complex, requiring the
seamless integration of multiple services such as user management,
rewards tracking, and third-party integrations. These systems ex-
perience high transaction volumes, significant data exchange, and
dependency between components, making the choice of software
architecture a critical decision. On the one hand, traditional mono-
lith architectures offer simplicity when designing an online re-
wards system. On the other hand, microservices architecture pro-
vides scalability. However, both approaches have limitations for
highly dependent, data-intensive applications. In this context, mod-
ulith or modular monolith architecture presents a compelling alter-
native. Modulith architectural pattern combines the simplicity and

cohesion of monolithic structures with the flexibility and maintain-
ability of modular design, offering a balanced solution for com-
plex applications[1]. As organizations strive to create robust and
scalable online rewards systems, the modular monolith architec-
ture presents an opportunity to address critical challenges in inter-
service dependencies and data access management.

The concept of a modulith architecture is rooted in the principles of
Domain-Driven Design (DDD), which emphasizes the importance
of aligning software architecture with business domains[2]. Figure
1 provides a visual comparison of monolith and modulith applica-
tion structure. By adopting ubiquitous language and consistent ter-
minology across the entire domain, as advocated by Evans[3], orga-
nizations can minimize misunderstandings and foster clear commu-
nication among stakeholders[1]. This approach is particularly rele-
vant in the context of online rewards systems, where the complexity
of business rules and the need for high performance intersect.

Fig. 1. A visual comparison of a monolith and modulith Architecture

This research paper explores the implementation of a modulith ar-
chitecture for a high-utilized online rewards system, with a spe-
cific focus on managing inter-service dependencies and optimizing
data access patterns. By examining this architectural approach, the
study aims to provide insights into how organizations can lever-
age the benefits of modular design within a monolithic frame-
work to achieve improved system performance, maintainability,
and scalability[4]. The importance of effective dependency man-
agement in highly utilized systems cannot be overstated. As online
rewards systems grow in complexity, the inter-dependencies be-
tween various components can lead to system evolution and main-
tenance challenges. The decision to opt for this architecture was
driven by the high degree of dependency between modules and

1



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.68, February 2025

the need for efficient and frequent data exchange across services.
The modular monolith architecture offers a promising solution by
encapsulating related functionalities within well-defined bound-
aries, thereby reducing coupling and enhancing cohesion across the
system[5].

2. LITERATURE REVIEW
Rewards systems, especially those operating in competitive online
environments, demand real-time data processing and low-latency
access to shared data across multiple services. Traditional mono-
lith architectures can become cumbersome as systems grow in size,
making deployment and testing more difficult. Meanwhile, mi-
croservices architecture introduces challenges such as increased
complexity in managing distributed transactions, communication
overhead, and potential bottlenecks due to inter-service calls[6, 4].
One can address these limitations by adopting and combining both
approaches through modulith architecture. This hybrid model aims
to provide a balance between the simplicity of deployment and the
flexibility of modular development, making it particularly suitable
for online rewards systems. It organizes the code base into well-
defined modules that align with specific business domains, encap-
sulating services with clear boundaries while maintaining a uni-
fied deployment model. This approach minimizes the overhead as-
sociated with inter-service communication by keeping interactions
within a single process and database context, thereby reducing the
risk of latency, maintaining performance, and simplifying data con-
sistency.

2.1 Evolution of Software Architectures
The progression from monolithic to microservices architectures
represents a significant shift in software design. Monolithic ar-
chitectures, characterized by their single-tiered software applica-
tion structure, were the predominant approach for many years. In
a monolithic system, all components of an application are tightly
integrated into a single code base, sharing the same memory space
and resources[7]. This architecture offered simplicity in develop-
ment, deployment, and testing, as all functionalities were contained
within a single unit. However, as applications grew in complexity
and scale, the limitations of monolithic architectures became in-
creasingly apparent. These limitations included difficulties in main-
taining and updating large code bases, challenges in scaling specific
components independently, and the potential for a single point of
failure affecting the entire system[4, 7]. The need for more flexible
and scalable solutions led to the rise of microservices architecture.

Microservices architecture emerged as a response to the challenges
posed by monolithic systems. This approach decomposes an appli-
cation into a collection of loosely coupled, independently deploy-
able services, each responsible for a specific business capability[6,
8]. Microservices offer several advantages, including improved
scalability, easier maintenance, and the ability to use different tech-
nologies for different services. However, this architecture also in-
troduced new complexities, such as managing inter-service com-
munication, data consistency across services, and increased opera-
tional overhead[6].

2.2 Modular Monolith or Modulith Architecture
As the software development community grappled with the trade-
offs between monolithic and microservices architectures, a hybrid
approach known as modulith emerged. This architecture combines
the benefits of both monolithic and microservices architectures, of-

fering a middle ground that addresses many of the challenges faced
by pure implementations of either approach[9, 10].

A modulith is characterized by its single deployment unit, similar
to a traditional monolith, but with a crucial difference: the internal
structure is organized into distinct modules with clear boundaries
and interfaces[4, 10]. Each module encapsulates a specific domain
or functionality of the application, maintaining a high degree of
independence in terms of code organization and business logic. A
few key characteristics of modulith architecture include:

(1) Modular Structure: The application is divided into loosely cou-
pled modules representing a distinct business capability or do-
main.

(2) Clear Boundaries: Modules have well-defined interfaces and
boundaries, promoting encapsulation and reducing interdepen-
dencies.

(3) Single Deployment Unit: Despite its modular structure, the en-
tire application is deployed as a single unit, simplifying de-
ployment and operational processes.

(4) Shared Resources: Modules can share certain resources, such
as databases or external services while maintaining logical sep-
aration.

(5) Gradual Migration Path: Modular monoliths offer a stepping
stone for organizations transitioning from monolithic to mi-
croservices architectures, allowing for incremental moderniza-
tion.

The modulith approach addresses several challenges faced by both
monolithic and microservices architectures. It mitigates the com-
plexity of distributed systems inherent in microservices while
providing better organization and maintainability than traditional
monoliths. This architecture is particularly beneficial for managing
inter-service dependencies and data access in complex systems like
high-performance online rewards platforms[4, 10].

By adopting a modulith architecture, organizations can achieve a
balance between the simplicity of monoliths and the flexibility of
microservices. This approach allows for easier refactoring, more
straightforward testing, and improved team autonomy without the
operational complexities associated with fully distributed microser-
vices systems. As the software development landscape continues
to evolve, the modulith architecture represents a pragmatic solu-
tion for organizations seeking to modernize their applications while
managing complexity and maintaining performance. Its emergence
underscores the importance of considering architectural trade-offs
and choosing the most appropriate design based on specific project
requirements and organizational constraints[11].

3. METHODOLOGY
This study employs a single-case study approach[12] to explore the
design, implementation, and evaluation of a modulith architecture
for the Online Rewards System. This case study offers an alterna-
tive to the microservices architecture approach, where the various
modules require frequent data access and inter-module communi-
cation. All code developed during the case study is available here -
https://github.com/c-prakash/ezloyalty

2

https://github.com/c-prakash/ezloyalty


International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.68, February 2025

4. RESULTS
4.1 Modulith Architecture for Online Rewards

Systems
Adopting modulith architecture for online rewards systems rep-
resents a significant shift in the approach to designing high-
performance, scalable, and maintainable software solutions. This
architectural paradigm offers a compelling alternative to traditional
monolithic structures and microservices, particularly in the con-
text of managing inter-service dependencies and data access within
complex rewards systems.

4.1.1 Rationale for Modulith Architecture Adoption. The im-
plementation of modulith architecture in online rewards systems
presents several key advantages that address the unique challenges
faced by these platforms. Primarily, this approach facilitates a more
efficient management of inter-service dependencies, which is cru-
cial in the intricate ecosystem of rewards programs where multi-
ple components must interact seamlessly. Rewards systems’ need
for frequent and consistent access to shared data across modules
made microservices impractical due to the potential overhead of
distributed communication. In a modulith, these modules can di-
rectly communicate through function calls, reducing the latency
associated with network-bound microservices.

One of the primary benefits is the enhanced data consistency and
integrity that modular monoliths offer. In a rewards system, where
transactional accuracy is paramount, the ability to maintain a sin-
gle, coherent data model across all modules significantly reduces
the risk of data inconsistencies that can arise in distributed sys-
tems. Rewards systems often require immediate access to consis-
tent data across the system (e.g., user rewards balances must be up-
dated immediately across all modules). The shared database model
in a modular monolith simplifies this requirement without introduc-
ing the challenges of eventual consistency in distributed systems.

Also, the modulith architecture allows for a more streamlined ap-
proach to performance optimization. By keeping all modules within
a single deployment unit, developers can more easily identify and
address bottlenecks that will occur in the rewards calculation or
redemption processes. This centralized structure enables more ef-
ficient resource utilization by eliminating the need for complex
inter-service communication protocols that are often required in
microservices architectures and minimizes the complexity of dis-
tributed state management.

Another significant advantage is the simplification of the develop-
ment and deployment processes. In the context of online rewards
systems, where frequent updates and feature additions are common,
the modulith approach allows for easier code management and ver-
sion control. Developers can work on individual modules without
the complexity of managing multiple repositories and deployment
pipelines, which is often the case with microservices. The modular
nature of this architecture also promotes code reusability and main-
tainability. For instance, common functionalities such as authenti-
cation, logging, or partner API integrations can be encapsulated
in shared modules, reducing duplication and ensuring consistency
across the system. This is particularly beneficial in rewards systems
where standardized processes, such as point calculation algorithms
or redemption workflows, must be applied uniformly across differ-
ent parts of the application. Lastly, the modular monolith approach
provides a balanced solution for scalability. While it may not of-
fer the same level of fine-grained scalability as microservices, it
allows for selective scaling of modules that experience higher load,

such as during promotional periods or peak redemption times. This
targeted scalability can be achieved without the operational com-
plexity associated with managing a fully distributed microservices
ecosystem.

4.1.2 Challenges and Considerations. While the modulith archi-
tecture offers numerous benefits for online rewards systems, it also
presents certain challenges that must be carefully considered and
addressed during implementation. One of the primary challenges
lies in managing the complexity of module boundaries and inter-
actions. As the system grows, there is a risk of modules becoming
tightly coupled, which can negate many of the benefits of mod-
ularity. To mitigate this, developers must invest significant effort
in designing clear and well-defined interfaces between modules,
ensuring that each component remains as independent as possible
while allowing necessary interactions.

Performance optimization in a modulith can also be challenging,
particularly as the system scales. While the unified nature of the
architecture can simplify some aspects of performance tuning, it
also means that inefficiencies in one module can potentially impact
the entire system. This necessitates a comprehensive performance
monitoring and optimization approach, focusing on identifying and
addressing bottlenecks at the module and system levels. Data man-
agement presents another significant consideration. While the cen-
tralized data model of a modular monolith can enhance consistency,
it also requires careful design to prevent data access patterns that
could lead to performance issues or tight coupling between mod-
ules. Implementing effective data partitioning strategies and estab-
lishing clear data ownership boundaries between modules is crucial
to maintaining the benefits of the modular architecture.

Scalability, while improved compared to traditional monoliths, still
requires thoughtful planning in a modulith. As the rewards sys-
tem grows, there may be scenarios where certain modules need to
scale independently, which can be more challenging than in a mi-
croservices architecture. Developers must design the system with
future scalability in mind, potentially incorporating strategies such
as vertical slicing of functionality to allow for more flexible scal-
ing options. The transition to a modulith architecture, especially
for existing rewards systems, can be a complex process. It requires
a significant upfront investment in redesigning the system archi-
tecture, refactoring existing code, and potentially retraining devel-
opment teams. This transition period can be challenging and may
temporarily impact development velocity.

Lastly, while the modulith approach can simplify many aspects of
system management, it still requires disciplined development prac-
tices to maintain modularity over time. There is a risk of the system
gradually devolving into a traditional monolith if module bound-
aries are not strictly enforced and developers are not vigilant about
maintaining the separation of concerns.

4.2 Inter-Service Dependency Management
In the context of adopting a modulith architecture for an online re-
wards system, effective management of inter-service dependencies
is crucial. This section explores strategies to optimize dependency
relationships within the modular structure, ensuring system robust-
ness, scalability, and maintainability.

4.2.1 Dependency Injection and Inversion of Control. Depen-
dency Injection (DI) and Inversion of Control (IoC) are funda-
mental techniques in managing inter-service dependencies within a
modular monolith architecture. These approaches significantly re-

3



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.68, February 2025

duce tight coupling between services and enhance overall system
modularity[13]. In a modulith, services are organized as distinct
modules within a single code base. While this structure offers ad-
vantages in terms of deployment simplicity and transactional in-
tegrity, it also presents challenges in managing dependencies be-
tween modules. Dependency Injection addresses these challenges
by externalizing the creation and management of dependencies.

The principle of Dependency Injection involves providing a service
with its dependencies rather than having the service create or man-
age them internally. Dependency Injection is typically achieved
through constructor, property, or method injection. For instance,
consider a user action tracking controller to record user activity
that depends on an action query service:

1 public class ActionsController :

ControllerBase

2 {

3 private readonly IMediator _mediator;

4 private readonly IActionsQueries

_actionsQueries;

5 private readonly ILogger <

ActionsController > _logger;

6

7 public ActionsController(

8 IMediator mediator ,

9 IActionsQueries actionsQueries ,

10 ILogger <ActionsController > logger)

11 {

12 _mediator = mediator ?? throw new

System.ArgumentNullException(

nameof(mediator));

13 _actionsQueries = actionsQueries ??

throw new System.

ArgumentNullException(nameof(

actionsQueries));

14 _logger = logger ?? throw new

System.ArgumentNullException(

nameof(logger));

15 }

In this example, the ActionsController receives its dependency
(IActionsQueries) through constructor injection. This approach de-
couples the controller from the concrete implementation of the ac-
tion query service, allowing for easier testing, maintenance, and po-
tential future modifications. Inversion of Control complements De-
pendency Injection by shifting the responsibility of managing de-
pendencies to an external container or framework. In the context of
a modular monolith, an IoC container can manage the lifecycle and
injection of dependencies across different modules. This central-
ized management of dependencies facilitates: a) Loose coupling:
Services depend on abstractions rather than concrete implementa-
tions. b) Improved testability: Dependencies can be easily mocked
or stubbed for unit testing. c) Flexibility: Implementations can be
swapped without modifying the dependent services. d) Centralized
configuration: Dependency relationships can be defined and man-
aged in a single location. By leveraging DI and IoC, the modulith
architecture can maintain clear boundaries between services while
allowing for flexible and manageable inter-service communication.
This approach aligns with the principles of microservices in terms
of modularity and independence while retaining the benefits of a
monolithic deployment model.

4.2.2 Event-Driven Architecture in Modular Monoliths. Event-
driven architecture (EDA) presents a powerful paradigm for man-
aging dependencies and enhancing system scalability within a
modular structure. By adopting event-driven patterns, the online
rewards system can achieve looser coupling between services,
improved responsiveness, and better scalability[14]. In an event-
driven modulith, services communicate primarily through events
rather than direct method calls. This approach offers several ad-
vantages in managing inter-service dependencies: a) Decoupling:
Services emit events without the knowledge of their consumers, re-
ducing direct dependencies. b) Scalability: Event-driven systems
can more easily scale to handle increased load, as events can be
processed asynchronously. c) Extensibility: New functionality can
be added by introducing new event consumers without modifying
existing services. d) Resilience: Temporary failures in one service
are less likely to cascade through the entire system.

Implementing an event-driven architecture within a modular mono-
lith involves several key components:

—Event Bus: A centralized publishing and subscribing events en-
gine. In a modulith architecture, this can be an in-memory event
bus, avoiding the complexity of distributed message queues
while providing event-driven communication benefits.

—Event Publishers: These services generate events based on spe-
cific actions or state changes.

—Event Subscribers: Services that listen for and react to specific
events.

—Event Store: A persistent storage mechanism for events, enabling
event sourcing and replay capabilities.

1 public class ActionStatusChangedToAwaiting -

AccountValidationDomainEvent

2 : INotification

3 {

4 public int AccountNo { get; private set

; }

5 public int ActionRecordId { get;

private set; }

6 public ActionStatusChangedToAwaiting -

AccountValidationDomainEvent(int

customerNo , int recordId)

7 {

8 AccountNo = customerNo;

9 ActionRecordId = recordId;

10 }

11 }

12

13 public class ActionStatusChangedToAwaiting -

AccountValidationDomainEventHandler

14 : INotificationHandler <

ActionStatusChangedToAwaiting

-

AccountValidationDomainEvent

>

15 {

16 private readonly IActionsRepository

_actionRepository;

17 private readonly ILoggerFactory _logger

;

18 private readonly

IActionIntegrationEventService

_actionIntegrationEventService;

4



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.68, February 2025

19

20 public ActionStatusChangedToAwaiting -

AccountValidationDomainEventHandler

(

21 IActionsRepository

actionsRepository ,

ILoggerFactory logger ,

IActionIntegrationEventService

actionIntegrationEventService)

22 {

23 _actionRepository =

actionsRepository ?? throw new

ArgumentNullException(nameof(

actionsRepository));

24 _logger = logger ?? throw new

ArgumentNullException(nameof(

logger));

25

26 _actionIntegrationEventService =

actionIntegrationEventService;

27 }

28

29 public async Task Handle(

ActionStatusChangedToAwaiting -

AccountValidationDomainEvent

actionStatusChangedToAwaiting -

ValidationDomainEvent ,

CancellationToken cancellationToken

)

30 {

31 // Change the action status to

pending validation

32 // Publish new integration event to

a new service

33 // await

_actionIntegrationEventService.

AddAndSaveEventAsync(event);

34 }

35 }

In the above scenarios, the Action service publishes the ActionSta-
tusChangedToAwaitingAccountValidationIntegrationEvent event.
When an activity, e.g., the customer completes a purchase, the Ac-
tion service publishes the event to the event bus to validate the ac-
count status. The Account service then reacts to this event, pro-
viding the customer’s account information, which is further com-
municated to the Incentive service to calculate and apply the re-
wards without directly coupling them to the purchase process-
ing logic. Implementing event-driven patterns in a modulith re-
quires careful consideration of event design, consistency, and per-
formance. While events provide loose coupling, they also intro-
duce challenges in maintaining data consistency and tracing com-
plex workflows. To address these challenges, techniques such as
event sourcing, CQRS (Command Query Responsibility Segrega-
tion), and saga patterns can be employed within the modular struc-
ture. By integrating event-driven architecture principles, the online
rewards system can achieve a balance between the modularity of
microservices and the simplicity of monolithic deployment. This
approach facilitates easier management of inter-service dependen-
cies, improves system scalability, and provides a pathway for future
evolution towards a fully distributed architecture if required.

4.3 Data Access Strategies in Modular Monolith
In the context of developing a highly efficient online rewards sys-
tem using a modulith architecture, optimizing data access strategies
is crucial for ensuring system efficiency and scalability. This sec-
tion explores key approaches to managing data access within the
modulith framework, focusing on domain-driven design principles
and performance optimization techniques.

4.3.1 Domain-Driven Design in Data Management. Domain-
Driven Design (DDD) plays a pivotal role in structuring data ac-
cess within a modular architecture. Through DDD principles, the
system’s data model can align with the business domain, thereby
minimizing redundancy and enhancing overall system coherence.
In the context of an online rewards system, DDD facilitates the cre-
ation of well-defined boundaries between different modules, such
as user account management, activity tracking, reward calculation,
and program management. Each module maintains its own domain
model, encapsulating the data and business logic specific to its
functionality. This approach allows for a unified database schema,
a characteristic feature of modular architecture, while maintaining
a clear separation of concerns[4, 10].

The implementation of DDD in data management for a modular
monolith involves several key strategies. Firstly, the use of aggre-
gates helps in defining clear boundaries around related entities and
value objects. For instance, an “Action” aggregate might encom-
pass account profile data, activity data, and reward points. This ag-
gregation ensures that data integrity is maintained within the mod-
ule and reduces the need for cross-module data access[4, 10]. Fig-
ure 2 provides an example of domain aggregate. Secondly, the con-
cept of bounded contexts in DDD aids in managing the complexity
of large-scale systems. Each module in the modulith can be treated
as a bounded context with its own ubiquitous language and data
model. This approach helps in avoiding conflicts in terminology
and data representation across different parts of the system[10].
Lastly, the use of domain events facilitates communication between
modules without tight coupling. When significant changes occur
within a module, such as a user performing an activity to earn
a reward, a domain event can be published. Other modules can
subscribe to these events, allowing for loose coupling and asyn-
chronous communication patterns, which are preferred in modular
architectures[10].

Fig. 2. Action aggregate and domain events

5



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.68, February 2025

4.4 Caching and Performance Optimization
Optimizing data access performance is critical in high-load sce-
narios typical of online rewards systems. Caching plays a crucial
role in reducing latency and improving overall system responsive-
ness. In a modular architecture, caching strategies can be imple-
mented at various levels to enhance performance[1]. One practical
approach is implementing a distributed caching system that spans
across modules. This allows frequently accessed data, such as user
accounts or current reward balances, to be cached and shared ef-
ficiently among different parts of the system. By adopting loosely
coupled asynchronous communication patterns, modules can up-
date and retrieve cached data without direct dependencies[10].

Another performance optimization technique involves the strate-
gic use of read models. Maintaining separate read-optimized data
structures can significantly improve query performance in scenar-
ios where data is frequently read but rarely updated. This ap-
proach aligns well with the Command Query Responsibility Seg-
regation (CQRS) pattern, which can be effectively implemented
within a modular monolith architecture[4, 10]. To further enhance
performance, the system can employ intelligent pre-fetching mech-
anisms. By analyzing usage patterns and anticipating data needs,
the system can proactively load relevant data into the cache, reduc-
ing latency for subsequent requests. This is particularly beneficial
for operations that involve complex calculations or aggregations,
such as determining a user’s eligibility for specific rewards.

4.5 Case Study: Modular Rewards System
Architecture

This section presents a practical case study of transitioning an on-
line rewards system to a modular architecture. The case study ex-
amines the implementation process, architectural decisions, and
maintainability. By analyzing this real-world application, the study
aims to provide insights into the effectiveness of modulith architec-
ture in addressing the challenges faced by high-performance online
systems.

The new architecture was designed to focus on modularity, clear
boundaries between components, and efficient inter-module com-
munication. The system was divided into distinct modules, each
responsible for specific functionalities such as user account man-
agement, program management, user activity tracking, and reward
calculation. These modules were implemented in a separate .NET
project within a single solution structure as one deployable unit,
maintaining the benefits of a monolithic deployment while intro-
ducing a higher degree of organization and separation of concerns.
The current design has four modules: a) accounts, b) actions, c) in-
centives, and d) programs. Figure 3 provides the various modules
in the online rewards system and how each module communicates
with other modules.

4.5.1 Common Architecture Pattern. The transition to a modular
architecture for the online rewards system involved careful consid-
eration of architectural decisions and design patterns. The primary
goal was to address the limitations of the existing monolithic struc-
ture while avoiding the complexities associated with a fully mod-
ular approach. Every module was divided into four projects using
the following Visual Studio project structure to ease code manage-
ment and organization. Figure 4 depicts the project structure and
individual modules in a Visual Studio solution.

—ProjectName.API - API project includes the API controller/end-
points and the integration events and handlers.

Fig. 3. Various modules included in an online rewards system

—ProjectName.Domain - Domain projects have respective domain
models and domain events.

—ProjectName.Infrastructure - The infrastructure project includes
the database interaction layer. The case study uses only SQL
Server, which is extendable to any database due to its decoupled
design.

—ProjectName.UnitTests - Unit test cases for the above three
projects.

4.5.2 Event-Driven Architecture. To manage inter-module de-
pendencies, the system employed a combination of dependency in-
jection and mediator patterns. The dependency injection container
was configured to handle module components’ instantiation and
life cycle management, promoting loose coupling between mod-
ules. The architecture also incorporated event-driven design princi-
ples to handle complex workflows and maintain system responsive-
ness. The mediator pattern was implemented to facilitate commu-
nication between modules through domain and integration events,
allowing for a more decoupled and maintainable code base. Do-
main events were localized to the module; however, critical events,
such as incentive or eligibility checks, were published via integra-
tion events through an internal event bus, allowing interested mod-
ules to react accordingly without tight coupling. Figure 5 provides
a view of event communication through the event bus, and Figure
6 depicts the various events and event handlers in a module.
Data access within the modular architecture was carefully designed
to balance performance and modularity. Each module was given
its dedicated data access layer that was responsible for interacting
with the underlying database. The modular and flexible architec-
ture allowed for every module to have its own dedicated database
or dedicated schema in a shared database. Figure 7 presents the
Infrastructure layer, which represents the data access layer.

5. CONCLUSION AND FUTURE WORK
This study has provided valuable insights into adopting modulith
architecture for an online rewards system, focusing on managing
inter-service dependencies and data access. This study has demon-
strated that the modular monolith approach offers a compelling al-
ternative to microservices architecture, particularly for organiza-
tions seeking to balance system modularity, performance, main-
tainability, and scalability. Implementing a modulith architecture
in the context of an online rewards system has shown significant
benefits in reducing complexity and improving overall system per-
formance. By encapsulating distinct functionalities within modules

6



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.68, February 2025

Fig. 4. A visual studio solution structure for modulith design

while maintaining a unified code base, the study has observed en-
hanced data consistency, simplified deployment processes, and im-
proved resource utilization. These advantages have translated into
a more efficient and responsive rewards system capable of handling
high transaction volumes with reduced latency.

Fig. 5. Rewards system modules and cross-module communication
through Events

Fig. 6. Rewards system modules and cross-module communication
through Events

The study findings suggest that the modular approach effec-
tively addresses many of the challenges associated with dis-
tributed systems, particularly in the realm of inter-service
dependencies[15][16]. By leveraging well-defined interfaces be-
tween modules, the study has achieved a level of loose coupling
that facilitates more manageable maintenance and updates without
compromising the integrity of the system as a whole. This archi-
tectural choice has proven especially beneficial in managing the
complex relationships inherent in rewards systems, such as activity
tracking, rewards accrual, and account management[16]. Further-
more, the study has highlighted the importance of thoughtful data
access patterns within the modular structure[16]. By implement-
ing a centralized data access layer, the study has successfully mit-
igated many data consistency issues that often plague distributed

7



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.68, February 2025

Fig. 7. Infrastructure Module Containing Data Access Layer

systems. This approach has not only improved data integrity but
has also simplified the implementation of cross-cutting concerns
such as caching and security.

However, as with any architectural approach, some areas warrant
further investigation and potential improvement. One key area for
future work is the exploration of more sophisticated module com-
munication strategies. While the current implementation has shown
promise, there is room for optimization in terms of inter-module
messaging and event propagation. Future research could focus on
developing more efficient patterns for asynchronous communica-
tion between modules, potentially incorporating advanced queuing
mechanisms. Another promising direction for future work lies in
the realm of dynamic module loading and unloading. As online
rewards systems often need to adapt to changing business require-
ments and seasonal promotions, the ability to hot-swap modules
without system downtime could provide significant operational
benefits. This area of research could explore techniques for safely
introducing or removing functionality at runtime, potentially draw-
ing inspiration from plugin architectures or dynamic library loading
mechanisms.

Additionally, as the scale of online rewards systems continues to
grow, future studies should investigate strategies for horizontal
scaling of modulith architecture. While the current architecture has
demonstrated good vertical scaling characteristics, exploring meth-
ods for distributing modules across multiple nodes while maintain-
ing the benefits of a monolithic code base could yield interesting
insights[16]. This could involve research into partial deployment
strategies, state replication techniques, or novel approaches to dis-
tributed transactions within a modular context[16].

In conclusion, this case study has demonstrated the viability
and advantages of adopting a modulith architecture for a high-
performance online rewards system. By effectively managing inter-
service dependencies and optimizing data access patterns, the study
has shown that this architectural approach can deliver signifi-
cant benefits in terms of system performance, maintainability, and
scalability[16]. As the field of software architecture continues to
evolve, the insights gained from this study provide a solid founda-
tion for further research and development in the domain of modular
system design for complex, transaction-intensive applications like
online rewards systems.

6. REFERENCES

[1] Matheus Felisberto. The trade-offs between monolithic vs. dis-
tributed architectures. arXiv preprint arXiv:2405.03619, 2024.

[2] Michail Tsechelidis, Nikolaos Nikolaidis, Theodore Maikan-
tis, and Apostolos Ampatzoglou. Modular monoliths the way
to standardization. In Proceedings of the 3rd Eclipse Security,
AI, Architecture and Modelling Conference on Cloud to Edge
Continuum, pages 49–52, 2023.

[3] Eric Evans. Domain-driven design: tackling complexity in the
heart of software. Addison-Wesley Professional, 2004.

[4] Chandra Prakash and Sunil Arora. Systematic analysis of
factors influencing modulith architecture adoption over mi-
croservices. In 2024 TRON Symposium (TRONSHOW), pages
1–8, 2024.

[5] Donald Pinckney, Federico Cassano, Arjun Guha, Jonathan
Bell, Massimiliano Culpo, and Todd Gamblin. Flexible and
optimal dependency management via max-smt. In 2023
IEEE/ACM 45th International Conference on Software En- gi-
neering (ICSE), pages 1418–1429. IEEE, 2023.

[6] Chandra Prakash. Zero-Trust Architecture Approach
to Secure Microservices for the Healthcare Insurance
In- dustry. PhD thesis, University of the Cumber-
lands, 2024. Available at https://www.proquest.com/
openview/eef147d67ec912743f9791d236299c6f/ 1?pq-
origsite=gscholarcbl=18750diss=y.

[7] Yalemisew Abgaz, Andrew McCarren, Peter Elger, David
Solan, Neil Lapuz, Marin Bivol, Glenn Jackson, Murat Yil-
maz, Jim Buckley, and Paul Clarke. Decomposition of mono-
lith applications into microservices architectures: A system-
atic review. IEEE Transactions on Software Engineering,
49(8):4213–4242, 2023.

[8] Sourabh Sethi and Sarah Panda. Transforming digital expe-
riences: The evolution of digital experience platforms (dxps)
from monoliths to microservices: A practical guide. Journal of
Computer and Communications, 12(2):142–155, 2024.

[9] Mehdi AIT SAID, Lahcen BELOUADDANE, Soukaina MIHI,
and Abdellah EZZATI. Modulith architecture: Adop- tion pat-
terns, challenges, and emerging trends. International Journal of
Computing and Digital Systems, 16(1):189–203, 2024.

[10] Ruoyu Su and Xiaozhou Li. Modular monolith: Is this the
trend in software architecture? In Proceedings of the 1st Inter-
national Workshop on New Trends in Software Architecture,
pages 10–13, 2024.

[11] Taras Shablii and Sergiy Tytenko. Modular monolith as a
microservices precursor. Modern engineering and innovative
technologies, (29-01):25–32, 2023.

[12] Robert K. Yin. Case study research and applications: Design
and methods. SAGE, 2018.

[13] Tianyi Yang, Baitong Li, Jiacheng Shen, Yuxin Su, Yongqiang
Yang, and Michael R Lyu. Managing service dependency for
cloud reliability: The industrial practice. In 2022 IEEE In-
ternational Symposium on Software Reliability Engineering
Workshops (ISSREW), pages 67–68. IEEE, 2022.

[14] Luan Lazzari and Kleinner Farias. Event-driven architecture
and rest architectural style: An exploratory study on modular-
ity. Journal of applied research and technology, 21(3):338–
351, 2023.

[15] Sam Newman. Microservices for greenfield?, 2015.
[16] Martin Fowler. Monolith first, 2015.

8


	INTRODUCTION
	Literature Review
	Evolution of Software Architectures
	Modular Monolith or Modulith Architecture

	Methodology
	Results
	Modulith Architecture for Online Rewards Systems
	Rationale for Modulith Architecture Adoption
	Challenges and Considerations

	Inter-Service Dependency Management
	Dependency Injection and Inversion of Control
	Event-Driven Architecture in Modular Monoliths

	Data Access Strategies in Modular Monolith
	Domain-Driven Design in Data Management

	Caching and Performance Optimization
	Case Study: Modular Rewards System Architecture
	Common Architecture Pattern
	Event-Driven Architecture


	Conclusion and Future Work
	References

