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ABSTRACT 
Effort estimation remains a cornerstone of software project 

management, playing a pivotal role in project planning, 

resource allocation, and overall success. Over the years, its 

importance has only grown as software projects have become 

more complex and diverse. To deepen understanding in this 

area, this paper conducted a comprehensive review of software 

effort estimation techniques, analyzing 21 studies published 

between 2014 and 2024. This review addressed four key 

research questions, revealing Planning Poker as the most 

widely used expert-based estimation technique and Random 

Forest as the most frequently applied method in machine-based 

estimation. The findings underscore that inaccurate effort 

estimation is often linked to issues in requirement definition 

and management. Additionally, the study examines the impact 

of software development processes on estimation accuracy. 

Finally, it identified key limitations and proposed future 

research directions from the reviewed papers, providing 

actionable insights to improve effort estimation methods and 

practices in the field. 
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1. INTRODUCTION 
Over the years, one of the important aspects of software project 

management is effort estimation. It is a critical component, as 

it significantly influences project planning, resource allocation, 

and project success. The software effort estimation (SEE) is a 

process of predicting the amount of effort, typically expressed 

in person-hours or person-months, required to develop or 

maintain a software project. Accurate estimations are essential 

to ensure that projects adhere to their budgets and timelines, 

ultimately leading to the delivery of high-quality software 

products. 

Historically, SEE has encountered challenges due to the 

inherent complexity of software development processes, which 

are often subject to changing requirements and varying levels 

of uncertainty. Traditional estimation techniques provide 

frameworks for making these predictions, such as expert 

judgment and algorithmic models like COCOMO. However, 

these methods can sometimes lead to significant inaccuracies, 

resulting in either overestimations or underestimations of 

required effort. 

The importance of effective SEE is underscored by studies 

indicating that a large percentage of software projects fail to 

meet their initial goals, often due to inaccurate effort 

predictions. For instance, a survey conducted by the Project 

Management Institute in 2017 noted that while 69% of projects 

achieved their original objectives, many faced budget overruns 

and delays, highlighting the critical need for improved 

estimation techniques [1], [2], [3]. A case study in [4] 

highlighted that effort estimation in distributed settings 

frequently required extensive discussions, which are inherently 

more difficult to facilitate compared to the face-to-face 

interactions of co-located teams. For example, in projects 

like EnergySoftware and PrintCo, participants expressed a 

strong preference for on-site planning meetings during effort 

estimation, as these allowed for more effective discussions and 

greater clarity. They also found [5] that the role of respondents, 

data collection approach, and type of analysis had an important 

influence on the reasons given for the estimation error. 

This paper is organized as follows. Section 2 presents the 

previous related systematic and mapping literature review 

studies published in SEE. In Section 3, it presents the review 

methodology, research questions, and search strategies. Section 

4 shows and discusses the results. Finally, in Section 5 it 

summarizes and presents the conclusions. 

2. RELATED WORK 
Agile software effort estimation involves predicting the time, 

cost, and resources required to complete tasks or projects, 

enabling teams to effectively plan, prioritize work, and manage 

scope within iterative and dynamic development environments. 

The following papers explore different aspects of software 

effort estimation in Agile Software Development (ASD) using 

Systematic Literature Review (SLR), and Systematic Mapping 

Study (SMS). In [6], the authors used a Forward Snowballing 

approach to analyze 312 papers and identify 24 relevant studies 

published between 2014 and 2017. Key findings include the 

continued popularity of Planning Poker as the most cited 

estimation technique, a significant increase in the use of AI and 

machine learning methods, and the identification of 10 cost 

drivers influencing effort estimation. These cost drivers include 

quality requirements, task size, integration, priority, 

complexity, stakeholder delays, team composition, work 

environment, expertise, and technical capability. The review 

highlights ongoing challenges in achieving accuracy and 

consistency with cost drivers, noting a shift toward 

incorporating more project- and people-related factors into 

estimation processes. Similarly, in [7], the authors analyzed 73 

new studies published between 2013 and 2020. They confirm 

that expert judgment remains a key method, particularly 
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through techniques such as Planning Poker, while also 

highlighting a growing trend toward the adoption of machine 

learning and data-driven methods. The review identifies 

significant improvements in the reporting of accuracy metrics, 

with an increasing use of story points as the primary measure 

of magnitude. It also underscores the various cost factors 

influencing effort estimation, emphasizing the critical role of 

project and team dynamics. Overall, the findings point to the 

need for further refinement of estimation techniques and the 

standardization of cost factors in ASD. Also, in [8], a SMS of 

the literature from 2018 to 2022 identifies 25 relevant studies 

and highlights that the most common estimation techniques are 

story points (SP), Planning Poker (PP), and expert judgment 

(EJ). The research emphasizes the importance of accurate effort 

estimation for project success, noting that while machine 

learning techniques are increasingly applied, challenges 

remain, such as reliance on expert knowledge and a lack of 

sufficient data to generalize models.  

Inaccurate software effort estimation in Agile can lead to 

project delays, budget overruns, and resource misallocation, 

often resulting from factors such as incomplete requirements, 

team dynamics, complex dependencies, and the inherent 

uncertainty in predicting effort within iterative and evolving 

development environments. In [9], the author presents a 

systematic mapping study examining the factors that impact the 

accuracy of software development effort estimation. It 

identifies thirty-two different factors categorized into four main 

groups: estimation process, estimator characteristics, project 

characteristics, and external context. The study highlights the 

importance of accurate effort estimation for project planning 

and management, emphasizing the need for researchers and 

practitioners to be aware of these factors and their influences. 

Additionally, it critiques the current state of research, noting a 

shift from broad overview studies to more focused 

investigations on specific factors, while also calling for 

improved definitions and methods in future research to better 

understand and enhance estimation accuracy. Similarly, in [10], 

the paper focuses on identifying the reasons behind inaccurate 

effort estimations in Agile software development and 

categorizing approaches to improve these estimations. The 

review highlights five main themes for inaccuracies: quality 

issues of available information, team-related factors, estimation 

practices, project management issues, and business influences. 

It emphasizes the importance of enhancing information quality 

and suggests that practitioners should consider adopting 

automated methods for better accuracy. Additionally, the study 

found that while numerous approaches have been proposed to 

improve estimation accuracy, many lack empirical validation 

and risk data leakage, urging further research to address these 

gaps.  

3. METHODOLOGY 
This review adheres to the guidelines established by 

Kitchenham et al. [11], encompassing three distinct stages: 

planning, conducting, and reporting. During the planning stage, 

the need for the review is identified, and a detailed protocol is 

developed to structure and guide the research process. The 

conducting stage involves systematically gathering relevant 

studies, selecting primary research, evaluating the quality of 

these studies, and extracting and synthesizing pertinent data. 

Finally, the reporting stage focuses on producing a 

comprehensive report that effectively summarizes the key 

findings and insights derived from the review.  

 

3.1 Research questions 
The aim of this research is to explore software effort estimation 

(SEE). Therefore, it refines the aim in four research questions 

described as follows: 

RQ1: What are the most commonly used techniques and 

models for software effort estimation? 

RQ2: What are the key factors influencing the accuracy of 

software effort estimation? 

RQ3: How does effort estimation differ among scrum of 

scrum, distributed agile, and DevOps software development 

methodologies? 

RQ4: What are the limitation and future direction in software 

effort estimation? 

3.2 Search strategies and selection 

criteria 
The electronic databases were chosen due to comprehensive 

coverage of software engineering literature. The relevant 

studies were collected from Four reputable academic databases, 

including: IEEE Xplore, ACM Digital Library, ScienceDirect, 

and SpringerLink. The search timeframe covered the 

publications from 2014 to 2024, to comprehensive coverage of 

relevant studies over the past twenty years. A well-constructed 

search string is essential for capturing the most relevant studies 

within the research domain. This search string is "Software 

Effort Estimation". 

This paper established inclusion and exclusion criteria to 

ensure that only studies relevant to the scope and objectives of 

this review were considered. 

3.2.1 Inclusion Criteria: 
• Studies specifically addressing software effort 

estimation. 

• Studies published between 2014 and 2024. 

3.2.1 Exclusion Criteria: 
• Studies categorized as training materials, editorials, 

article summaries, interviews, prefaces, news items, 

reviews, correspondence, tutorials, poster sessions, 

workshops, or panels. 

• Studies not written in English. 

To facilitate the management and streamlining of the 

systematic review process, this paper utilized Rayyan, a web-

based application designed for this purpose. The stages of the 

study selection process are illustrated in Figure 1. 
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Figure 1: Search strategies and selection criteria 

4. RESULT AND DISCUSSION 
To address the four research questions, this paper has divided 

the discussion into the following four sections. 

4.1 Techniques used in software effort 

estimation (RQ1) 
The Software Effort Estimation (SEE) techniques are 

categorized into three groups: expert-based, machine-based, 

and hybrid-based approaches as present in Table 1. Among the 

expert-based effort estimation methods, Planning Poker (PP) is 

the most frequently mentioned technique in the reviewed 

papers, followed by Expert Judgment (EJ), Story Points 

(SP), Estimation by Analogy, and Delphi. Additionally, 

methods such as Use Case Points, Team Estimation 

Game, Bucket System, Dot Voting, Swimlane Sizing, Ideal 

Days, T-shirt Size/Dog Size, Functional Size Measures 

(FSM), Function Point (FP), and COSMIC Function Point 

(CFP) are mentioned with equivalent significance across the 

papers. 

In contrast, among the machine-based estimation 

methods, Random Forest (RF) emerges as the most frequently 

mentioned technique in the reviewed papers. It is followed 

by K-nearest neighbors (KNN) and Decision Tree (DT), and 

subsequently by Support Vector Machine (SVM), Naive Bayes 

(NB), Linear Regression (LR), and Classification and 

Regression Trees (CART). Other techniques mentioned 

include Stochastic Gradient Boosting (SGB), Neural Networks 

(NN), Gradient Boosted Tree (GBT), Multilayer Perceptron 

(MLP), Support Vector Regression (SVR), Sentence-BERT 

(SBERT), Long Short-Term Memory 

(LSTM), AdaBoost, Genetic Programming (GP), Multi-

Objective Genetic Programming (MOGP), Genetic Algorithms 

(GA), NSGAII-UO, and Random Guessing (RG). 

Finally, among the hybrid-based estimation 

methods, COCOMO is the most frequently mentioned 

technique in the reviewed papers. It is followed by Linear 

Programming for Effort Estimation (LP4EE), Confidence 

Guided Effort Estimator (CoGEE), and Case-Based Reasoning 

(CBR). These methods combine elements of both expert 

judgment and machine-based approaches to enhance the 

accuracy and reliability of effort estimation. 

4.2 The key factors influencing the 

accuracy in Software Effort Estimation 

(RQ2) 
Software effort estimation (SEE) accuracy is a goal that many 

researchers seek to achieve, but in order to achieve it this paper 

need to identify the key factors that affect the accuracy of 

software effort estimation and lead to errors in it. The main 

factors that affect the accuracy of software effort estimation are 

requirements-related issues, where incomplete, ambiguous, or 

complex requirements are the most significant contributors to 

estimation inaccuracy. When requirements are poorly defined 

or subject to frequent changes, it becomes difficult for teams to 

accurately measure the effort required to implement. This leads 

to under- or overestimation, which directly impacts project 

schedules and budgets. This is followed by project 

management issues, where the experience, biases, and 

decision-making processes of project managers greatly impact 

estimation results. Inconsistent project management practices 

can lead to misaligned priorities and unrealistic expectations, 

further exacerbating estimation inaccuracy. Next come team-

related issues, where challenges such as varying skill levels, 

distributed team structures, and limited collaboration 

opportunities impact the accuracy of estimates. Teams that 

struggle with communication or coordination are more likely to 

produce inaccurate effort forecasts. In addition, errors can stem 

from model and data issues, the use of outdated or insufficient 

models, and the lack of high-quality historical data undermine 

the reliability of machine-based estimation techniques. These 

issues highlight the need for better data collection practices and 

adaptive models. Other contributing factors include customer-

related issues, such as insufficient client engagement or unclear 

expectations create uncertainty in determining outcomes. This 

often leads to inaccurate estimates and increased rework. Also, 

cultural-related issues, where differences in cultural 

perspectives and organizational silos hinder effective 

collaboration and understanding. Such barriers complicate 

estimation processes, especially in distributed environments. 

Finally, considerations of quality and risk factors, along with 

organizational issues, such as silos or inadequate 

communication within the organization, exacerbate the 

inaccuracy of the estimate. Ignoring quality considerations or 

underestimating risk can significantly distort estimation results. 

Comprehensive risk assessments and quality metrics are 

essential to improving estimation accuracy as shown in Figure 

2. 
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Figure 2: Key factors influence the accurate of software 

effort estimation 

4.3 Effort estimation differ among 

scrum of scrum, agile, distributed agile, and 

DevOps software development (RQ3) 

4.3.1 Estimate effort in Scrum of scrum 
Scrum of Scrums meetings are conducted to facilitate 

communication among multiple teams and to address technical 

constraints and inter-team dependencies. These dependencies 

may sometimes require one team to prioritize and implement a 

low-priority feature earlier to unblock other teams. Scrum 

Masters from all teams participate in these meetings, which are 

typically held before the start of every sprint [15]. Effort 

estimation within the Scrum of Scrums framework is a critical 

component for managing large, distributed projects effectively. 

This process involves breaking down the product backlog into 

smaller, manageable sub-backlogs, enabling individual Scrum 

teams to estimate the effort required for their specific features. 

By doing so, dependencies between teams are identified and 

addressed early, ensuring that each team can operate 

autonomously while remaining aligned with the overall project 

objectives. The inclusion of local Product Owners (POs) in 

these meetings further enhances the prioritization process and 

effort assessment. This collaborative approach fosters 

improved communication and coordination among teams, 

resulting in more accurate effort estimations. Ultimately, the 

Scrum of Scrums framework not only mitigates risks associated 

with dependencies but also ensures better alignment, leading to 

improved project outcomes and streamlined delivery [32]. 

4.3.2 Estimate effort in DevOps 
Effort estimation in DevOps is significantly affected by the 

dynamic nature of customer requirements, the need for rapid 

iterations, or sprints, communication, organizational culture, 

technology stack, and collaboration among teams. These 

factors can lead to either accurate or inaccurate estimations, 

which directly impact project delivery timelines and costs [20]. 

Traditional estimation methods often fall short due to this 

volatility; hence, methodologies like planning poker and 

advanced consensus-based techniques are employed to enhance 

accuracy and reduce bias among team members. By 

incorporating collective input and historical performance data 

of team members, DevOps teams can achieve more reliable 

estimates, which are crucial for effective sprint planning and 

execution. This collaborative approach not only aids in precise 

effort estimation but also fosters team cohesion, ultimately 

contributing to the success of the project [14]. 

4.3.3 Estimate effort in Distributed Agile 
Effort estimation in distributed agile projects presents unique 

challenges due to the complexities introduced by the distributed 

Table 1: Categorize of Software Effort Estimation 

Class 
Effort Estimation 

Technique 
Ref 

Expert-

Based 

Estimation 

Methods 

Planning Poker 

 [10], [11], 

[12], [13], [14], 

[15], [17] 

Estimation by Analogy [12], [13], [19] 

Expert Judgment 

[12], [13], [16], 

[17], [19], [20], 

[21] 

Delphi [12], [16] 

Story Points 
[13], [17], [22], 

[23] 

Others (Use Case Points, 

Team Estimation Game, 

Bucket System, Dot Voting, 

Swimlane Sizing, Ideal Days, 

T-shirt Size/Dog Size, 

Functional Size Measures 

(FSM), Function Point (FP), 

COSMIC Function Point 

(CFP)) 

[17], [23] 

Machine-

Based 

Estimation 

Methods 

Random Forest (RF) 

[2], [16], [22], 

[24], [25], [26], 

[27] 

Decision Tree (DT) 
[16], [22], [24], 

[25], [28] 

K-nearest neighbors (KNN) 
[16], [25], [26], 

[27], [28] 

Naive Bayes (NB) [2], [16], [26] 

Classification and Regression 

Trees (CART) 
[26], [27], [29] 

Support Vector Machine 

(SVM) 
[2], [16], [30] 

Linear Regression (LR) [28], [28], [29] 

Stochastic Gradient Boosting 

(SGB) 
[16], [22] 

Neural Networks (NN) [2], [16] 

Gradient Boosted Tree 

(GBT) 
[16], [25] 

Multilayer Perceptron (MLP) [25], [28] 

Support Vector Regression 

(SVR) 
[27], [28] 

Others (Sentence-BERT 

(SBERT), Long Short-Term 

Memory (LSTM), AdaBoost, 

Genetic Programming (GP), 

Multi-Objective Genetic 

Programming (MOGP), 

Genetic Algorithms (GA), 

NSGAII-UO, Random 

Guessing (RG)) 

[14], [22], [23], 

[24], 

Hybrid-

Based 

Estimation 

Methods 

COCOMO [12], [20], [21] 

Others (Linear Programming 

for Effort, Estimation 

(LP4EE), Confidence Guided 

Effort Estimator (CoGEE), 

Case-Based Reasoning 

(CBR)) 

[29], [30], [31] 
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nature of teams. Global barriers, such as cultural differences, 

time zone disparities, language differences, and geographical 

distances, significantly impact the estimation process. These 

factors introduce unique cost drivers that are less pronounced 

in co-located agile teams, thereby complicating the task of 

providing accurate estimates. Additionally, distributed teams 

often encounter challenges related to communication and 

coordination, which further exacerbate the difficulties in effort 

estimation [12]. In [13] the authors highlighted that effort 

estimation in distributed settings frequently required extensive 

discussions, which are inherently more difficult to facilitate 

compared to the face-to-face interactions of co-located teams. 

However, due to the constraints of short sprint cycles, relying 

solely on in-person meetings was often not economically 

feasible. This limitation led to a dependence on 

teleconferencing and remote collaboration tools, which, while 

practical, sometimes hindered effective communication and the 

clarity needed for accurate estimation discussions. As a result, 

traditional effort estimation methods often fall short in 

distributed agile software development (DASD) contexts. To 

address these challenges, there is a need to integrate 

considerations for risk factors, as well as factors such 

as quality, novelty, and the type of work, into the estimation 

process to enhance accuracy and adaptability in distributed 

settings. 

4.4 Limitation and future direction of 

software effort estimation (RQ4)  
Based on the review, the most commonly mentioned limitation 

across the studies is the generalization of results, cited in 7 

studies. The reviewed studies emphasize the difficulty in 

generalizing findings due to the diversity of software projects. 

This challenge limits the applicability of estimation techniques 

across different project contexts and domains. This is followed 

by concerns about the quality of historical data in 5 studies 

where the lack of comprehensive, high-quality datasets is a 

recurring issue. Studies underscore that insufficient data affects 

the training and validation of estimation models, making them 

less reliable in real-world scenarios. The complexity of 

software projects in 4 studies, where the increasing complexity 

of modern software projects, combined with the scale of 

distributed teams and global collaborations, introduces 

numerous variables that are hard to account for in estimation 

models. Other limitations include the maturity and experience 

of teams, dataset size, and the availability of real test data as 

presented in Figure 3. The lack of comprehensive, high-quality 

datasets is a recurring issue. Studies underscore that 

insufficient data affects the training and validation of 

estimation models, making them less reliable in real-world 

scenarios. 

On the other hand, the reviewed papers highlight that 

'validating the model with real project data and commercial 

software projects, while exploring the impact of varying user 

story sizes, and integrating factors such as team dynamics and 

challenges associated with distributed teams, can enhance the 

model's applicability across different project scales. Expanding 

the sample size will further improve the generalizability of the 

results is identified as a key direction for future work in 7 

studies. This is followed by the development of 'comprehensive 

frameworks, guidelines, and training programs to enhance the 

estimation skills of teams,' and 'exploring more advanced 

machine learning techniques, including deep learning and 

unsupervised learning methods, to enhance prediction 

accuracy. Techniques such as Extreme Learning Machines and 

Bayesian Networks could be applied to a larger and more 

diverse dataset, improving the robustness and applicability of 

effort estimation models in agile software development—both 

of which are the second most frequently mentioned future work 

directions, as presented in Table 2. 

 

Figure 3: Limitation of the reviewed papers 

5. LIMITATIONS 
This study focuses on 21 papers published between 2014 and 

2024. While comprehensive, this limited scope may overlook 

other significant research contributions outside the selected 

timeframe or databases. Also, it does not involve primary data 

collection or empirical validation. Instead, it synthesizes 

findings from existing literature, which may limit its 

contribution to actionable insights or practical implementation. 

Additionally, it emphasizes agile methodologies, particularly 

Scrum and DevOps. This focus may limit the generalizability 

of the findings to other development paradigms or 

methodologies. 

Despite efforts to maintain objectivity, researcher bias in 

interpreting and synthesizing findings from diverse sources 

cannot be entirely eliminated. By acknowledging these 

challenges and limitations, this study provides a transparent 

foundation for interpreting its findings and sets the stage for 

future research to address these gaps. 

6. CONCLUSION 
This paper conducted a comprehensive review of software 

effort estimation techniques, analyzing 21 studies published 

between 2014 and 2024. The review aimed to address four key 

research questions. It identified that the most commonly used 

expert-based effort estimation technique is Planning Poker, 

while Random Forest is the most frequently employed method 

in machine-based effort estimation. The findings also highlight 

that inaccurate effort estimation often stems from issues related 

to requirements. Additionally, it explored the impact of 

software development processes on effort estimation accuracy. 

The review also identified several limitations and proposed 

future directions for improving software effort estimation 

practices. These include the need for more research on hybrid 

techniques that combine expert-based and machine-based 

methods to improve accuracy. Future studies could also explore 

the application of newer machine learning algorithms and 

artificial intelligence to enhance predictive capabilities. 

Furthermore, addressing the challenges related to requirement 

uncertainty and integrating agile practices into estimation 

models are potential areas for development. As software 

development processes continue to evolve, future work should 

investigate how emerging methodologies, such as DevOps and 

continuous delivery, influence estimation practices. These 

advancements could provide valuable insights and contribute 

to the refinement of software effort estimation techniques in the 

years to come. 
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Table 2: Reviewed papers future directions 

Future direction Ref 

Interviews in both co-located and distributed contexts [12] 

Enhancing effort estimation models by incorporating more sophisticated risk assessment techniques, improving the 

integration of quality metrics, and exploring machine learning approaches to adaptively refine estimates based on 

historical project data. Expanding the dataset to include a broader range of projects will further improve the accuracy 

and robustness of the models. [13], [14] 

Exploring the integration of emerging technologies, such as Machine Learning Operations (MLOps), into effort 

estimation practices could provide valuable insights for enhancing the accuracy and efficiency of these strategies. [20] 

Developing comprehensive frameworks, guidelines, and training programs to enhance the estimation skills of teams. [13], [30] 

Exploring more advanced machine learning techniques, including deep learning and unsupervised learning methods, 

to enhance prediction accuracy. Techniques such as Extreme Learning Machines and Bayesian Networks could be 

applied to a larger and more diverse dataset, improving the robustness and applicability of effort estimation models in 

agile software development. [2], [22], [24] 

Validating the model with real project data and commercial software projects, while exploring the impact of varying 

user story sizes. Additionally, integrating factors such as team dynamics and challenges associated with distributed 

teams can enhance the model's applicability across different project scales. Expanding the sample size will further 

improve the generalizability of the results. 

[14], [15], 

[19], [21], 

[27], [28], 

[29] 

Expanding the applicability of LFM to various software engineering predictive tasks beyond effort estimation, such as 

bug-fixing time prediction and customer ratings prediction, can broaden its utility and enhance the accuracy of 

forecasting in different aspects of software development. [26] 

Conducting longitudinal studies to analyze the effectiveness of different estimation techniques over time and explore 

the impact of factors such as team dynamics, project complexity, and evolving agile methodologies on estimation 

accuracy can provide valuable insights into the long-term performance and adaptability of estimation models in real-

world scenarios. [19] 

Adapting the model for various estimation scenarios, such as cross-company versus within-company analyses, and 

expanding its application to other software engineering tasks, like predicting app ratings and bug-fixing times, will 

increase its versatility and improve its utility across a broader range of predictive tasks in software development. [27] 
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