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ABSTRACT
Important traffic regulation and safety in High populated and fast
developing urban areas. Traditional applications of traffic laws in-
volving enforcement of speed violations or illegal directions often
leverage upon pricey infrastructure, especially Automatic Number
Plate Recognition cameras [14] which capture data about the vehi-
cle and eventually process it. In the following paper there is pre-
senta a new approach - one that is cost efficient and scalable for
detect vehicle speed and wrong direction violations using publicly
available non-specialized cameras. The methodology in paper uses
state of art deep learning object detection models namely YOLO
based architectures and advanced computer vision techniques for
accurate, real time speed estimation and direction detection of ve-
hicles. It is demonstrated how the proposed system can flag critical
traffic violations such as overspeeding and traveling in the wrong
direction. The system’s modular design and dependency on general
purpose cameras This approach must allow for its widespread, af-
fordable implementation. Experimental results show us the robust-
ness, accuracy, and real time capabilities of the proposed approach
as well as insight into practical deployment in real world traffic
surveillance applications.
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1. INTRODUCTION
The rapid urbanization and increase of personal vehicles have
introduced complex challenges in traffic management and road
safety. Issues such as over-speeding, illegal parking, and driving
against traffic flow are not only wrong to smooth traffic flow but
also pose severe risks to people walking on footpath and motorists.

Traditionally, law applying agencies have been dependent heavily
on specialized infrastructure such as Automatic Number Plate
Recognition (ANPR) cameras and radar guns to monitor and
prosecute traffic violations. However, even though these are
effective, they tend to be costly, singular and can be afforded at just
a few critical checkpoints only. Besides, setting up a speed radar
at every other critical junction is financially difficult besides being
a logistically unfeasible solution for big coverage particularly in
highly populated or dynamic growth urban centers.

The new computer vision and deep learning [9] breakthrough
has opened a copy of windows on solving such problems.
Availability of common public cameras which was installed for
security or general surveillance purposes offers a low cost and
scalable alternative. By re purposing these existing cameras traffic
violations such as over speeding and wrong direction movement
can be monitored at scale without high investments required for
traditional technologies.

In this research, a new computer vision based framework is pro-
posed that uses widely available public camera feeds to detect
speed and wrong direction violations. By integrating state of art
object de-detection models such as YOLO (You Only Look Once)
with tracking algorithms and geometry based analysis, it is shown
a cost-effective, scalable, and accurate solution for real time traffic
surveillance.

1.1 Motivation
The motivation behind this work was in reducing costs, scaling ap-
plication coverage, and enhancing the effectiveness of traffic law
application. By converting any standard surveillance camera into a
traffic monitoring sensor city government can:

(1) Expand monitoring to more locations without much hardware
investments
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(2) Increase the frequency and consistency of traffic law applica-
tion thereby improving compliance

(3) Integrate with existing smart city solutions and data analytics
platforms for comprehensive urban mobility insights

1.2 Contributions
The primary contributions of the work are:

(1) Novel Use of Public Cameras: Demonstrating that widely
available, non-specialized CCTV or security cameras can be
effectively repurposed for advanced traffic violation detection,
negating the need for expensive ANPR or radar systems

(2) Integrated Detection and Tracking: Implementing YOLO
based multi class object detection models to identify vehicles,
motorcyclists, bicycles, and people walking on footpath, and
integrating them with tracking algorithms to maintain object
identities over multiple frames

(3) Speed Estimation Methodology: Introducing a computer vi-
sion based speed calculation method that uses frame by frame
displacement of tracked vehicles, combined with appropriate
calibration factors derived from geometry of frame and frame
rate to estimate speed accurately

(4) Direction Inference for Violations: Employing a centroid
based approach to see travel direction and flagging vehicles
moving counter to the designated direction of traffic

(5) Modular and Scalable Design: Presenting a system that can
be easily adapted to various camera setups and scenes, and in-
tegrated with cloud based infrastructure for remote processing
and storage

(6) Optimized Signal Timings: If a large number of vehicles is
detected while the light is red a signal control could extend
or shorten the red phase accordingly to manage traffic more
efficiently.

(7) Law Application and Violation Detection: Authorities can
easily point vehicles crossing during red or yellow signals,
helping in automated challans or warnings.

2. RELATED WORK
Conventional methods for speed application was dependent
heavily on radar based speed guns and ANPR cameras to detect
and identify speeding vehicles [1]. These systems while precise are
relatively expensive and limited to specific checkpoints. With the
rise of deep learning based object detectors, several studies have
explored detecting vehicles and estimating speed using general
camera feeds [2][3]. However many of these approaches require
extensive calibration and specialized hardware.

YOLO and other deep learning architectures like Faster R-CNN
and SSD have largely advanced real time object detection in
surveillance footage [4]. Integrating detection with multi object
tracking (MOT) algorithms has proven effective for long-term
behavior analysis of detected objects in video streams [5]. More
recent studies have begun exploring the integration of additional
functionalities like direction detection [6] and violation detection
[7]. However, few have thoroughly integrated speed and direction
estimations in a single framework while focusing specifically on
using general purpose public cameras for cost effectiveness and
scalability.

The work in this paper stands on the shoulders of these advance-
ments, using high-performance YOLO-based detectors with robust

tracking and geometric analysis for speed and direction inference,
while emphasizing affordability and scalability through the use of
existing public camera networks.

3. TRAFFIC SIGNAL DETECTION AND VEHICLE
DENSITY ANALYSIS

For the rapidly expanding urban centers, efficient management of
traffic is the prime requirement. It requires strict adherence to the
traffic signals-red, yellow, and green-for ensuring safety and reduc-
ing congestion. The difficulty lies in human error as well as its prac-
tical impossibility of checking every crossing. This task can be eas-
ily executed using computer vision and deep learning, as they give
quite robust solutions for monitoring the states of signal identifica-
tion in real-time vehicle behavior. This enables:

(1) Efficient resource allocation for traffic police and application
agencies.

(2) Data-driven insights into congestion levels and violation
trends.

(3) Enhanced safety by quickly detecting violators and reducing
signal related road incidents.

In this paper, two key components have been focused on:

(1) Signal state detection via ROI brightness analysis.
(2) Vehicle counting using YOLO-based object detection models

during red or yellow phases.

3.1 Signal State Detection
(1) Region of Interest (ROI) Selection Predefined bounding

boxes (or ROIs) are drawn around each of the three traffic
lights (red, yellow, and green). Specifically, for each traffic
light, the store coordinates (x1, y1, x2, y2) that allow us to
extract a small region from the full image frame.

(2) Brightness Calculation Once the ROI is selected, the cropped
image patch is converted to grayscale. The average brightness
β of the ROI is calculated by summing the intensities of all
pixels and dividing by the total number of pixels:

β =

∑N
i=1 I(i)

N
,

where I(i) is the grayscale intensity of the i-th pixel, and N is
the total number of pixels within the ROI.

(3) Threshold Determination For each light (red, yellow, green),
sample frames are collected to compute a baseline brightness
value. A brightness threshold βth is then defined (e.g., mean
brightness minus a small offset) to account for lighting varia-
tions. During actual inference, if β > βth in the corresponding
ROI, it is inferred that the light is ON.

3.2 Vehicle Detection and Counting
(1) Object Detection The research utilizes a YOLO-based model

(e.g., YOLOv8) to detect vehicles. For each frame, the detec-
tor provides bounding boxes, confidence scores, and class IDs
(e.g., car, motorcycle, bus, truck).

(2) Vehicle Tracking To maintain consistent identities across
frames, a tracking mechanism has been employed. A dictio-
nary or track manager stores the positions and identifiers (IDs)
of vehicles in each frame. When a detection is matched to an
existing track, it retains the same ID; otherwise, a new ID is
assigned.
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(3) Counting Vehicles During Red or Yellow Light Whenever
the brightness check indicates that the traffic light is red or yel-
low, the system activates a vehicle-counting procedure. Each
newly detected vehicle (not previously counted for that sig-
nal phase) is added to the count. This information is especially
useful for quantifying congestion at intersections during non-
green signals.

(4) Maintaining the Vehicle Count All vehicle counts, along with
their timestamps or frame numbers, are stored for subsequent
analysis. These counts:
(a) Reflect the density or buildup of vehicles at red or yellow

signals.
(b) Can be compared against green-signal counts to study traf-

fic flow dynamics.
(c) Provide valuable input to dynamic signal controllers or for

evaluating the effectiveness of traffic policies.

Whenever the signal turns green; model starts to detect the speed
and direction of the vehicle, the methodology of which is discussed
below. While the signal is red, taking a left turn is assumed to be
legal by the laws as well and thus they are not flagged for wrong
direction.

4. METHODOLOGY FOR SPEED AND WRONG
DIRECTION DETECTION

The proposed framework comprises several key components: data
acquisition, object detection, multi-object tracking, speed estima-
tion, direction inference, and violation flagging. Figure 1 provides
an overview of the pipeline.

4.1 Data Acquisition
It is assumed that access to publicly available camera
feeds—standard CCTV cameras installed at junctions, park-
ing areas, or along highways are available. These cameras are
typically low to medium resolution and may not provide dedicated
calibration information. The approach accounts for these con-
straints by employing a polygon-based scene understanding step

Thus no specialized dataset was required. The method was tested
on arbitrary public domain city junction footages. The YOLO mod-
els were pretrained on popular object detection datasets (e.g., MS
COCO) and fine-tuned with some domain-specific images if avail-
able.

4.2 YOLO Model Architecture
The YOLO (You Only Look Once) architecture has revolutionized
object detection by offering real-time, highly accurate detection
capabilities. Unlike traditional object detection methods that
require multiple stages of processing, YOLO operates on a single
neural network, combining object classification and localization
into a unified framework.

Unlike traditional methods that involve a multi-stage pipeline (e.g.,
region proposal generation followed by classification), YOLO pro-
cesses an entire image in a single neural network forward pass.
This end-to-end design enables real-time detection while maintain-
ing accuracy. Below, the paper delves into the key components and
processes that define how YOLO works.

(1) Residual Blocks: YOLO begins by dividing the input image
into a grid of N × N cells. Each cell is responsible for predicting

the bounding box and the class probabilities of the objects it
encompasses. This grid-based mechanism simplifies object lo-
calization by assigning distinct responsibility to each cell, en-
suring that overlapping object regions are managed efficiently.
(a) Image Preprocessing: The input image is resized to a

fixed dimension, typically 448 × 448, ensuring compati-
bility with the network architecture

(b) Grid Division: The image is divided into equal N × N grid
cells, where each cell can predict multiple bounding boxes
and their associated confidence scores

(c) Residual Connections: To improve gradient flow and en-
able deeper network structures, YOLO employs residual
blocks. These connections help YOLO retain spatial in-
formation from earlier layers and stabilize training

(2) Bounding Box Regression: For every grid cell, YOLO
predicts bounding boxes that encompass objects within the
cell’s area of responsibility. Each bounding box prediction
includes:

(a) Pc : The confidence score indicating the likelihood of an
object being present in the bounding box

(b) (bx, by): The x and y coordinates of the bounding box cen-
ter, normalized with respect to the cell’s grid dimensions

(c) (bw, bh): The width and height of the bounding box, nor-
malized with respect to the entire image dimensions.

(d) Class Probabilities: The probabilities of each object
class being present in the bounding box

The overall prediction is represented as a vector:

Y = [pc, bx, by, bw, bh, c1, c2, . . . , cC ]

Where C is the number of object classes. This unified vector
ensures simultaneous localization and classification for every
bounding box

Fig 1. YOLO Object Detection Model Architecture
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(3) Intersection Over Union (IOU): The challenge in object de-
tection lies in eliminating redundant predictions for the same
object. YOLO employs the Intersection Over Union (IOU)
metric to refine predictions:
(a) IOU Definition: IOU measures the overlap between the

predicted bounding box and the ground truth bounding
box. Mathematically, it is defined as:

IoU =
Area of Intersection

Area of Union

(b) Thresholding: During training, bounding boxes with an
IOU below a predefined threshold (e.g., 0.5) are discarded.
This ensures that only predictions closely aligned with the
ground truth are retained

(c) Grid Selection: For each grid cell, only the bounding
boxes with IOU greater than threshold are considered sig-
nificant. This prevents false positives from influencing the
training process

(4) Non-Maximum Suppression (NMS): While the IOU mech-
anism eliminates some redundant predictions, multiple high-
confidence bounding boxes may still overlap for the same ob-
ject. Non-Maximum Suppression (NMS) further filters these
bounding boxes to retain the most relevant ones:
(a) Ranking: YOLO ranks all bounding boxes based on their

confidence scores
(b) Suppression: For each object class, NMS iteratively re-

moves bounding boxes with a high overlap (IOU greater
than threshold) but lower confidence than the highest-
ranked box

(c) Result: After applying NMS, YOLO retains only the
bounding box with the highest detection score for each
object, reducing noise and improving prediction quality

(5) Activation and Optimization:
Activation Functions:
(a) ReLU [13]: Used in all layers except the final layer, facil-

itating efficient gradient flow and convergence.
(b) Linear Activation: Applied in the final layer for bound-

ing box coordinates to allow unrestricted values.
Regularization:
(a) Batch Normalization: Reduces internal covariate shifts,

stabilizing and accelerating training.
(b) Dropout: Mitigates overfitting by randomly deactivating

neurons during training

The YOLO architecture stands out due to its simplicity and effi-
ciency, combining feature extraction, classification, and localiza-
tion into a single network. By leveraging residual blocks, bounding
box regression, IOU, and NMS, YOLO achieves real-time object
detection with competitive accuracy, making it ideal for applica-
tions requiring speed and scalability. Below is the figure for YOLO
Architecture for Object Detection:

4.3 Model Architecture and Discussion
YOLO was used as the feature extractor here. It is a real-time
object detection system that processes an image in a single neural
network pass, making it both fast as well as efficient for tasks like
object detection and tracking.

Step-wise YOLO Model Process:

Input Image → Grid Based Detection → Bounding Box Prediction
→ Class Prediction → Non Maximum Suppression

The algorithm utilizes the YOLO Model to identify and localize
the vehicles. It assigns and maintains consistent tracking IDs for
vehicles across different frames. There are various components de-
pendant on Computer Vision for speed tracking and direction de-
tection.
For each detection YOLO provides a bounding box, defining posi-
tion of the vehicle in image,a class label indicating the type of ve-
hicle detected, a confidence score indicating the model’s certainty
in the detection

(1) Object Tracking: To maintain consistent identities for each
detected vehicle, a built in tracker is integrated that associates
detections across consecutive frames. This tracker relies on
comparing bounding box features such as centroids and sizes
between the current and previous frames. Persistent object
IDs ensure that speed and direction can be computed over time.

(2) Centroid Calculation: Once a vehicle is detected, centroids
are computed:

centroidx =
x1 + x2

2
, centroidy =

y1 + y2
2

.

This geometric center provides a simplified representation of
the vehicle’s position and is less sensitive to bounding box
size variations.
In each frame centroids are stored [10] calculated in that frame
before moving on to the next frame and finding centroids
again based on the bounding box coordinates and coordinates
for the centroid for a particular vehicle in certain frame is
found using the ID of the vehicle and the vehicle region.
Because the tracking IDs are persistent across frames, and
because each frame updates the stored centroid position, the
code effectively creates a timeline of centroid positions.

As each new frame arrives:

(a) looking up at the existing tracking IDs.

(b) Retrieve the previous frame’s centroid.

(c) Calculate differences in position to infer speed, direction,
or other metrics.

(d) Update the dictionaries with the most recent centroid and
discards older entries once they’re no longer needed.

Thus, successive centroid tracking is accomplished by com-
bining YOLO’s built-in object tracking (which provides stable
track IDs per object across frames) with dictionaries that store
and update each object’s centroid from one frame to the next.
By referencing these stored positions, changes in position can
be determined over time, thus analyzing movement patterns
such as speed, direction, or violations.

Below is an example of the frames which showcase tracking of
centroid of a vehicle (3-wheeler):
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Fig 2: Red Bounding Box for violation due to Over-speeding
Frame 1 (Red Cross - Centroid)

Fig 3: Red Bounding Box for violation due to Over-speeding
Frame 2 (Red Cross - Centroid)

The above two frames showcase the centroid in the bounding
box and how the centroid is tracked and maintained in between
the two frames.

(3) Speed Estimation Process: Speed [11] calculation is central
to the system’s functionality. A inter-frame differences is lever-
aged to estimate velocity:

(a) Position Logging: For each tracked vehicle, centroid are
stored and the frame number in a dictionary keyed by track
ID.

(b) Distance and Time Computation: When a vehicle reap-
pears in a subsequent frame, previous position are re-
trieved (xprev, yprev, frameprev). The Euclidean distance
[12] traveled is:

d =
√

(xcurrent − xprev)2 + (ycurrent − yprev)2.

The time elapsed is computed from the difference in frame
indices:

∆t =
framecurrent − frameprev

frame rate
.

(c) Speed Conversion: Initially, speed in pixels per second is
derived:

vpixels/s =
d

∆t
.

A known scale factor, derived from scene calibration, con-
verts pixel-based measurements to real-world units (e.g.,
km/h):

vkm/h = vpixels/s × speed multiplication factor.

Minor movements below a threshold are rounded down to
zero to reduce noise.

(4) Direction Compliance Check: To determine whether a ve-
hicle moves in the correct or opposite direction, polygonal re-
gions are defined with expected directions. Each region is asso-
ciated with a direction: for instance, downward (+1) or upward
(−1) travel in image coordinates. the last several (e.g., six) cen-
troid positions are stored of each vehicle within a given region.
After accumulating these positions:
(a) Compute the displacement in the vertical direction:

∆y = ynewest − yoldest.

(b) Determine the actual direction:
i. If ∆y > 0, the vehicle is moving downward.
ii. If ∆y < 0, the vehicle is moving upward.

(c) Compare the inferred direction with the expected direction
of the region:
i. If the expected direction is downward and the vehicle

moves upward, it violates direction rules.
ii. If the expected direction is upward and the vehicle

moves downward, it also constitutes a violation.
When a violation is detected, the system highlights the
bounding box in red and increments a violation counter.

To ensure accurate detection of traffic violations, it is crucial to de-
fine a Region of Interest (ROI) that focuses on the relevant sections
of the road. This allows the system to exclude unnecessary back-
ground and concentrate on the areas where vehicles are expected to
move. If both sides of the lanes are visible, separate logic is applied
for each direction of traffic, as vehicles in opposing lanes may have
different directional rules. For instance, upward-moving vehicles
in one lane could indicate a violation, while the same motion in the
opposite lane is valid. This distinction ensures precise identification
of both speed and directional violations for multi-lane scenarios.

4.4 Visualization and Output:
For each processed frame, the system overlays:

(1) Bounding boxes around detected vehicles
(2) Labels including vehicle type and track ID
(3) Computed speed text near the bounding box
(4) Directional compliance messages and color-coded bounding

boxes in the event of a violation

This immediate feedback facilitates operator monitoring and pro-
vides an annotated video output for analysis. Below are the output
of the frames and bounding box overlayed to flag over-speeding
and Opposite direction violations:
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Fig 4. Red Bounding Box to flag over-speeding vehicles

Fig 5. Red Bounding Box to flag over-speeding vehicles

Fig 6. Blue Bounding Box to flag vehicles moving in wrong
direction

Fig 7. Blue Bounding Box to flag vehicles moving in wrong
direction

Fig 8. Blue Bounding Box to flag vehicles moving in wrong
direction

5. CONCLUSION AND FUTURE WORK
This paper presented a deterministic, novel, low-cost, and flexible
solution for detecting key traffic violations using readily available
public camera feeds. By leveraging advanced YOLO-based object
detection models, robust multi-object tracking, and polygon-based
scene understanding, the research also demonstrated a system
capable of identifying speed and directional violations, as well
as other infractions like helmet non-compliance and cycle lane
misuse. This paper also included a novel approach to detect signal
and execute methods based on the color of the signal

The results show that such a system can provide real-time feedback
to traffic authorities, significantly reducing the need for expensive
specialized hardware. With future refinements and scalability
improvements, this approach promises a transformative impact on
urban traffic management, safety monitoring, and law enforcement.

Future improvements could include:
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(1) Integrating camera calibration techniques to enhance
speed estimation accuracy: Integrating camera calibration
techniques is crucial to reducing measurement errors in speed
estimation. Calibration involves determining the camera’s in-
trinsic parameters (like focal length and lens distortion) and
extrinsic parameters (such as its orientation and position rel-
ative to the scene). By accurately mapping image coordinates
to real-world dimensions, the system can more precisely calcu-
late vehicle speeds. This not only minimizes distortions caused
by perspective but also adapts to environmental changes over
time, ensuring consistent performance

(2) Employing advanced models for nighttime detection and
infrared camera feeds: Traditional detection models often
struggle under low-light or nighttime conditions due to reduced
visibility and increased noise. By employing advanced mod-
els designed for these scenarios, including those optimized for
infrared (IR) camera feeds, the system can maintain high de-
tection accuracy regardless of ambient light. Infrared cameras
capture thermal signatures, providing a reliable alternative to
visible-light imaging during the night. These improvements
can lead to a more robust detection system that effectively
tracks vehicles in all lighting conditions

(3) Incorporating ANPR (if available) for vehicle identification
and integrating directly with traffic databases: Incorporat-
ing Automatic Number Plate Recognition (ANPR) technology
enables the system to automatically extract license plate infor-
mation from detected vehicles. This unique identifier can then
be cross-referenced with traffic databases, allowing for real-
time vehicle identification, history tracking, and integration
with broader traffic management systems. This feature is par-
ticularly valuable for law enforcement, tolling, and congestion
management, as it facilitates swift data retrieval and decision-
making, reducing manual intervention and enhancing overall
traffic surveillance

(4) Utilizing vehicle re-identification models and data fusion
from multiple camera angles for comprehensive city-wide
tracking: Vehicle re-identification (Re-ID) models are de-
signed to recognize and track the same vehicle across different
camera views, even if the vehicle’s appearance changes due
to lighting, angle, or occlusion. By fusing data from multiple
camera angles across a city, the system can construct a com-
prehensive picture of traffic flow and vehicle movement. This
holistic tracking is essential for analyzing congestion patterns,
planning urban infrastructure, and enabling rapid responses in
emergency situations. Data fusion from various sources not
only enhances tracking accuracy but also enriches the dataset
for better analytics and predictive modeling
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