
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.68, February 2025

42

Comprehensive Analysis of Software Effort Estimation

Techniques: Evolving Trends, Key Challenges, and

Prospective Directions

Sahar Alturki
Department of Software Engineering,
College of Computer and Information

Sciences, King Saud University,
Riyadh, Saudi Arabia

Fazal E-amin
Department of Software Engineering,
College of Computer and Information

Sciences, King Saud University,
Riyadh, Saudi Arabia

ABSTRACT
Effort estimation remains a cornerstone of software project

management, playing a pivotal role in project planning,

resource allocation, and overall success. Over the years, its

importance has only grown as software projects have become

more complex and diverse. To deepen understanding in this

area, this paper conducted a comprehensive review of software

effort estimation techniques, analyzing 21 studies published

between 2014 and 2024. This review addressed four key

research questions, revealing Planning Poker as the most

widely used expert-based estimation technique and Random

Forest as the most frequently applied method in machine-based

estimation. The findings underscore that inaccurate effort

estimation is often linked to issues in requirement definition

and management. Additionally, the study examines the impact

of software development processes on estimation accuracy.

Finally, it identified key limitations and proposed future

research directions from the reviewed papers, providing

actionable insights to improve effort estimation methods and

practices in the field.

General Terms
Software, Effort Estimation, Analysis, Review, Trends,

Challenges, Future Direction.

Keywords
Software, Effort Estimation, Analysis, Review, Trends,

Challenges, Future Direction.

1. INTRODUCTION
Over the years, one of the important aspects of software project

management is effort estimation. It is a critical component, as

it significantly influences project planning, resource allocation,

and project success. The software effort estimation (SEE) is a

process of predicting the amount of effort, typically expressed

in person-hours or person-months, required to develop or

maintain a software project. Accurate estimations are essential

to ensure that projects adhere to their budgets and timelines,

ultimately leading to the delivery of high-quality software

products.

Historically, SEE has encountered challenges due to the

inherent complexity of software development processes, which

are often subject to changing requirements and varying levels

of uncertainty. Traditional estimation techniques provide

frameworks for making these predictions, such as expert

judgment and algorithmic models like COCOMO. However,

these methods can sometimes lead to significant inaccuracies,

resulting in either overestimations or underestimations of

required effort.

The importance of effective SEE is underscored by studies

indicating that a large percentage of software projects fail to

meet their initial goals, often due to inaccurate effort

predictions. For instance, a survey conducted by the Project

Management Institute in 2017 noted that while 69% of projects

achieved their original objectives, many faced budget overruns

and delays, highlighting the critical need for improved

estimation techniques [1], [2], [3]. A case study in [4]

highlighted that effort estimation in distributed settings

frequently required extensive discussions, which are inherently

more difficult to facilitate compared to the face-to-face

interactions of co-located teams. For example, in projects

like EnergySoftware and PrintCo, participants expressed a

strong preference for on-site planning meetings during effort

estimation, as these allowed for more effective discussions and

greater clarity. They also found [5] that the role of respondents,

data collection approach, and type of analysis had an important

influence on the reasons given for the estimation error.

This paper is organized as follows. Section 2 presents the

previous related systematic and mapping literature review

studies published in SEE. In Section 3, it presents the review

methodology, research questions, and search strategies. Section

4 shows and discusses the results. Finally, in Section 5 it

summarizes and presents the conclusions.

2. RELATED WORK
Agile software effort estimation involves predicting the time,

cost, and resources required to complete tasks or projects,

enabling teams to effectively plan, prioritize work, and manage

scope within iterative and dynamic development environments.

The following papers explore different aspects of software

effort estimation in Agile Software Development (ASD) using

Systematic Literature Review (SLR), and Systematic Mapping

Study (SMS). In [6], the authors used a Forward Snowballing

approach to analyze 312 papers and identify 24 relevant studies

published between 2014 and 2017. Key findings include the

continued popularity of Planning Poker as the most cited

estimation technique, a significant increase in the use of AI and

machine learning methods, and the identification of 10 cost

drivers influencing effort estimation. These cost drivers include

quality requirements, task size, integration, priority,

complexity, stakeholder delays, team composition, work

environment, expertise, and technical capability. The review

highlights ongoing challenges in achieving accuracy and

consistency with cost drivers, noting a shift toward

incorporating more project- and people-related factors into

estimation processes. Similarly, in [7], the authors analyzed 73

new studies published between 2013 and 2020. They confirm

that expert judgment remains a key method, particularly

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.68, February 2025

43

through techniques such as Planning Poker, while also

highlighting a growing trend toward the adoption of machine

learning and data-driven methods. The review identifies

significant improvements in the reporting of accuracy metrics,

with an increasing use of story points as the primary measure

of magnitude. It also underscores the various cost factors

influencing effort estimation, emphasizing the critical role of

project and team dynamics. Overall, the findings point to the

need for further refinement of estimation techniques and the

standardization of cost factors in ASD. Also, in [8], a SMS of

the literature from 2018 to 2022 identifies 25 relevant studies

and highlights that the most common estimation techniques are

story points (SP), Planning Poker (PP), and expert judgment

(EJ). The research emphasizes the importance of accurate effort

estimation for project success, noting that while machine

learning techniques are increasingly applied, challenges

remain, such as reliance on expert knowledge and a lack of

sufficient data to generalize models.

Inaccurate software effort estimation in Agile can lead to

project delays, budget overruns, and resource misallocation,

often resulting from factors such as incomplete requirements,

team dynamics, complex dependencies, and the inherent

uncertainty in predicting effort within iterative and evolving

development environments. In [9], the author presents a

systematic mapping study examining the factors that impact the

accuracy of software development effort estimation. It

identifies thirty-two different factors categorized into four main

groups: estimation process, estimator characteristics, project

characteristics, and external context. The study highlights the

importance of accurate effort estimation for project planning

and management, emphasizing the need for researchers and

practitioners to be aware of these factors and their influences.

Additionally, it critiques the current state of research, noting a

shift from broad overview studies to more focused

investigations on specific factors, while also calling for

improved definitions and methods in future research to better

understand and enhance estimation accuracy. Similarly, in [10],

the paper focuses on identifying the reasons behind inaccurate

effort estimations in Agile software development and

categorizing approaches to improve these estimations. The

review highlights five main themes for inaccuracies: quality

issues of available information, team-related factors, estimation

practices, project management issues, and business influences.

It emphasizes the importance of enhancing information quality

and suggests that practitioners should consider adopting

automated methods for better accuracy. Additionally, the study

found that while numerous approaches have been proposed to

improve estimation accuracy, many lack empirical validation

and risk data leakage, urging further research to address these

gaps.

3. METHODOLOGY
This review adheres to the guidelines established by

Kitchenham et al. [11], encompassing three distinct stages:

planning, conducting, and reporting. During the planning stage,

the need for the review is identified, and a detailed protocol is

developed to structure and guide the research process. The

conducting stage involves systematically gathering relevant

studies, selecting primary research, evaluating the quality of

these studies, and extracting and synthesizing pertinent data.

Finally, the reporting stage focuses on producing a

comprehensive report that effectively summarizes the key

findings and insights derived from the review.

3.1 Research questions
The aim of this research is to explore software effort estimation

(SEE). Therefore, it refines the aim in four research questions

described as follows:

RQ1: What are the most commonly used techniques and

models for software effort estimation?

RQ2: What are the key factors influencing the accuracy of

software effort estimation?

RQ3: How does effort estimation differ among scrum of

scrum, distributed agile, and DevOps software development

methodologies?

RQ4: What are the limitation and future direction in software

effort estimation?

3.2 Search strategies and selection

criteria
The electronic databases were chosen due to comprehensive

coverage of software engineering literature. The relevant

studies were collected from Four reputable academic databases,

including: IEEE Xplore, ACM Digital Library, ScienceDirect,

and SpringerLink. The search timeframe covered the

publications from 2014 to 2024, to comprehensive coverage of

relevant studies over the past twenty years. A well-constructed

search string is essential for capturing the most relevant studies

within the research domain. This search string is "Software

Effort Estimation".

This paper established inclusion and exclusion criteria to

ensure that only studies relevant to the scope and objectives of

this review were considered.

3.2.1 Inclusion Criteria:
• Studies specifically addressing software effort

estimation.

• Studies published between 2014 and 2024.

3.2.1 Exclusion Criteria:
• Studies categorized as training materials, editorials,

article summaries, interviews, prefaces, news items,

reviews, correspondence, tutorials, poster sessions,

workshops, or panels.

• Studies not written in English.

To facilitate the management and streamlining of the

systematic review process, this paper utilized Rayyan, a web-

based application designed for this purpose. The stages of the

study selection process are illustrated in Figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.68, February 2025

44

Figure 1: Search strategies and selection criteria

4. RESULT AND DISCUSSION
To address the four research questions, this paper has divided

the discussion into the following four sections.

4.1 Techniques used in software effort

estimation (RQ1)
The Software Effort Estimation (SEE) techniques are

categorized into three groups: expert-based, machine-based,

and hybrid-based approaches as present in Table 1. Among the

expert-based effort estimation methods, Planning Poker (PP) is

the most frequently mentioned technique in the reviewed

papers, followed by Expert Judgment (EJ), Story Points

(SP), Estimation by Analogy, and Delphi. Additionally,

methods such as Use Case Points, Team Estimation

Game, Bucket System, Dot Voting, Swimlane Sizing, Ideal

Days, T-shirt Size/Dog Size, Functional Size Measures

(FSM), Function Point (FP), and COSMIC Function Point

(CFP) are mentioned with equivalent significance across the

papers.

In contrast, among the machine-based estimation

methods, Random Forest (RF) emerges as the most frequently

mentioned technique in the reviewed papers. It is followed

by K-nearest neighbors (KNN) and Decision Tree (DT), and

subsequently by Support Vector Machine (SVM), Naive Bayes

(NB), Linear Regression (LR), and Classification and

Regression Trees (CART). Other techniques mentioned

include Stochastic Gradient Boosting (SGB), Neural Networks

(NN), Gradient Boosted Tree (GBT), Multilayer Perceptron

(MLP), Support Vector Regression (SVR), Sentence-BERT

(SBERT), Long Short-Term Memory

(LSTM), AdaBoost, Genetic Programming (GP), Multi-

Objective Genetic Programming (MOGP), Genetic Algorithms

(GA), NSGAII-UO, and Random Guessing (RG).

Finally, among the hybrid-based estimation

methods, COCOMO is the most frequently mentioned

technique in the reviewed papers. It is followed by Linear

Programming for Effort Estimation (LP4EE), Confidence

Guided Effort Estimator (CoGEE), and Case-Based Reasoning

(CBR). These methods combine elements of both expert

judgment and machine-based approaches to enhance the

accuracy and reliability of effort estimation.

4.2 The key factors influencing the

accuracy in Software Effort Estimation

(RQ2)
Software effort estimation (SEE) accuracy is a goal that many

researchers seek to achieve, but in order to achieve it this paper

need to identify the key factors that affect the accuracy of

software effort estimation and lead to errors in it. The main

factors that affect the accuracy of software effort estimation are

requirements-related issues, where incomplete, ambiguous, or

complex requirements are the most significant contributors to

estimation inaccuracy. When requirements are poorly defined

or subject to frequent changes, it becomes difficult for teams to

accurately measure the effort required to implement. This leads

to under- or overestimation, which directly impacts project

schedules and budgets. This is followed by project

management issues, where the experience, biases, and

decision-making processes of project managers greatly impact

estimation results. Inconsistent project management practices

can lead to misaligned priorities and unrealistic expectations,

further exacerbating estimation inaccuracy. Next come team-

related issues, where challenges such as varying skill levels,

distributed team structures, and limited collaboration

opportunities impact the accuracy of estimates. Teams that

struggle with communication or coordination are more likely to

produce inaccurate effort forecasts. In addition, errors can stem

from model and data issues, the use of outdated or insufficient

models, and the lack of high-quality historical data undermine

the reliability of machine-based estimation techniques. These

issues highlight the need for better data collection practices and

adaptive models. Other contributing factors include customer-

related issues, such as insufficient client engagement or unclear

expectations create uncertainty in determining outcomes. This

often leads to inaccurate estimates and increased rework. Also,

cultural-related issues, where differences in cultural

perspectives and organizational silos hinder effective

collaboration and understanding. Such barriers complicate

estimation processes, especially in distributed environments.

Finally, considerations of quality and risk factors, along with

organizational issues, such as silos or inadequate

communication within the organization, exacerbate the

inaccuracy of the estimate. Ignoring quality considerations or

underestimating risk can significantly distort estimation results.

Comprehensive risk assessments and quality metrics are

essential to improving estimation accuracy as shown in Figure

2.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.68, February 2025

45

Figure 2: Key factors influence the accurate of software

effort estimation

4.3 Effort estimation differ among

scrum of scrum, agile, distributed agile, and

DevOps software development (RQ3)

4.3.1 Estimate effort in Scrum of scrum
Scrum of Scrums meetings are conducted to facilitate

communication among multiple teams and to address technical

constraints and inter-team dependencies. These dependencies

may sometimes require one team to prioritize and implement a

low-priority feature earlier to unblock other teams. Scrum

Masters from all teams participate in these meetings, which are

typically held before the start of every sprint [15]. Effort

estimation within the Scrum of Scrums framework is a critical

component for managing large, distributed projects effectively.

This process involves breaking down the product backlog into

smaller, manageable sub-backlogs, enabling individual Scrum

teams to estimate the effort required for their specific features.

By doing so, dependencies between teams are identified and

addressed early, ensuring that each team can operate

autonomously while remaining aligned with the overall project

objectives. The inclusion of local Product Owners (POs) in

these meetings further enhances the prioritization process and

effort assessment. This collaborative approach fosters

improved communication and coordination among teams,

resulting in more accurate effort estimations. Ultimately, the

Scrum of Scrums framework not only mitigates risks associated

with dependencies but also ensures better alignment, leading to

improved project outcomes and streamlined delivery [32].

4.3.2 Estimate effort in DevOps
Effort estimation in DevOps is significantly affected by the

dynamic nature of customer requirements, the need for rapid

iterations, or sprints, communication, organizational culture,

technology stack, and collaboration among teams. These

factors can lead to either accurate or inaccurate estimations,

which directly impact project delivery timelines and costs [20].

Traditional estimation methods often fall short due to this

volatility; hence, methodologies like planning poker and

advanced consensus-based techniques are employed to enhance

accuracy and reduce bias among team members. By

incorporating collective input and historical performance data

of team members, DevOps teams can achieve more reliable

estimates, which are crucial for effective sprint planning and

execution. This collaborative approach not only aids in precise

effort estimation but also fosters team cohesion, ultimately

contributing to the success of the project [14].

4.3.3 Estimate effort in Distributed Agile
Effort estimation in distributed agile projects presents unique

challenges due to the complexities introduced by the distributed

Table 1: Categorize of Software Effort Estimation

Class
Effort Estimation

Technique
Ref

Expert-

Based

Estimation

Methods

Planning Poker

 [10], [11],

[12], [13], [14],

[15], [17]

Estimation by Analogy [12], [13], [19]

Expert Judgment

[12], [13], [16],

[17], [19], [20],

[21]

Delphi [12], [16]

Story Points
[13], [17], [22],

[23]

Others (Use Case Points,

Team Estimation Game,

Bucket System, Dot Voting,

Swimlane Sizing, Ideal Days,

T-shirt Size/Dog Size,

Functional Size Measures

(FSM), Function Point (FP),

COSMIC Function Point

(CFP))

[17], [23]

Machine-

Based

Estimation

Methods

Random Forest (RF)

[2], [16], [22],

[24], [25], [26],

[27]

Decision Tree (DT)
[16], [22], [24],

[25], [28]

K-nearest neighbors (KNN)
[16], [25], [26],

[27], [28]

Naive Bayes (NB) [2], [16], [26]

Classification and Regression

Trees (CART)
[26], [27], [29]

Support Vector Machine

(SVM)
[2], [16], [30]

Linear Regression (LR) [28], [28], [29]

Stochastic Gradient Boosting

(SGB)
[16], [22]

Neural Networks (NN) [2], [16]

Gradient Boosted Tree

(GBT)
[16], [25]

Multilayer Perceptron (MLP) [25], [28]

Support Vector Regression

(SVR)
[27], [28]

Others (Sentence-BERT

(SBERT), Long Short-Term

Memory (LSTM), AdaBoost,

Genetic Programming (GP),

Multi-Objective Genetic

Programming (MOGP),

Genetic Algorithms (GA),

NSGAII-UO, Random

Guessing (RG))

[14], [22], [23],

[24],

Hybrid-

Based

Estimation

Methods

COCOMO [12], [20], [21]

Others (Linear Programming

for Effort, Estimation

(LP4EE), Confidence Guided

Effort Estimator (CoGEE),

Case-Based Reasoning

(CBR))

[29], [30], [31]

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.68, February 2025

46

nature of teams. Global barriers, such as cultural differences,

time zone disparities, language differences, and geographical

distances, significantly impact the estimation process. These

factors introduce unique cost drivers that are less pronounced

in co-located agile teams, thereby complicating the task of

providing accurate estimates. Additionally, distributed teams

often encounter challenges related to communication and

coordination, which further exacerbate the difficulties in effort

estimation [12]. In [13] the authors highlighted that effort

estimation in distributed settings frequently required extensive

discussions, which are inherently more difficult to facilitate

compared to the face-to-face interactions of co-located teams.

However, due to the constraints of short sprint cycles, relying

solely on in-person meetings was often not economically

feasible. This limitation led to a dependence on

teleconferencing and remote collaboration tools, which, while

practical, sometimes hindered effective communication and the

clarity needed for accurate estimation discussions. As a result,

traditional effort estimation methods often fall short in

distributed agile software development (DASD) contexts. To

address these challenges, there is a need to integrate

considerations for risk factors, as well as factors such

as quality, novelty, and the type of work, into the estimation

process to enhance accuracy and adaptability in distributed

settings.

4.4 Limitation and future direction of

software effort estimation (RQ4)
Based on the review, the most commonly mentioned limitation

across the studies is the generalization of results, cited in 7

studies. The reviewed studies emphasize the difficulty in

generalizing findings due to the diversity of software projects.

This challenge limits the applicability of estimation techniques

across different project contexts and domains. This is followed

by concerns about the quality of historical data in 5 studies

where the lack of comprehensive, high-quality datasets is a

recurring issue. Studies underscore that insufficient data affects

the training and validation of estimation models, making them

less reliable in real-world scenarios. The complexity of

software projects in 4 studies, where the increasing complexity

of modern software projects, combined with the scale of

distributed teams and global collaborations, introduces

numerous variables that are hard to account for in estimation

models. Other limitations include the maturity and experience

of teams, dataset size, and the availability of real test data as

presented in Figure 3. The lack of comprehensive, high-quality

datasets is a recurring issue. Studies underscore that

insufficient data affects the training and validation of

estimation models, making them less reliable in real-world

scenarios.

On the other hand, the reviewed papers highlight that

'validating the model with real project data and commercial

software projects, while exploring the impact of varying user

story sizes, and integrating factors such as team dynamics and

challenges associated with distributed teams, can enhance the

model's applicability across different project scales. Expanding

the sample size will further improve the generalizability of the

results is identified as a key direction for future work in 7

studies. This is followed by the development of 'comprehensive

frameworks, guidelines, and training programs to enhance the

estimation skills of teams,' and 'exploring more advanced

machine learning techniques, including deep learning and

unsupervised learning methods, to enhance prediction

accuracy. Techniques such as Extreme Learning Machines and

Bayesian Networks could be applied to a larger and more

diverse dataset, improving the robustness and applicability of

effort estimation models in agile software development—both

of which are the second most frequently mentioned future work

directions, as presented in Table 2.

Figure 3: Limitation of the reviewed papers

5. LIMITATIONS
This study focuses on 21 papers published between 2014 and

2024. While comprehensive, this limited scope may overlook

other significant research contributions outside the selected

timeframe or databases. Also, it does not involve primary data

collection or empirical validation. Instead, it synthesizes

findings from existing literature, which may limit its

contribution to actionable insights or practical implementation.

Additionally, it emphasizes agile methodologies, particularly

Scrum and DevOps. This focus may limit the generalizability

of the findings to other development paradigms or

methodologies.

Despite efforts to maintain objectivity, researcher bias in

interpreting and synthesizing findings from diverse sources

cannot be entirely eliminated. By acknowledging these

challenges and limitations, this study provides a transparent

foundation for interpreting its findings and sets the stage for

future research to address these gaps.

6. CONCLUSION
This paper conducted a comprehensive review of software

effort estimation techniques, analyzing 21 studies published

between 2014 and 2024. The review aimed to address four key

research questions. It identified that the most commonly used

expert-based effort estimation technique is Planning Poker,

while Random Forest is the most frequently employed method

in machine-based effort estimation. The findings also highlight

that inaccurate effort estimation often stems from issues related

to requirements. Additionally, it explored the impact of

software development processes on effort estimation accuracy.

The review also identified several limitations and proposed

future directions for improving software effort estimation

practices. These include the need for more research on hybrid

techniques that combine expert-based and machine-based

methods to improve accuracy. Future studies could also explore

the application of newer machine learning algorithms and

artificial intelligence to enhance predictive capabilities.

Furthermore, addressing the challenges related to requirement

uncertainty and integrating agile practices into estimation

models are potential areas for development. As software

development processes continue to evolve, future work should

investigate how emerging methodologies, such as DevOps and

continuous delivery, influence estimation practices. These

advancements could provide valuable insights and contribute

to the refinement of software effort estimation techniques in the

years to come.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.68, February 2025

47

Table 2: Reviewed papers future directions

Future direction Ref

Interviews in both co-located and distributed contexts [12]

Enhancing effort estimation models by incorporating more sophisticated risk assessment techniques, improving the

integration of quality metrics, and exploring machine learning approaches to adaptively refine estimates based on

historical project data. Expanding the dataset to include a broader range of projects will further improve the accuracy

and robustness of the models. [13], [14]

Exploring the integration of emerging technologies, such as Machine Learning Operations (MLOps), into effort

estimation practices could provide valuable insights for enhancing the accuracy and efficiency of these strategies. [20]

Developing comprehensive frameworks, guidelines, and training programs to enhance the estimation skills of teams. [13], [30]

Exploring more advanced machine learning techniques, including deep learning and unsupervised learning methods,

to enhance prediction accuracy. Techniques such as Extreme Learning Machines and Bayesian Networks could be

applied to a larger and more diverse dataset, improving the robustness and applicability of effort estimation models in

agile software development. [2], [22], [24]

Validating the model with real project data and commercial software projects, while exploring the impact of varying

user story sizes. Additionally, integrating factors such as team dynamics and challenges associated with distributed

teams can enhance the model's applicability across different project scales. Expanding the sample size will further

improve the generalizability of the results.

[14], [15],

[19], [21],

[27], [28],

[29]

Expanding the applicability of LFM to various software engineering predictive tasks beyond effort estimation, such as

bug-fixing time prediction and customer ratings prediction, can broaden its utility and enhance the accuracy of

forecasting in different aspects of software development. [26]

Conducting longitudinal studies to analyze the effectiveness of different estimation techniques over time and explore

the impact of factors such as team dynamics, project complexity, and evolving agile methodologies on estimation

accuracy can provide valuable insights into the long-term performance and adaptability of estimation models in real-

world scenarios. [19]

Adapting the model for various estimation scenarios, such as cross-company versus within-company analyses, and

expanding its application to other software engineering tasks, like predicting app ratings and bug-fixing times, will

increase its versatility and improve its utility across a broader range of predictive tasks in software development. [27]

7. REFERENCES
[1] S. A. SALIHU, K. B. SALIU, and O. A. OWOYEMI, “A

Systematic Literature Review of Machine Learning and

AutoML In Software Effort Estimation,” in Conference

Organising Committee, 2024, p. 145.

[2] F. B. Alhamdany and L. M. Ibrahim, “Software

development effort estimation techniques: A survey,” J.

Educ. Sci., vol. 31, no. 1, pp. 80–92, 2022.

[3] Y. Mahmood, N. Kama, A. Azmi, A. S. Khan, and M. Ali,

“Software effort estimation accuracy prediction of

machine learning techniques: A systematic performance

evaluation,” Softw. Pract. Exp., vol. 52, no. 1, pp. 39–65,

2022.

[4] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Using

scrum in distributed agile development: A multiple case

study,” in 2009 Fourth IEEE International Conference on

Global Software Engineering, IEEE, 2009, pp. 195–204.

[5] M. Jorgensen and K. Molokken-Ostvold, “Reasons for

software effort estimation error: impact of respondent

role, information collection approach, and data analysis

method,” IEEE Trans. Softw. Eng., vol. 30, no. 12, pp.

993–1007, 2004.

[6] E. Dantas, M. Perkusich, E. Dilorenzo, D. F. Santos, H.

Almeida, and A. Perkusich, “Effort estimation in agile

software development: An updated review,” Int. J. Softw.

Eng. Knowl. Eng., vol. 28, no. 11n12, pp. 1811–1831,

2018.

[7] M. Fernández-Diego, E. R. Méndez, F. González-Ladrón-

De-Guevara, S. Abrahão, and E. Insfran, “An update on

effort estimation in agile software development: A

systematic literature review,” IEEE Access, vol. 8, pp.

166768–166800, 2020.

[8] C. A. P. Rodríguez, L. M. S. Martinez, D. H. P. Ordoñez,

and J. A. T. Peña, “Effort Estimation in Agile Software

Development: A Systematic Map Study,” Inge Cuc, vol.

19, no. 1, pp. 22–36, 2023.

[9] D. Basten and A. Sunyaev, “A systematic mapping of

factors affecting accuracy of software development effort

estimation,” Commun. Assoc. Inf. Syst., vol. 34, no. 1, p.

4, 2014.

[10] J. Pasuksmit, P. Thongtanunam, and S. Karunasekera, “A

Systematic Literature Review on Reasons and Approaches

for Accurate Effort Estimations in Agile,” ACM Comput.

Surv., 2024.

[11] S. Keele and others, “Guidelines for performing

systematic literature reviews in software engineering,”

Technical report, ver. 2.3 ebse technical report. ebse,

2007.

[12] M. Usman and R. Britto, “Effort estimation in co-located

and globally distributed agile software development: A

comparative study,” in 2016 joint conference of the

international workshop on software measurement and the

international conference on software process and product

measurement (IWSM-MENSURA), IEEE, 2016, pp. 219–

224.

[13] W. Aslam, F. Ijaz, M. I. U. Lali, and W. Mehmood, “Risk

Aware and Quality Enriched Effort Estimation for Mobile

Applications in Distributed Agile Software

Development.,” J Inf Sci Eng, vol. 33, no. 6, pp. 1481–

1500, 2017.

[14] J. Angara, S. Prasad, and G. Sridevi, “DevOPs project

management tools for sprint planning, estimation and

execution maturity,” Cybern. Inf. Technol., vol. 20, no. 2,

pp. 79–92, 2020.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.68, February 2025

48

[15] D. Badampudi, “Factors Affecting Efficiency of Agile

Planning: A Case Study.” 2012.

[16] B. Yalçıner, K. Dinçer, A. G. Karaçor, and M. Ö. Efe,

“Enhancing Agile Story Point Estimation: Integrating

Deep Learning, Machine Learning, and Natural Language

Processing with SBERT and Gradient Boosted Trees,”

Appl. Sci., vol. 14, no. 16, p. 7305, 2024.

[17] R. Sandeep, M. Sánchez-Gordón, R. Colomo-Palacios,

and M. Kristiansen, “Effort estimation in agile software

development: a exploratory study of practitioners’

perspective,” in International Conference on Lean and

Agile Software Development, Springer, 2022, pp. 136–

149.

[18] F. Raith, I. Richter, R. Lindermeier, and G. Klinker,

“Identification of inaccurate effort estimates in agile

software development,” in 2013 20th Asia-Pacific

Software Engineering Conference (APSEC), IEEE, 2013,

pp. 67–72.

[19] M. Usman, E. Mendes, and J. Börstler, “Effort estimation

in agile software development: a survey on the state of the

practice,” in Proceedings of the 19th international

conference on Evaluation and Assessment in Software

Engineering, 2015, pp. 1–10.

[20] D. Meedeniya and H. Thennakoon, “Impact factors and

best practices to improve effort estimation strategies and

practices in devops,” in Proceedings of the 11th

International Conference on Information Communication

and Management, 2021, pp. 11–17.

[21] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A.

Ghose, and T. Menzies, “A deep learning model for

estimating story points,” IEEE Trans. Softw. Eng., vol. 45,

no. 7, pp. 637–656, 2018.

[22] S. M. Satapathy and S. K. Rath, “Empirical assessment of

machine learning models for agile software development

effort estimation using story points,” Innov. Syst. Softw.

Eng., vol. 13, no. 2, pp. 191–200, 2017.

[23] V. Tawosi, R. Moussa, and F. Sarro, “On the relationship

between story points and development effort in Agile

open-source software,” in Proceedings of the 16th

ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement, 2022, pp. 183–

194.

[24] E. Rodríguez Sánchez, E. F. Vázquez Santacruz, and H.

Cervantes Maceda, “Effort and Cost Estimation Using

Decision Tree Techniques and Story Points in Agile

Software Development,” Mathematics, vol. 11, no. 6, p.

1477, 2023.

[25] A.-E. Iordan, “An Optimized LSTM Neural Network for

Accurate Estimation of Software Development Effort,”

Mathematics, vol. 12, no. 2, p. 200, 2024.

[26] F. Sarro, R. Moussa, A. Petrozziello, and M. Harman,

“Learning from mistakes: Machine learning enhanced

human expert effort estimates,” IEEE Trans. Softw. Eng.,

vol. 48, no. 6, pp. 1868–1882, 2020.

[27] F. Sarro and A. Petrozziello, “Linear programming as a

baseline for software effort estimation,” ACM Trans.

Softw. Eng. Methodol. TOSEM, vol. 27, no. 3, pp. 1–28,

2018.

[28] M. A. Ramessur and S. D. Nagowah, “A predictive model

to estimate effort in a sprint using machine learning

techniques,” Int. J. Inf. Technol., vol. 13, no. 3, pp. 1101–

1110, 2021.

[29] F. Sarro, A. Petrozziello, and M. Harman, “Multi-

objective software effort estimation,” in Proceedings of

the 38th International Conference on Software

Engineering, 2016, pp. 619–630.

[30] V. Tawosi, R. Moussa, and F. Sarro, “Agile effort

estimation: Have we solved the problem yet? Insights

from a replication study,” IEEE Trans. Softw. Eng., vol.

49, no. 4, pp. 2677–2697, 2022.

[31] F. Sarro, F. Ferrucci, and C. Gravino, “Single and multi

objective genetic programming for software development

effort estimation,” in Proceedings of the 27th annual ACM

symposium on applied computing, 2012, pp. 1221–1226.

[32] A. M. AlMutairi and M. R. J. Qureshi, “The proposal of

scaling the roles in scrum of scrums for distributed large

projects,” J. Inf. Technol. Comput. Sci. IJITCS, vol. 7, no.

8, pp. 68–74, 2015.

IJCATM : www.ijcaonline.org

