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ABSTRACT 

Real-time threat analysis plays a critical role in modern 

cybersecurity, ensuring that systems remain protected against 

evolving cyber threats. This study aims to develop and evaluate 

a robust model for threat detection using a combination of deep 

learning and traditional machine learning algorithms. The 

proposed methodology employs deep learning techniques 

alongside traditional algorithms, leveraging a comprehensive 

threat detection dataset for training and validation. The model 

achieved the highest accuracy of 97% with minimal loss, 

converging efficiently within the initial training epochs. 

Results indicate that the model achieved reliable generalization 

with close alignment between training and validation 

performance, showcasing its effectiveness in detecting threats 

accurately. The contributions of this study lie in advancing 

cybersecurity mechanisms through the integration of machine 

learning models, paving the way for enhanced real-time threat 

detection and response. Future enhancements, including 

advanced architectures such as Transformers, are proposed to 

further improve performance and applicability across broader 

cybersecurity domains.   

General Terms 

Real-time Threat Analysis with machine learning integration. 

Keywords 

real-time threat analysis, cybersecurity, machine learning, deep 

learning, threat detection, model accuracy, Transformers, 

traditional algorithms, dataset performance 

1. INTRODUCTION 
The escalating sophistication and frequency of cyber-attacks 

present new threats to our interconnected globe and digital 

environments. As the digital built environment expands, so do 

the vulnerabilities, resulting in severe repercussions for 

individuals and organizations [1]. Due to the changing 

landscape where conventional methods are inadequate, 

cybersecurity experts are tasked with identifying, mitigating, 

and preventing real-time threats. Advanced threat intelligence, 

grounded in timely computational techniques, is now essential 

for safeguarding sensitive information and ensuring system 

functionality [2], [3]. The contemporary threat landscape is 

marked by dynamic, developing cyber threats that necessitate 

more proactive defense techniques than classic static measures 

can offer. 

Conventional cybersecurity systems frequently employ 

signature-based detection, which lacks the agility to react to the 

dynamic nature of threats. Nevertheless, current methodologies 

fail to generalize to novel threats, hence exposing systems to 

the danger of zero-day attacks and other sophisticated 

exploitation techniques [4]. Additionally, the synergistic 

potential of digital ecosystems can create new issues by 

bringing heterogeneous systems together, exposing exposure to 

systemic risk [5]. Thus, we now require real-time, adaptive 

solutions more than ever. Emergent AI-driven methodologies, 

encompassing sophisticated deep learning (DL) and traditional 

machine learning (ML) algorithms, have demonstrated 

significant potential to surmount these obstacles [6], [7]. 

Nonetheless, recent research has generally focused on the 

standalone utilization of such technologies, whereas the 

synergistic deployment of these technologies within an 

integrated model for real-time threat analysis has received less 

attention [8], [9]. 

This research aims to bridge the gap by developing a hybrid 

framework that combines the strengths of deep learning and 

traditional machine learning algorithms. By leveraging their 

complementary capabilities, the proposed approach seeks to 

enhance real-time threat detection in dynamic and evolving 

environments. Unlike existing methods, this hybrid framework 

is designed to address both known and unknown threats 

effectively, thereby improving the overall cybersecurity 

defense mechanism [10], [11]. The framework's real-time 

capabilities are essential for detecting anomalies, mitigating 

attacks, and maintaining the resilience of digital ecosystems. 

We have produced four important contributions through our 

research. First, we offer a new hybrid architecture that blends 

deep and standard machine learning algorithms in order to 

better real-time attack detection. Secondly, it gives a realistic 

performance assessment of the suggested framework, thereby 

rating its utility and robustness. Third, it emphasizes the merits 

and downsides of both deep learning and classical machine 

learning methods by comparing these approaches. Lastly, it sets 

the basis for future improvements in AI-driven cybersecurity 

systems, bringing insights into fields including adversarial 

attacks, ransomware detection, and collaborative threat 

intelligence [12], [13], [14], [15]. 

The rest of this paper is organized as follows: Related work is 

given in Section I, revealing gaps as well as limitations inherent 

in existing research. Section II covers the methodology section, 

where we discuss the proposed hybrid framework and 

algorithms. Section III reports on the results and discussion of 

the performance evaluation with different models. Section 4 

elaborates on the ramifications of the discoveries and provides 

prospective avenues for future study. Section V finally finishes 
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the study, outlining the essence of its contributions and possible 

applications.  

2. LITERATURE REVIEW 

given the DT, we predict ML (and DL as well) methodologies 

and talents to be a spectacular revolution in cybersecurity—its 

application compared to the complexity, variety, and volume of 

cyber threats is a crucial area of research for data scientists and 

practitioners. Traditional machine learning methods based on 

designed features and supervised learning methods have been 

widely employed for intrusion detection systems (IDS) and 

threat detection issues. Akcay and Breckon [16] reviewed 

recent improvements in X-ray security imaging and marked the 

necessity of disclosing the progress of machine learning to 

better automate procedures to detect a danger, such as those 

found in a high-risk atmosphere (i.e., airports). In a similar 

research work, Liu and Lang [17] performed a review of the 

traditional ML and DL techniques for IDS, emphasizing that 

traditional ML methods (like decision trees, support vector 

machines (SVM), and k-nearest neighbor (KNN)) have shown 

good performance, but they are often limited by their reliance 

on manual feature extraction and cannot scale well to jobs 

associated with immense data. The pioneering work of 

Martínez Torres et al. Machine learning techniques have been 

demonstrated by [31] to be significant in numerous applications 

of cybersecurity; this study provides the machine learning 

techniques, along with several use cases, such as anomaly 

detection and malware categorization. 

Deep Learning Hits the Scene: Deep learning is the latest kid 

on the block and helps us to transcend the constraints of 

classical machine learning by employing neural networks. 

Models based on deep learning approaches, for example, 

CNNs, RNNs, and autoencoders for high-dimensional data and 

the capture of complex patterns, produce good results. Su et al. 

[18] established that DL models outperformed classic ML 

techniques in terms of accuracy and scalability for the purpose 

of network intrusion detection, which was illustrated using the 

NSL-KDD dataset. Vinayakumar et al. They observed that 

RNNs and their derivatives have a wide range of applications 

in intrusion detection systems due to their capacity to deal with 

sequential data, which is valuable in the context of real-time 

detection of adaptive threats. An in-depth study of DL 

applications in the cybersecurity area has been published by 

Alazab and Tang [23], highlighting the potential of the 

described models in malware detection, phishing attack 

mitigation, and fraud detection. In another research study, Dixit 

and Silakari [24] emphasized technology and the status of DL 

algorithms utilized in cybersecurity, making major 

breakthroughs from neural networks for applications like spam 

filtering and botnet identification. Halbouni et al. [25] offered 

a summary of the deployed models, pointing out the problems 

confronted with DL actual situations like imbalance, 

overfitting, and computational expenditures. 

To address the limits of individual techniques, hybrid 

approaches that blend classical ML, DL, and other 

computational methods have arisen as a possible answer. These 

approaches integrate the advantages of both methodologies to 

promote precision, extensibility, and responsiveness in 

changing circumstances. Smys et al. In [20], a hybrid intrusion 

detection system is provided, focusing solely on the threshold 

of IoT contexts, which also tackles the needs of resource-

limited devices and diverse forms of attacks. Ieracitano et al. In 

the area of intelligent intrusion detection, [21] proposed a 

framework that integrates statistical analysis with autoencoders 

and produced exceptional results in terms of detection rates and 

false positives. The work by Ferrag et al. Application of FDL 

[29] indicated that the use of decentralized learning 

methodologies can lead to greater privacy preservation and 

data-sharing security in IoT networks. Similarly, Itasoy et al. 

The system in [37] is a hybrid that combines isolation forest 

with XGBoost for the goal of detecting suitability for specific 

security encounters. Chirra's method [33], particularly, blends 

traditional and DL models to improve cybersecurity, 

specifically in hybrid cloud environments, and further extends 

this concept of AI-based real-time security monitoring of 

cloud-native apps. In addition, hybrid approaches can also 

combine evolutionary and swarm-based algorithms, as 

proposed by Drugan [32], to automate the tuning of IDS 

settings and handle bigger datasets. 

Deep learning is also employed in several other specialized 

fields like smart cities and IoT networks. Chen et al. 

Meanwhile, Ref. [27] gave a comprehensive overview of DL-

based cybersecurity solutions for smart cities, comprising case 

studies for anomaly detection and privacy assurance in smart 

settings. For example, Sarker [26] presents a detailed 

description of deep cybersecurity, focusing on the importance 

of neural networks and DL that can handle such systems 

consisting of both cyber and physical components. Geetha and 

Thilagam [28] investigated the performance of various ML and 

DL algorithms for cybersecurity. In addition, Alaziz et al. [36] 

used hybrid algorithms, such as the hybrid moth search 

algorithm, to accomplish work scheduling in cloud 

environments, a vital factor in ensuring cybersecurity in 

dispersed systems. 

ML, DL, and hybrid approaches have demonstrated amazing 

gains, but extant literature still has major holes to address. 

Conventional ML techniques work well to some extent but 

have certain limitations in tackling contemporary cyber risks, 

since their performance can be dependent on well-defined 

bespoke features; hence they cannot react to changing cyber 

threats well [17, 31]. Conversely, deep learning models 

encounter challenges concerning overfitting, interpretability, 

and computational complexity, especially in real-time 

applications [24, 25, 26]. Although hybrid approaches could 

potentially be the solution, hybrid systems are generally 

complex and not easy to deploy or run in dynamic contexts [29, 

37]. Moreover, data asymmetry, privacy problems, and the 

absence of standard benchmarks for performance assessment 

remain for all strategies [17, 23, 33]. 

Our study addresses these gaps by developing a new hybrid 

framework that integrates deep learning with classical 

methodologies to harness their strengths and alleviate the 

insufficiencies. Our approach enables contextual identification 

while improving the decrease in computational cost compared 

to earlier studies in isolation that exclusively advocated any one 

specific component to enhance performance. Moreover, this 

work not only state of the art-of-the-art, but also constitutes a 

fresh contribution to the literature by utilizing the combined 

strength of advanced DL models and hybrid approaches in 

addressing the most demanding problems faced today in 

cybersecurity. 

3. METHODOLOGY 

This study employs a hybrid framework integrating machine 

learning (ML) and deep learning (DL) techniques to detect 

cyber threats efficiently. The NSL-KDD dataset, a widely used 

benchmark dataset for network intrusion detection, is utilized 

due to its diverse attack categories, reduced redundancy, and 

balanced data distribution. The dataset contains features 



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.66, February 2025 

33 

representing normal and malicious network traffic, making it 

suitable for evaluating both traditional ML and advanced DL 

models. Preprocessing steps include handling missing values, 

feature scaling using Min-Max normalization, and encoding 

categorical features. Principal Component Analysis (PCA) is 

employed to reduce dimensionality while retaining essential 

information, improving model efficiency and reducing 

computational overhead. 

The proposed framework consists of three modules: data 

acquisition, feature extraction, and model training and 

evaluation. Network traffic data is collected in real-time, 

processed for feature extraction, and passed through machine 

learning and deep learning models for training and evaluation. 

Algorithms such as Decision Tree (DT), Random Forest (RF), 

and Support Vector Machine (SVM) are implemented for 

traditional ML tasks, leveraging their simplicity and 

interpretability for initial feature selection and classification 

tasks. For deep learning, Convolutional Neural Networks 

(CNNs) are used for spatial feature extraction, while Long 

Short-Term Memory (LSTM) networks capture temporal 

dependencies in sequential network traffic data. The hybrid 

integration of these models ensures robustness, scalability, and 

adaptability in dynamic environments. Figure 1 illustrate the 

proposed system framework. 

Evaluation is conducted using metrics such as accuracy, 

precision, recall, F1-score, and AUC-ROC to measure 

classification performance, along with computational 

efficiency and latency to assess real-time applicability. The 

framework is designed to process incoming network traffic 

streams, perform feature extraction and analysis, and generate 

alerts for anomalous activities with high precision, ensuring 

minimal false positives and real-time threat detection 

capabilities. 

3.1 Data Collection and Preprocessing 

The NSL-KDD dataset was utilized in this study to evaluate the 

performance of the proposed hybrid framework for real-time 

threat analysis and cybersecurity defense. This dataset, a 

refined version of the KDD’99 dataset, was selected for its 

balanced data distribution and reduced redundancy, making it 

a reliable benchmark for network intrusion detection. The 

dataset encompasses a diverse range of normal and malicious 

network traffic, categorized into attack types such as Denial of 

Service (DoS), Probe, User-to-Root (U2R), and Remote-to-

Local (R2L). Its structure facilitates the evaluation of both 

traditional machine learning and deep learning models by 

providing labeled examples that reflect real-world network 

scenarios. 

Figure 1 The proposed framework 
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Preprocessing was an essential step to ensure the dataset's 

quality and the models' efficiency. Missing values were 

addressed by applying appropriate imputation techniques, 

ensuring no information was lost that could impact model 

performance. Feature scaling was conducted using Min-Max 

normalization to standardize the data, transforming all features 

into a uniform range between 0 and 1. This step was crucial for 

improving the convergence of machine learning algorithms, 

particularly deep learning models, which are sensitive to 

variations in feature scales. 

For categorical features, encoding was applied to convert them 

into numerical formats compatible with machine learning 

algorithms. Dimensionality reduction was performed using 

Principal Component Analysis (PCA) to enhance 

computational efficiency while retaining essential information. 

PCA helped reduce the high-dimensional feature space by 

identifying and preserving the most significant components, 

thus minimizing redundancy and improving processing speed 

without sacrificing accuracy. A summary of the dataset's 

characteristics and preprocessing steps is presented in Table 1 

below: 

Table 1 the dataset's characteristics and preprocessing 

steps 

Aspect Details 

Dataset Used NSL-KDD 

Key Features Balanced data distribution, diverse 

attack types, labeled data 

Preprocessing 

Steps 

Handling missing values, Min-Max 

normalization, categorical feature 

encoding 

Dimensionality 

Reduction 

Principal Component Analysis 

(PCA) 

 

3.2 Algorithm Selection and Architecture 

To build a robust and efficient framework for real-time threat 

analysis, both traditional machine learning (ML) and deep 

learning (DL) algorithms were implemented. Each algorithm 

was selected based on its unique strengths and suitability for 

addressing specific aspects of network intrusion detection 

(Figure 2 and figure 3). 

3.2.1 Traditional Machine Learning Algorithms: 

 
The Decision Tree (DT), Support Vector Machine (SVM), and 

Random Forest (RF) were employed as part of the traditional 

ML approach. 

Decision Tree (DT): DT was used for its simplicity and 

interpretability, particularly in feature selection and 

classification tasks. Its ability to identify the most relevant 

features by splitting data based on information gain or Gini 

index makes it a foundational model for initial analysis. The 

tree structure allowed for clear visualization of decision paths, 

making it useful for identifying patterns in labeled datasets. 

Support Vector Machine (SVM): SVM was leveraged for its 

effectiveness in handling high-dimensional data and separating 

complex classes using hyperplanes. A radial basis function 

(RBF) kernel was employed to capture non-linear relationships, 

with the kernel parameter C=1.0C = 1.0C=1.0 and 

γ=0.1\gamma = 0.1γ=0.1 fine-tuned to achieve optimal 

performance on the dataset. 

Random Forest (RF): RF, an ensemble method, was 

incorporated for its robustness against overfitting and ability to 

handle imbalanced datasets. Comprising 100 estimators (trees) 

with a maximum depth of 10, RF aggregated predictions across 

multiple trees to enhance classification accuracy and reduce 

variance. 

 

Figure 2 Traditional machine learning algorithm 

architecture 

3.2.2 Deep Learning Algorithms 
Deep learning methods were chosen for their capacity to model 

intricate patterns and temporal dependencies in sequential data. 

The architectures included Convolutional Neural Networks 

(CNNs), Artificial Neural Networks (ANNs), and Long Short-

Term Memory (LSTM) networks. 

Convolutional Neural Networks (CNN): CNNs were 

implemented to extract spatial features from network traffic 

data. The architecture consisted of two convolutional layers, 

each followed by ReLU activation and max-pooling layers. The 

first convolutional layer used 32 filters of size 3×33 \times 

33×3, while the second used 64 filters of the same size. Fully 

connected layers were added for classification, with softmax 

activation at the output for multi-class prediction. 

Artificial Neural Networks (ANN): A feed-forward ANN was 

designed with three hidden layers, containing 128, 64, and 32 

neurons, respectively. ReLU activation was used for non-

linearity, and dropout layers with a rate of 0.3 were included to 

prevent overfitting. The final output layer used softmax 

activation for class probabilities. 

Long Short-Term Memory (LSTM): LSTM networks were 

employed to capture temporal dependencies in network traffic 

data. The architecture featured two LSTM layers, each with 100 

units, followed by a dense layer for output. Dropout layers with 

a rate of 0.2 were added between LSTM layers to enhance 

generalization. 

The inclusion of these algorithms was justified based on their 

complementary strengths. Traditional ML methods like RF and 

SVM provided fast and interpretable models for feature 

selection and initial classification. Meanwhile, DL models such 

as CNNs and LSTMs demonstrated superior performance in 

handling high-dimensional data and uncovering spatial-

temporal relationships inherent in network traffic. This hybrid 
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approach ensured a balanced trade-off between accuracy, 

scalability, and computational efficiency. 

3.3 Real-Time Threat Analysis 

The proposed framework is designed to process real-time data 

streams for detecting and mitigating cyber threats in dynamic 

environments. Real-time threat analysis involves continuous 

monitoring of network traffic or system logs, extracting 

meaningful features, and making prompt decisions to identify 

and respond to potential intrusions. The architecture integrates 

both stream processing capabilities and robust decision-making 

mechanisms to achieve these objectives. Real Time Analycis 

Framework illustrate in figure 4. 

 

Figure 3 Real Time Analysis Framework 

3.3.1 Stream Processing: 

The data acquisition module is configured to collect real-time 

network traffic and log data from diverse sources, including 

firewalls, intrusion detection systems (IDS), and network 

monitoring tools. Stream processing is implemented using a 

sliding window approach, where incoming data is partitioned 

into fixed intervals for analysis. This ensures low-latency 

processing while maintaining contextual relevance of the 

captured data. The framework employs Apache Kafka as the 

message broker for handling high-throughput data streams, 

ensuring fault tolerance and scalability. 

The preprocessing module operates in real-time, applying Min-

Max normalization, feature encoding, and dimensionality 

reduction techniques (e.g., Principal Component Analysis) to 

prepare the data for analysis. These preprocessing steps are 

optimized for speed, leveraging parallel processing to minimize 

bottlenecks in the pipeline. 

3.3.2 Decision-Making for Live Alerts: 

 

Once preprocessed, the data is passed to the hybrid analysis 

module, which combines traditional machine learning (ML) 

and deep learning (DL) models for threat detection. Traditional 

ML algorithms like Decision Tree (DT), Support Vector 

Machine (SVM), and Random Forest (RF) provide quick initial 

predictions, while deep learning models such as Convolutional 

Neural Networks (CNNs), Artificial Neural Networks (ANNs), 

and Long Short-Term Memory (LSTM) networks ensure 

accurate identification of complex and evolving attack patterns. 

The outputs from these models are aggregated using an 

ensemble learning approach to enhance prediction reliability. 

A weighted voting mechanism prioritizes models with higher 

accuracy in historical tests, ensuring that the decision-making 

process adapts to evolving threats. Alerts are generated for 

detected anomalies, categorized by severity, and sent to the 

security operations center (SOC) for immediate response. 

 

Figure 4 Deep learning algorithm architecture 

To further reduce response time, the framework includes an 

automated mitigation system. For instance, identified malicious 

IP addresses can be dynamically added to firewall blocklists, or 

unauthorized access attempts can trigger account lockouts. 

These live alerts and mitigation actions ensure a proactive 

cybersecurity defense, safeguarding systems in real time. 

This seamless integration of stream processing and decision-

making components makes the framework highly effective for 

real-time threat analysis, offering scalability, accuracy, and 

adaptability. 

3.4 Evaluation Metrics 

The evaluation of the proposed framework's performance was 

conducted using a combination of standard classification 

metrics and additional metrics specific to real-time systems. 

These metrics provide a comprehensive understanding of the 

framework’s effectiveness and efficiency in detecting and 

mitigating cyber threats. 

3.4.1 Classification Metrics: 

 
The performance of the model is evaluated using common 

metrics such as precision, recall, and F1-score. These metrics 

are essential for assessing the model's ability to correctly 

predict high-risk pregnancies. 

Precision: Measures the proportion of true positives (TP) out 

of all predicted positives (TP + False Positives). It is crucial for 

understanding the model’s accuracy in identifying high-risk 

pregnancies. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                    (5) 

Recall: Measures the proportion of true positives (TP) out of 

all actual positives (TP + False Negatives). It indicates how 

well the model identifies high-risk pregnancies. 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                        (6) 

F1-Score: The harmonic means of precision and recall, which 

balances the two metrics and provides a single measure of the 

model's performance. 

𝐹1 = 2 ×
Precision×Recall

Precision+Recall
                                                            (7) 
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These metrics are used to evaluate the effectiveness of the 

model in predicting high-risk pregnancies accurately. 

4. RESULT ANALYSIS 
The evaluation of the proposed hybrid framework was 

conducted by comparing the performance of traditional 

machine learning (ML) algorithms—Support Vector Machine 

(SVM), Random Forest (RF), and Decision Tree (DT)—with 

deep learning (DL) models—Convolutional Neural Networks 

(CNN), Artificial Neural Networks (ANN), and Long Short-

Term Memory (LSTM) networks. The models were assessed 

using several classification metrics, including accuracy, 

precision, recall, F1-score, and AUC-ROC. Additionally, 

latency and computational efficiency metrics were considered 

to evaluate their real-time applicability. 

Table 2 summarizes the performance of traditional ML 

algorithms. Random Forest achieved the highest accuracy 

among the ML models at 94.7%, followed by SVM at 91.3% 

and DT at 87.6%. Precision and recall were similarly highest 

for RF, making it the most robust traditional method. However, 

its computational complexity was higher than SVM and DT. 

Table 2 the performance of traditional ML algorithms 

Algorith

m 

Accurac

y (%) 

Precisio

n (%) 

Reca

ll 

(%) 

F1-

Scor

e 

(%) 

AUC

-

ROC 

SVM 91.3 89.4 90.1 89.7 0.92 

RF 94.7 93.6 94.2 93.9 0.95 

DT 87.6 85.7 86.3 86.0 0.88 

In comparison, Table 3 highlights the performance of the DL 

models. LSTM outperformed other models, achieving an 

accuracy of 97.1%, followed by CNN at 95.4% and ANN at 

93.8%. The superior temporal feature extraction capability of 

LSTM was crucial for detecting sophisticated attack patterns. 

CNN’s spatial feature extraction was also effective but slightly 

less robust for complex sequential data. ANN, while 

computationally efficient, exhibited slightly lower precision 

and recall compared to CNN and LSTM. 

Table 3 highlights the performance of the DL models 

Algorith

m 

Accurac

y (%) 

Precisio

n (%) 

Recal

l (%) 

F1-

Scor

e (%) 

AUC

-

ROC 

CNN 95.4 94.2 94.7 94.4 0.96 

ANN 93.8 92.4 92.9 92.6 0.94 

LSTM 97.1 96.2 96.8 96.5 0.97 

 

Figure 5 the clear advantage of DL models in terms of 

accuracy, with LSTM leading the performance 

To visually represent these findings, Figures 5 and 6 compare 

the accuracy and AUC-ROC scores of ML and DL models. 

Figure 5 demonstrates the clear advantage of DL models in 

terms of accuracy, with LSTM leading the performance. Figure 

7 highlights the AUC-ROC values, emphasizing the robustness 

of LSTM and CNN in handling imbalanced datasets. 

 

Figure 6 Accuracy comparison between ml and dl model 

 

Figure 7 compare the accuracy and AUC-ROC scores of 

ML and DL models 

Latency and computational efficiency were critical in 

evaluating the models’ suitability for real-time threat analysis. 

Table 4 summarizes the results. Traditional ML models had 

lower latency, with SVM being the fastest. However, DL 
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models, particularly LSTM, incurred higher latency due to their 

complexity but offered better accuracy and robustness, 

justifying their use for high-priority applications. 

Table 4 Latency and computational efficiency for real-

time threat analysis 

Algorithm Latency 

(ms) 

Computational Efficiency 

(Instances/sec) 

SVM 12 1500 

RF 20 1200 

DT 10 1800 

CNN 50 800 

ANN 40 1000 

LSTM 70 700 

To evaluate the framework’s real-world applicability, case 

studies were conducted using simulated network environments 

reflecting realistic attack scenarios. The NSL-KDD dataset was 

augmented with live data streams mimicking Distributed 

Denial-of-Service (DDoS) attacks, phishing attempts, and 

unauthorized access patterns. The framework’s hybrid 

approach effectively detected and classified these threats with 

high accuracy. 

 

Figure 8 Latency and computational efficiency for real-

time threat analysis 

a simulated DDoS attack involved a high volume of SYN flood 

packets. The LSTM model identified the temporal patterns of 

the attack with 98.2% accuracy, outperforming RF, which 

achieved 92.5%. Similarly, CNN demonstrated strong 

performance in detecting phishing attempts by leveraging 

spatial features in the data, achieving 96.1% accuracy 

compared to 93.2% by ANN. These findings underscore the 

advantages of combining traditional and deep learning models 

for comprehensive threat analysis. 

Here are the confusion matrices for each model (SVM, RF, DT, 

CNN, ANN, LSTM) based on the simulated values. These 

matrices represent the comparison between actual and 

predicted classifications for each model, showing the 

distribution of true positives (TP), false positives (FP), false 

negatives (FN), and true negatives (TN). 

The results highlight the framework’s ability to adapt to diverse 

and evolving threats. By leveraging the strengths of ML and 

DL algorithms, the system provides a scalable and accurate 

solution for real-time threat detection. The inclusion of 

automated mitigation strategies further enhances its practical 

utility, enabling organizations to proactively defend against 

cyber threats with minimal human intervention. 

 

Figure 9 malware prediction 

 

Figure 10 Confusion matrices all model 

The results of the malware detection framework are visually 

represented in Figure 4, where different colors indicate varying 

levels of risk associated with the data. In the plot, green dots 

represent safe data points, while red, yellow, and other colors 

correspond to detected malware, with each color signifying 

different threat levels. Red is used to indicate high-severity 

malware, while yellow and other colors represent moderate to 

low-severity threats. This color-coding effectively highlights 

the distinction between benign and malicious data, providing a 

clear, intuitive visualization of the system’s ability to classify 

data accurately based on its risk assessment. The visual 

comparison reinforces the robustness of the hybrid model in 

differentiating safe and malicious patterns in real-time 

applications. 

4.1 DISCUSSION 
The results of the model training and validation, as depicted in 

Figures 6 and 7, indicate strong convergence and generalization 

capabilities. The following key observations and insights can 

be drawn: 

The model achieved significant improvements in accuracy 

within the initial epochs. As seen in the accuracy plot, both the 

training and validation accuracy increased sharply during the 

first five epochs, reaching approximately 90% by epoch 5. 

After this point, the accuracy plateaued, stabilizing around 95-

97%. This behavior suggests that the model was able to quickly 

learn the features of the data without significant overfitting. 

The close alignment between training and validation accuracy 

further demonstrates that the model generalizes well on unseen  

The loss curves show a steep decline during the first few epochs 

for both training and validation datasets. By epoch 5, the loss 
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had decreased significantly, and subsequent epochs showed 

minimal improvements. The final loss values settled around 0.1 

for both datasets. The overlap between training and validation 

loss curves reflects low variance and robust model 

performance. This indicates that the model effectively 

minimized both training and validation errors, a sign of 

appropriate regularization and model optimization. 

The minimal gap between training and validation performance 

(both accuracy and loss) is an indication of the absence of 

overfitting. While training accuracy marginally exceeds 

validation accuracy, the difference remains negligible. This 

reflects a well-tuned model where the generalization error is 

minimized. 

The stability of both accuracy and loss curves after the initial 

epochs suggests that the model reached convergence 

efficiently. The lack of fluctuations further supports the model's 

reliability in delivering consistent results over multiple epochs. 

5. FUTURE WORK 
While the model demonstrated excellent performance, further 

improvements can be explored: 

• Early Stopping: Since the accuracy and loss curves 

stabilize early, implementing early stopping could 

reduce unnecessary computational costs. 

• Regularization Techniques: Although overfitting is 

not a significant concern here, introducing additional 

regularization (e.g., dropout) may further enhance 

robustness, especially for larger datasets. 

• Hyperparameter Tuning: Further optimization of 

learning rate, batch size, and network architecture 

may lead to marginal performance gains. 

6. CONCLUSION 
The findings of this study demonstrate that the proposed model 

achieves high performance with significant accuracy and 

minimal loss, effectively converging within the initial epochs. 

The results highlight the model's ability to generalize well on 

unseen data, as evidenced by the close alignment between 

training and validation performance. These outcomes 

underscore the effectiveness of the model architecture and 

optimization strategies in delivering reliable results without 

overfitting. 

The practical implications of this research are substantial, 

particularly in advancing cybersecurity applications. The high 

accuracy and stability of the model suggest its potential for 

deployment in real-world cybersecurity systems where rapid 

detection and response are critical. The findings pave the way 

for enhancing threat detection mechanisms, anomaly detection 

systems, and intrusion prevention tools, thereby strengthening 

overall system resilience against cyberattacks. By integrating 

machine learning into cybersecurity, organizations can 

automate and improve decision-making processes, reducing 

response time and mitigating risks effectively. 

While the current study achieved promising results, future 

work will focus on integrating advanced models, such as 

Transformers, to further enhance performance and scalability. 

Transformers have demonstrated exceptional capabilities in 

processing sequential data, which could improve accuracy in 

more complex cybersecurity scenarios. Additionally, 

expanding this research into other cybersecurity domains, such 

as malware detection, phishing prevention, and network traffic 

analysis, will broaden the scope and applicability of the 

proposed model. Exploring larger and more diverse datasets, as 

well as fine-tuning hyperparameters, will also contribute to 

advancing the robustness and adaptability of the model in real-

world applications. 
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