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ABSTRACT

Cotton is a major contributor to Bangladesh’s economy, serving
as one of the primary cash crops. However, cotton production
faces substantial challenges due to various diseases affecting
the leaves, collectively referred to as Cotton Leaf Disease.
Bacterial blight, leaf curl virus, fungal infections, and pest attacks
negatively impact crop yield and quality, leading to economic
losses. Conventional manual inspection techniques are inefficient,
labor intensive, and prone to inaccuracies, which hinder timely
disease identification and intervention. This study presents a deep
learning system incorporating the Convolutional Block Attention
Module (CBAM) for the automatic detection of cotton leaf
diseases. A public dataset was utilized, consisting of 2,137
images in the original set and 7,000 images in the augmented
set, categorized into seven classes: Bacterial Blight, Curl Virus,
Herbicide Growth Damage, Leaf Hopper Jassids, Leaf Reddening,
Leaf Variegation, and Healthy Leaf. Multiple deep learning
models, including EfficientNetB1, DenseNet121, DenseNetl169,
MobileNet, Xception, and InceptionV3, were trained following
the application of critical preprocessing techniques such as
image resizing, noise reduction, and image normalization to
improve image quality. The integration of CBAM into the
models enhanced the emphasis on relevant image features, thereby
improving detection performance. Among the models evaluated,
DenseNet169 achieved an accuracy of 96.26% on the original
dataset, whereas EfficientNetB1 with CBAM attained the highest
accuracy of 99.21% on the augmented dataset.
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1. INTRODUCTION

The global significance of cotton as a cash crop has a substantial
positive impact on Bangladesh’s economy, supporting both rural
Work and the national textile industry [1]. Cotton Leaf Disease
refers to a cluster of leaf-affecting diseases that can severely hinder
cotton crop production. If not effectively managed, these diseases
can lead to notable economic losses, posing risks to employment in
both the agricultural and textile sectors [2].

In Bangladesh, cotton plays a crucial role in the textile industry,
making optimal disease management key for enduring sector
growth. High-tech, including remote sensing, image processing,
and machine learning, enable early disease detection and relief
by identifying symptoms such as leaf discoloration, wilting, and
spotting. Precision agriculture practices refine the use of fertilizers,
pesticides, and water, leading to cost reduction and improved crop
health. Collaboration among agricultural experts, policymakers,
and researchers is vital for developing integrated management
strategies that safeguard cotton production and strengthen the
stability of Bangladesh’s agricultural and textile sectors [3]].

To address these challenges, this study employs multiple deep
learning models, including EfficientNetB1, DenseNetl21,
DenseNet169, MobileNet, Xception, and InceptionV3, for
the autonomous detection of cotton leaf diseases. Essential
preprocessing steps were applied to enhance image quality and
model performance, including image resizing, noise reduction,
and normalization. The Convolutional Block Attention Module
(CBAM) was integrated into the model architecture, enabling
the models to focus on critical visual features and enhance
detection accuracy. The findings demonstrate that CBAM and
other advanced attention mechanisms play a significant role in
improving the efficiency and accuracy of cotton leaf disease
detection.



2. RESEARCH FOUNDATIONS

Cotton is a vital agricultural commodity for Bangladesh’s textile
sector, contributing approximately 11% to the nation’s GDP and
accounting for over 80% of total export revenues. The country
imports around 8.5 million bales of cotton annually, while domestic
cultivation remains limited to regions such as Jessore and Rangpur.
Ensuring the quality and yield of locally produced cotton is
essential for reducing dependence on imports.

Cotton leaf diseases pose a significant threat, with potential yield
reductions of up to 40% in affected areas, leading to financial
losses amounting to millions of dollars annually. Conventional
methods, such as manual assessments by agricultural specialists,
are inefficient and labor-intensive, making scalability challenging
for the 15,000 hectares of cotton cultivation in Bangladesh.
Modern methodologies, incorporating image processing and
machine learning, are increasingly used for disease detection.
The integration of drone technology and mobile diagnostic tools
enables real-time monitoring, potentially reducing yield losses by
20-30% and improving cotton supply chain management. These
advancements are critical for safeguarding Bangladesh’s textile
sector, which employs over 4 million individuals and plays a
significant role in the country’s economic development.

2.1 Key Contributions

The key contribution of this research is the integration of the
Convolutional Block Attention Module (CBAM), which enhances
the models’ ability to focus on critical image features, thereby
improving detection accuracy. Preprocessing techniques, including
image resizing and noise reduction, were applied to optimize input
data, leading to enhanced model performance. Additionally, deep
learning models were utilized for disease detection, achieving an
accuracy of 96.26% on the original dataset and 99.21% on the
augmented dataset.

3. REVIEW OF RELATED STUDIES

This section discusses previous research on cotton leaf disease
detection.

Bishshash et al. [1] developed the SAR-CLD-2024 dataset,
containing 2,137 original and 7,000 augmented images of cotton
leaf diseases, classified into eight categories, including bacterial
blight, curl virus, and healthy leaves. They trained an Inception
V3 model on this dataset, achieving an accuracy of 96.03%,
contributing to precision agriculture by automating disease
detection and promoting sustainable cotton farming solutions.
Herok and Ahmed [2] employed transfer learning to detect cotton
leaf diseases using a dataset of 6,158 samples across seven disease
classes and one healthy class. Among the pretrained models
evaluated, VGG16 achieved the highest accuracy of 95.02%,
demonstrating the effectiveness of deep feature extraction for
classification tasks.

Ahmad et al. [3]] utilized 3,475 images to classify cotton leaf
diseases using Vision Transformers (ViT) and other deep learning
models. Their ViT-based system automated disease diagnosis
with a binary classification accuracy of 96.72% and a multiclass
classification accuracy of 93.39%, showcasing the potential of
transformer-based architectures in plant disease detection.

Kumar et al. [4]] developed a CNN-based model using TensorFlow’s
Keras API, achieving 90% accuracy in detecting cotton leaf
diseases. The model was later converted to CoreML for iOS
application integration, enabling offline disease identification and
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providing farmers with real-time recommendations for disease
management.

Udawant and Srinath [5] implemented Mask R-CNN with
transfer learning to detect cotton leaf diseases in real-world
settings, achieving 94% accuracy. Their study emphasized the
importance of instance segmentation techniques for precisely
localizing disease-affected regions, outperforming methods limited
to controlled environments.

Kumar et al. [6] proposed using VGG16 for feature selection
in cotton leaf disease detection. Their dataset contained 2,238
images in six categories. Feature selection significantly improved
the model’s ability to detect early-stage diseases, achieving 95.52%
accuracy. This approach reinforced the effectiveness of feature
engineering in deep learning-based plant disease diagnosis.
Caldeira et al. [7] employed GoogleNet and ResNet50 CNNs
to detect cotton leaf damage, achieving 89.2% precision. Their
study highlighted CNN-based feature extraction and unsupervised
classification for lesion detection, demonstrating the feasibility of
deep learning in real-time agricultural applications.

Kotian et al. [8] developed a ResNet50-based system for detecting
bacterial blight and curl virus in cotton leaves. The dataset,
comprising 2,000 images, achieved 95% accuracy with ResNet50,
demonstrating the effectiveness of transfer learning combined with
traditional classifiers for disease management.

4. METHODOLOGICAL FRAMEWORK

This research utilizes a public dataset of cotton leaf images,
apply- ing preprocessing techniques such as image resizing, noise
reduc- tion, and normalization to enhance data quality. After
preprocess- ing, the dataset is divided into training and testing
sets to ensure a balanced evaluation. Deep learning models
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Fig. 1: Proposed Methodology

incorporating the Convolutional Block Attention Module (CBAM)
are utilized to enhance feature extraction by prioritizing the most
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critical regions in images. This technique improves the model’s
capability to differentiate between healthy and diseased leaves.
Model performance is evaluated using accuracy, precision, recall,
and Fl1-score, with comparative analysis against baseline models
highlighting the effectiveness of CBAM in disease classification.
Figure [T] illustrates the overall methodology of the research,
highlighting the key stages from data acquisition to final
classification.

The figure[2] shows the data samples of the dataset.

4.1 Dataset Collection

The SAR-CLD-2024 dataset was utilized to advance research in
cotton leaf disease detection [I]. Data collection was conducted
through field surveys at the National Cotton Research Institute
in Gazipur, Dhaka, Bangladesh, between October and January. A
total of 2,137 original images were captured, representing seven
categories: bacterial blight, curl virus, herbicide growth damage,
leaf hopper jassids, leaf reddening, leaf variegation, and healthy
leaves.

To enhance the dataset and improve its applicability,
7,000 augmented images were generated. This dataset
serves as a valuable resource for researchers developing
machine learning models for accurate and automated
disease  classification in  agriculture. = Dataset  Source:
https://data.mendeley.com/datasets/b3jy2p6k8w/2,

The following figure [3] shows the data size of each class for both
original and augmented datasets:
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Fig. 3: Data size of each class

4.2 Data Preprocessing

Data preprocessing is a crucial step, particularly for image
datasets, as it prepares raw images for analysis [9]]. This study
emphasizes resizing images to maintain consistent dimensions,
removing noise to enhance image clarity, and normalizing
pixel values to standardize the data range. These preprocessing
techniques enhance model efficiency and accuracy by minimizing
inconsistencies and irrelevant variations, ensuring improved feature
extraction and classification.

4.2.1 Image Resize. As part of the initial step, the OpenCV
tool was utilized to standardize the dimensions of all images in
the dataset to 81x81 pixels. Standardizing image sizes facilitates
efficient processing and analysis, ensuring consistency across the

dataset [10]].


https://data.mendeley.com/datasets/b3jy2p6k8w/2

4.2.2 Reduce Noise. To remove noise and enhance image
quality, Gaussian blur was applied. The OpenCV function
cv2.GaussianBlur was utilized with a 5x5 kernel size [11]]. This
preprocessing step ensures clearer and cleaner images, improving
the model’s performance.

4.2.3 Normalization. After noise removal, normalization was
applied to scale pixel values within the range of O to 1. This was
achieved by dividing each pixel value by 255.0, the maximum
possible pixel intensity. Normalization enhances data consistency,
facilitating efficient model processing while preventing large values
from dominating. This step improves training effectiveness by
ensuring faster and more stable learning [12].

4.3 Learning Models

This research utilized six different pre-trained models for
experimentation: EfficientNetB1, DenseNet121, DenseNetl69,
MobileNet, Xception, and Inception. Additionally, the
Convolutional Block Attention Module (CBAM) was incorporated
to enhance the performance of each pre-trained model. Further
details regarding these models and the attention mechanism are
provided in the following sections.

4.3.1 EfficientNet BI. EfficientNetBl is a convolutional
neural network (CNN) architecture designed to achieve high
accuracy while minimizing computational resource usage. This is
accomplished through a compound scaling method that uniformly
adjusts depth, width, and resolution [13]. Its core building
blocks, MBConv, utilize depthwise separable convolutions
and squeeze-and-excitation techniques to enhance feature
representation efficiently. Figure [4| illustrates the architecture of
the EfficientNetB1 model.

Blockl Block2 Block3 Blockd Blocks Block6 Block7

Feature map

Fig. 4: Architecture of EfficientNetB1

4.3.2 Convolutional Block Attention Module. The
Convolutional Block Attention Module (CBAM) is an attention
mechanism designed to enhance the effectiveness of convolutional
neural networks (CNNs) by emphasizing relevant features while
suppressing less important ones. It sequentially applies two
attention mechanisms: channel attention and spatial attention.
The channel attention module identifies significant channels
by analyzing inter-channel dependencies, whereas the spatial
attention module highlights essential spatial regions by capturing
inter-spatial relationships [14][15]. By integrating these attention
mechanisms, CBAM refines feature maps, leading to improved
accuracy in tasks such as image classification and object
recognition. Figure[3]illustrates the CBAM mechanism.

4.3.3 DenseNet121. DenseNetl21 is a convolutional neural
network (CNN) consisting of 121 layers, specifically designed to
improve image classification tasks [[16]. Its distinctive architecture
connects each layer to all subsequent layers, ensuring efficient
information flow and feature reuse. This design helps mitigate
the vanishing gradient problem by allowing features to be reused,
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Fig. 5: Mechanisms of CBAM

thereby reducing the number of parameters. As a result, the model
is both efficient and less prone to overfitting [[17].

4.3.4 DenseNet169. DenseNet169 is an enhanced version of
DenseNet121, featuring 169 layers designed for improved image
classification tasks. It retains the architecture that connects all
layers, ensuring efficient feature reuse [18], while addressing the
vanishing gradient problem by reducing the number of parameters.
With additional dense blocks, DenseNet169 is capable of handling
more complex tasks, delivering higher accuracy compared to its
predecessor [19].

4.3.5 Mobilenet. MobileNet is a lightweight CNN by Google
with 28 layers [20]], designed for mobile and embedded devices.
It uses depthwise separable convolutions and bottleneck layers for
efficient feature extraction, significantly reducing parameters and
computational cost [21].

4.3.6 Xception. Xception is an advanced CNN model
developed by Google, built upon the Inception architecture.
It replaces traditional Inception modules with depthwise separable
convolutions, improving efficiency and performance [22]. This
approach reduces computational complexity and the number of
parameters while enhancing feature learning [23].

4.3.7 Inception V3. The Inception-V3 model is a deep image
classification model known for its use of factorized convolutions
and batch normalization, allowing it to extract more features while
reducing computational complexity [24]. It employs global average
pooling to replace traditional fully connected layers, improving
efficiency and reducing overfitting. While it performs well in
image recognition and transfer learning, it requires significant
computational resources and has a large model size, making it less
suitable for resource-constrained environments [25].

4.4 Data Split

The dataset was divided into an 80:20 ratio to ensure effective
model learning, with 80% of the data being used for training
and 20% for testing. Table [I] compares the original dataset with
the augmented dataset, illustrating the distribution of training and
testing data both before and after augmentation.



Table 1. : Distribution of Train and Test Data in Original and Augmented
Datasets

Dataset Train Data | Test Data
Original Dataset 1709 428
Augmented Dataset 5600 1400

5. RESULTS AND ANALYSIS

This section presents the findings from various deep learning
models, including accuracy, precision, recall, F1-score, confusion
matrix (CM), classification report (CR), learning rate (LR) curve,
and receiver operating characteristic (ROC) curve.

5.1 Performance Measures

The table [2] compares accuracy, precision, recall, and F1
score of deep learning models EfficientNetB1, DenseNetl21,
DenseNet169, MobileNet, Xception, and Inception. With an F1
score of 0.9579, accuracy of 0.9605, and recall of 0.9555,
DenseNet169 performs best. With 0.9545 F1, EfficientNet Bl
follows closely. MobileNet demonstrates modest performance
compared to other models with an accuracy of 0.8831 and an F1
score of 0.8949.

Table 2. : Performance table of various deep learning for original dataset

Model Accuracy Precision Recall F1 Score
EfficientNetB1 0.9509 0.9480 0.9640 0.9545
DenseNet121 0.9322 0.9274 0.9397 0.9333
DenseNet169 0.9556 0.9605 0.9555 0.9579
MobileNet 0.8831 0.8852 0.9109 0.8949
Xception 0.9369 0.9408 0.9384 0.9391

InceptionV3 0.9299 0.9340 0.9343 0.9331

The table compares accuracy, precision, recall, and F1
score of EfficientNetB1, DenseNet121, DenseNet169, MobileNet,
Xception, and Inception deep learning models for augment
dataset. Xception has the highest F1 score of 0.9854, followed
by DenseNet121 with 0.9842. Inception and DenseNet169 both
perform well with F1 scores of 0.9831 and 0.9819. MobileNet
consistently scores 0.9716, whereas EfficientNetB1 scores 0.9803.
Xception and DenseNet121 performed well in the task.

Table 3. : Performance table of various deep learning for augment dataset

Model Accuracy Precision Recall F1 Score
EfficientNetB1 0.9807 0.9803 0.9806 0.9803
DenseNet121 0.9842 0.9845 0.9840 0.9842
DenseNet169 0.9821 0.9820 0.9819 0.9819

MobileNet 0.9721 0.9721 0.9714 0.9716
Xception 0.9857 0.9857 0.9853 0.9854
InceptionV3 0.9835 0.9836 0.9828 0.9831
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The table [ highlights the performance of our implemented models
across accuracy, precision, recall, and F1 score. DenseNet169
achieves the best results with an F1 score of 0.9652, followed by
DenseNet121 with 0.9611. Inception and Xception also perform
well, with F1 scores of 0.9423 and 0.9384, respectively. MobileNet
shows competitive performance with an F1 score of 0.9337, while
EfficientNetB1 delivers steady results with an F1 score of 0.9090.

Table 4. : Performance table of various deep learning for original dataset
using CBAM

Model Accuracy  Precision Recall F1 Score
EfficientNetB1 0.9065 0.9103 0.9110 0.9090
DenseNet121 0.9602 0.9631 0.9610 0.9611
DenseNet169 0.9626 0.9666 0.9642 0.9652
MobileNet 0.9275 0.9321 0.9369 0.9337
Xception 0.9369 0.9316 0.9483 0.9384
InceptionV3 0.9392 0.9428 0.9442 0.9423

The table [5] compares deep learning models. The highest F1 score
is 0.9919 for EfficientNetB 1, followed by 0.9890 for DenseNet169.
With 0.9840 F1, DenseNet121 performs well. F1 ratings of
0.9832 and 0.9780 for Xception and Inception are similarly good.
An F1 score of 0.9790 shows MobileNet’s consistency. Both
EfficientNetB1 and DenseNet169 performed well.

Table 5. : Performance table of various deep learning for augment dataset
using CBAM

Model Accuracy Precision Recall F1 Score

EfficientNetB1 0.9921 0.9922 0.9918 0.9919

DenseNet121 0.9842 0.9842 0.9839 0.9840
DenseNet169 0.9892 0.9890 0.9892 0.9890
MobileNet 0.9792 0.9794 0.9789 0.9790
Xception 0.9835 0.9838 0.9828 0.9832
InceptionV3 0.9785 0.9785 0.9776 0.9780

In this research, EfficientNetB1 constantly succeeds. In subsequent
comparisons, it improved from good first findings. Its F1 score
of 0.9919 beat DenseNet169 and DenseNetl21 in the final
examination. Its great performance across various measures makes
EfficientNetB1 the top model in this investigation.

5.2 Prediction Outcomes of the Model

The image [6] showcases examples of the model’s predictions for
various cotton leaf conditions, comparing the actual and predicted
labels. Most predictions align correctly, such as Leaf Redding, Curl
Virus, and Leaf Hopper Jassids. However, some misclassifications
are evident, such as a Curl Virus leaf being predicted as Herbicide
Growth Damage and a Leaf Hopper Jassids leaf misclassified as
Healthy Leaf. These examples highlight the model’s overall strong
performance but also demonstrate areas where classification errors
occur, providing insights for further refinement.
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Fig. 6: Prediction of Best Model

5.3 Comparison with the State of the Art

In this research, various models were implemented to determine
the most effective approach for the task. Among these
models, EfficientNetB1 demonstrated superior performance,
achieving the highest accuracy of 99.21%, highlighting its
exceptional robustness. To further validate the approach, the
InceptionV3 model, based on the foundational work by P.
Bishshash [[]], was also implemented, achieving an accuracy
of 97.85%. This comparative analysis underscores that the
proposed EfficientNetB1-based model significantly outperforms
InceptionV3, reinforcing the effectiveness of the approach in
achieving state-of-the-art results. The comparison with previous
work is summarized in Table[@l

Table 6. : Comparative analysis with previous work

Model Methods Accuracy
) P. Bishshash 96.03%
InceptionV3
Proposed Method  97.85%

5.4 Confusion Matrix

The confusion matrix shows (see figure[7) the model’s performance
across seven cotton leaf conditions: Bacterial Blight, Curl Virus,
Healthy Leaf, Herbicide Growth Damage, Leaf Hopper Jassids,
Leaf Redding, and Leaf Veriegation. Most predictions align with
the diagonal, indicating accurate classification, with the highest
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Fig. 7: Confusion Matrix of Best Model

correct predictions for Leaf Hopper Jassids (214) and Leaf
Veriegation (203). Misclassifications are minimal, such as one
Healthy Leaf labeled as Curl Virus and two errors in Leaf Redding,
reflecting strong overall accuracy.



5.5 Classification Report

The classification report for the EfficientNetB1 with CBAM model
(see table [7) indicates outstanding performance, with precision,
recall, and Fl-scores nearing 1.00 for all classes. The overall
accuracy of 99% demonstrates the model’s exceptional ability to
classify plant conditions accurately. Perfect scores were recorded
in classes such as Herbicide Growth Damage, Leaf Hopper Jassids,
and Leaf Variegation. Other classes also demonstrated strong
performance, with slight variations; for instance, the Curl Virus
class attained a recall of 0.97. The macro and weighted averages of
0.99 indicate the model’s balanced and robust performance across
all categories.

Table 7. : Performance table of various deep learning for augment dataset
using CBAM

Classification Report for EfficientNetB1 with CBAM

precision recall fl-score support
Bacterial Blight 0.98 1.00 0.99 205
Curl Virus 0.99 0.97 0.98 186
Healthy Leaf 0.99 0.99 0.99 211
Herbicide Growth Damage  0.99 1.00 1.00 196
Leaf Hopper Jassids 1.00 1.00 1.00 215
Leaf Redding 0.99 0.98 0.99 184
Leaf Veriegation 0.99 1.00 1.00 203
accuracy 0.99 1400
macro avg 0.99 0.99 0.99 1400
weighted avg 0.99 0.99 0.99 1400

5.6 Learning Curve

The learning curves |§| show that the model performs well on
both the original and augmented datasets. For the original dataset,
training and validation accuracies rapidly increase, with minimal
overfitting, as reflected by the low and stable loss. Similarly,
for the augmented dataset, the model achieves high accuracy
and low loss, with smoother and more stable validation curves,
indicating improved robustness and generalization through data
augmentation. Both datasets demonstrate effective learning and
convergence.

5.7 ROC Curve

The Receiver Operating Characteristic (ROC) curve evaluates the
model’s ability to classify seven cotton leaf conditions.

The curve |§| for each class is plotted, with the Area Under
the Curve (AUC) indicating the model’s performance. The
AUC is perfect (1.00) for Bacterial Blight, Herbicide Growth
Damage, Leaf Hopper Jassids, and Leaf Veriegation, showing
exceptional classification. Healthy Leaf and Leaf Redding achieve
a near-perfect AUC of 0.99, while Curl Virus slightly trails with an
AUC of 0.98. The high AUC values across all classes highlight the
model’s strong overall predictive capability.
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6. CONCLUSION AND FUTURE WORK

In conclusion, the research effectively identifies cotton leaf
diseases using deep learning, significantly enhancing the
efficiency and precision of human assessment. The integration
of the Convolutional Block Attention Module (CBAM) with
preprocessing techniques, such as image scaling and noise
reduction, resulted in improved detection accuracy on both the
original and augmented datasets. This approach not only facilitates
disease detection automation but also aids farmers in reducing crop
loss. The system demonstrated robust performance under various
conditions, showcasing its versatility for different crops and its
potential in agricultural disease management.

Looking forward, hybrid model designs will be explored to
further enhance detection accuracy. The system will be expanded
to accommodate a broader range of environmental conditions
and cotton leaf diseases, incorporating additional datasets for



wider application. Real-time monitoring technologies, including
mobile applications, will be developed to provide immediate
disease identification and prevention strategies for farmers. To
augment model robustness, Hopfield Neural Networks will be
examined, especially to handle novel disease strains. Additionally,
incorporating 10T sensors and multispectral imagery is expected
to improve early illness detection and prevention, reinforcing
the system’s effectiveness and scalability in reducing agricultural
losses globally.
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