
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.65, January 2025

19

Managing Machine Learning Complexity with Advanced

Version Control Techniques

Koushik Balaji Venkatesan
 Independent Researcher

Seattle, WA

ABSTRACT

Managing the complexity of machine learning workflows is a

significant challenge, as these projects often involve not just

code but also large datasets, model maintenance, and extensive

experimentation. While traditional version control tools like

Git are effective for software development, they do not fully

accommodate the unique requirements of ML workflows, such

as tracking multiple dataset versions, managing evolving

models, and maintaining experiment histories. Specific utilities

and frameworks have been developed to address these

challenges, and this paper explores some of these available

tools in detail. Incorporating structured workflows and best

practices for managing artifacts helps ML practitioners

improve reproducibility, scalability, and collaboration across

teams.

Furthermore, these tools can be leveraged as part of an end-to-

end ML pipeline combined with CI/CD practices to facilitate

tasks such as data preprocessing, model training, and

deployment solutions. Through a hands-on case study of a retail

recommendation system, this paper demonstrates how these

techniques effectively tackle real-world challenges, including

handling dynamic datasets, optimizing iterative

experimentation, and maintaining model integrity. Finally, the

paper explores emerging trends such as automation and

sustainability in ML workflows, highlighting how integrating

these strategies can enhance scalability and enable teams to

build more efficient and production-ready ML systems.

General Terms

Algorithms, Machine Learning, Software Engineering, Data

Management, Reproducibility

Keywords

Version Control, Machine Learning Engineering, Data Version

Control (DVC), Experiment Tracking, Model Reproducibility

1. INTRODUCTION
ML has made a huge impact by bringing a data-driven solution

to the complex problems at hand. However, developing and

deploying an ML system brings in its unique set of challenges

[1]. Unlike traditional software engineering, ML workflows

extend beyond code management to handling datasets, training

models, and experimentation in iterative manners. This added

complexity creates barriers to reproducibility, collaboration,

and managing the lifecycle of ML assets as projects evolve

from research toward production.

Version control is a basic software engineering practice that is

particularly important in organizing and managing changes in

ML workflows. Traditional tools, however, are not sufficient

for the dynamic and varied needs of ML projects. Large and

constantly evolving datasets are hard to track, while models

need versioning to manage configurations, weights, and

metadata over time. Also, iterative experimentation demands

the most stringent documentation of hyperparameters,

configurations, and performance metrics. Without a robust

version control system, ML projects can quickly degenerate

into chaos where collaboration and reproducibility go for a toss.

In this paper, advanced versioning tools like Data Version

Control (DVC) [2], MLflow [3], and Weights & Biases (W&B)

[4] are discussed, which enhances these versioning practices to

make interdependencies with datasets, hyperparameters &

model artifacts effective. Utilities such as DVC extend

traditional version control to handle datasets and pipelines

effortlessly, while MLflow and W&B represent systems that

embed features relevant to experiment tracking and model

lifecycle management, respectively [5]. These tools introduce

structured workflow management into a data scientist's flow of

work, enhancing the overall efficiency and reliability of the

process.

The paper covers deficiencies in traditional version control for

ML, advanced tools for ML workflows, and best practices to be

followed while implementing an effective versioning system.

With these strategies and tools, ML practitioners will be able to

bring further optimization into their workflows, thereby

assuring better reproducibility and seamless transitions from

experimentation to production-ready systems [6].

2. UNDERSTANDING VERSION

CONTROL IN MACHINE LEARNING
Version control is an important aspect in the development of

software because it provides a structured method to track

changes, collaborate with others, and reproduce results.

However, when applied to machine learning workflows, this

concept requires solving many unique challenges. Unlike

classic software projects, ML workflows have many

components that include code, data, models, and experiments;

all these have their own peculiar needs regarding tracking and

versioning. This section discusses the application of version

control to particular aspects of ML and also the challenges it

resolves.

2.1 What is Version Control?
Version control, or management, in general, is the term used

for the controlled handling of all changes of files, codebases,

and generally any kind of artifacts in a structured and regulated

fashion. Version control makes every change of code traceable

and, therefore, easily recoverable and makes sharing work

among people is easier. In ML, versioning goes beyond source

code since there are datasets to be considered, model files, and

experiment metadata because ML workflow is complex.

2.2 Importance of Version Control in

Machine Learning
Version control has proved to be an indispensable aspect in

machine learning due to several reasons:

2.2.1 Reproducibility
Reproducibility guarantees that the results can be reliably

reproduced with the same dataset, configuration, and model

version.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.65, January 2025

20

Fig 1: ML Version Control Workflow

2.2.2 Collaboration
Collaboration allows the opportunity for teamwork, where

multiple people can work on different parts of a project while

having a unified record of changes.

2.2.3 Scalability
Scalability allows for large datasets and multiple model

iterations as projects grow in size and complexity.

2.3 Version Control Challenges Unique to

Machine Learning

2.3.1 Dataset Versioning
By their nature, machine learning datasets change over time,

and this happens frequently, in order to be in sync with the

changes made to the models. Such traditional version control

tools don't support large files, and at the same time, neither can

they track data changes accurately. Tools like DVC let

versioning of datasets be saved into some external storage and

its references into version control systems like Git [8].

2.3.2 Versioning Models
Trained models get updated rather frequently during both

experimentation and deployment. Versioning models involves

tracking models' architecture, weights, and their training

configurations. Tools like MLflow[2] and Weights & Biases[3]

offer functionality to record model versions and compare them

such that the best-performing configurations are preserved.

2.3.3 Experiment Tracking
By their very nature, machine learning workflows are iterative

and require systematic tracking of hyperparameters, training

metrics, and results. Unlike software projects where the final

output is often a static application, ML projects are all about

continuous experimentation to optimize performance. Tools

like MLflow and W&B track these experiments, linking results

to specific datasets, configurations, and code versions.

3. CORE COMPONENTS OF VERSION

CONTROL IN ML
This section highlights various core components that are

involved in ML workflows and some best practices for

managing and tracking versions of those components. Version

control in machine learning extends beyond traditional

software practices and various interconnected components such

as code, data, models and experiments should be versioned

effectively.

3.1 Versioning Code
Code is the foundation of ML workflows, much like software

engineering. But coding in ML encompasses project source

code, scripts, notebooks and configurations for data processing.

Traditional methods like Git work great for versioning code in

ML workflows as well.

3.1.1 Branching Strategies
Always maintain a clean main/master branch for production-

ready code. Experiments or bug fixes should be tracked in a

separate feature branch forked off of the main branch.

3.1.2 Notebook Versioning
While Git integrates with notebook, widely used tools such as

AWS code commit works great with AWS Sagemaker

notebooks and offer git-like features to version code for

machine learning projects. Converting these notebook logics to

scripts and managing them outside with git simplifies

collaboration and debugging.

3.1.3 Commit Messages
Ensure that clear and descriptive commit messages are added

so that the purpose of any particular change moving through

the pipeline can be tracked.

3.2 Versioning Data
Datasets can evolve dynamically in ML workflows due to data

collection updates, changes in processing upstream,

preprocessing logic changes, or domain shifts. It is critical to

track these changes so that the model can be trained and

evaluated consistently. Traditional version control tools like

Git, don’t offer much support when it comes to versioning data.

3.2.1 Data Version Control (DVC)
Tools such as Data Version Control (DVC) track data in files

without having to store them in the git repository. It tracks

various changes that might have been made to the data like

more or less/data than before, changing schemas, or changes in

the time that batched data is usually ingested. This approach

also provides an efficient mechanism to handle large volumes

of data.

3.2.2 Metadata Management
Always record metadata around the data that is being used such

as time of ingestion, data source, preprocessing steps and

versions. This ensures data lineage and reproducibility and

helps with quicker investigations for critical issues.

3.2.3 Immutability
Taking model needs into consideration, after sufficient analysis

a dataset is chosen for consumption. This chosen dataset should

be locked for writes (immutable) to prevent accidental changes

that can affect model training can be prevented.

3.3 Versioning Models
A trained model is one of the most critical components of ML

workflows. Versioning the model becomes very important to

track changes in model architecture, weights, and

configurations over time. This is essential for reproducing

results and deploying the most effective model.

3.3.1 Artifact Storage
Consider using tools like MLFlow to store trained models. This

also helps store other metadata around the trained model such

as parameters and evaluation metrics.

3.3.2 Model Tags
Assigning tags to models based on their purpose, for example,

production-ready, experimental, etc. can simplify tracking.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.65, January 2025

21

3.3.3 Integration with Pipelines
Versioned models should also be linked to specific datasets and

training scripts to provide end-to-end reproducibility.

4. VERSION CONTROL TOOLS FOR

MACHINE LEARNING
Specific needs of machine learning workflows have led to a few

tools that enhance conventional version control of datasets,

models, and experiments. Such tools fix challenges visible

within traditional systems like Git, which assist machine

learning practitioners manage the complexities of their

projects. There are various features and advantages of such

increasingly popular version control tools. Over time, wider

ML communities have adopted these tools embedding them

into machine learning workflows.

4.1 Git
With its strong features to track changes in code, collaborate,

and manage development workflows, GIT has emerged as the

primary version control tool in use within software

development. While absolutely indispensable for versioning

scripts and configurations, Git proves to be limited when used

with large datasets and model artifacts. Git has the following

key features.

4.1.1 Code Management
Git takes care of branching, merging, and collaborative

development of ML scripts and notebooks

4.1.2 Integration
Integrates with GitHub, GitLab, and Bitbucket to help teams

collaborate and manage remote repositories

4.1.3 Limitations
Git struggles with large files, such as datasets and model

weights, necessitating additional tools for effective

management.

4.2 Data Version Control (DVC)
DVC is a software tool that manages the version of datasets and

pipelines. DVC, when used with Git, is an open-source

platform designed to disconnect the actual large data files from

a Git repository and to be kept within external storage solutions

while maintaining versions in Git. DVC offers a host of

important features including:

4.2.1 Data Tracking
DVC allows for the tracking of variations in datasets and data-

pipelines without the need for saving huge files in the

repository.

4.2.2 Multiple Storage Options
DVC supports multiple storage-types including cloud-based

storage (AWS S3 and Google Cloud Storage) on one hand and

local storage on the other.

4.2.3 Pipeline Management
Users can define ML pipelines as directed acyclic graphs

(DAGs) so that the workflow can be reproducible.

4.2.4 Integration with Git
DVC complements Git, linking data files and pipeline stages to

a specific Git commit.

4.2.5 Example use-case
Some example use cases of DVC includes needing to keep

track of different versions of the same dataset while

preprocessing or to ensure experiments could be reproduced on

the exact same dataset.

4.3 MLflow
MLflow is also an open-source platform to manage the

complete end-to-end lifecycle of an ML project. Also available

for experiment tracking, model versioning, and deployment, it

acts as a complete solution for ML workflows. The following

are the key aspects of MLflow

4.3.1 Experiment Tracking
Log hyperparameters, metrics, and artifacts for each

experiment to make comparisons across runs.

4.3.2 Model registry
Provides a centralized repository to manage model versions

with metadata and stage transitions, such as "staging" and

"production."

4.3.3 Deployment tools
Supports model deployment into several deployment

environments, such as cloud services or REST APIs.

4.3.4 Integration
MLflow integrates with well-known ML frameworks such as

TensorFlow [9], PyTorch, and Scikit-learn.

4.3.5 Example use-case
An example of its use case is logging diverse training runs to

contrast the performance of hyperparameter configurations and

determine the best-fitting model.

4.4 Weights & Biases (W&B)
Another popular experiment tracking and visualization

platform that has been on the market for a few years is Weights

& Biases. It has the reputation of an intuitive tool that works

well with typical ML workflows and focuses on the

visualization part a little bit more. It might be convenient for

data science teams, where cooperation on projects is key. Some

important features are:

4.4.1 Experiment Tracking
Logs training runs, hyperparameters, and metrics support in-

depth comparisons through easy-to-use interactive dashboards.

4.4.2 Visualization
Provides mechanisms to visualize training curves, loss

functions, and other metrics right in an easy way.

4.4.3 Artifact Management
Helps with versioning of datasets, models, and other ML

assets

4.4.4 Collaboration
Exposes options to share experiments, visualizations, and

results between colleagues

4.4.5 Example use-case
Tracking the progress of training runs in real-time and sharing

insights with team members to refine the ML model.

4.5 TensorFlow Model Garden
TensorFlow Model Garden is a TensorFlow-provided platform

for versioning and sharing pre-trained models in a way that

emphasizes ease of use with TensorFlow-based projects and

guarantees reproducibility. Some key features include,

4.5.1 Model Repository
A model repository to maintain clear, well-documented, and

versioned collection of pre-trained models.

4.5.2 Reproducibility
This makes sure that results can be replicated by users, through

the provision of code, datasets, and configuration files.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.65, January 2025

22

4.5.3 Integration with TensorFlow
TensorFlow Model Garden is developed for full integration

with TensorFlow platform and provides seamless integration.

4.5.4 Example use-case
Using a pre-trained model from TensorFlow Model Garden as

a starting point for transfer learning while keeping track of

custom modifications.

4.6 Comparison and Choosing the Right

Tool
Choosing the appropriate option for version control depends on

various circumstances and requirements such as,

4.6.1 Code and Basic Versioning
Git should be more than sufficient in this case as it provides

enough versioning abilities to manage scripts and configuration

files.

4.6.2 Dataset Management
DVC seems to stand out as the best choice to manage large data

files and complex data pipelines.

4.6.3 Experiment Tracking
MLflow and W&B are ideal for logging and comparing

training/experiment runs.

4.6.4 Collaborative Teams
W&B excels in sharing and visualization and stands out as the

top choice for this category

4.6.5 TensorFlow Projects
TensorFlow Model Garden provides the best integration with

TensorFlow and provides pre-trained model and

reproducibility for TensorFlow users.

ML practitioners can build robust and scalable ML pipelines by

leveraging the strengths of these tools and integrating them.

Therefore, users must be mindful of the pros and cons of all

relevant tools before committing to a particular option as it’s

not always straightforward to change tools after using a given

option for an extended period. In the next section, best practices

for using these tools and how they can fit into the ML workflow

will be explored in detail.

5. OPTIMAL VERSION CONTROL IN

MACHINE LEARNING

5.1 Establishing Clear Workflows
Clearly defined workflows create structure and consistency,

ensuring that everyone on the team does things the same way.

For better branch management and organization, stable and

production-ready changes can be merged into the main branch

while keeping experimental changes in another branch.

Automated solutions such as DVC or CI/CD systems help

automate repetitive tasks such as pipeline deployments and

version tracking, ensuring human errors are prevented.

5.2 Automated Dataset and Model

Tracking
Automated versioning of datasets and models is critical to help

manage the complexity associated with ML workflows. Tools

such as DVC facilitate dataset tracking by associating data

versions to code commits while keeping larger files in scalable

storage solutions e.g. cloud buckets. For models, there are tools

like MLflow, W&B to make a model versioning easier, to track

and track model artifacts with meta data like Hyperparameters,

training configurations, performance metrics etc. These

practices make it easier to identify the best-performing models

and roll back to earlier versions if needed.

5.3 Standardize Naming Conventions
Following naming conventions helps reduce confusion,

especially in larger projects where there are multiple users.

Give responsive names to your datasets, experiments, and

models, e.g., customer_data_v1.csv file for datasets or exp-01-

learning-rate-0.01 for experiments. In organizations where

there are multiple contributors, teams should come up with

standard naming practices that can be followed across the

organization. This helps with identifying the purpose and

version of files under use, which can be an important data point

for debugging.

5.4 Ensure Reproducibility
ML Models need to be reproducible to verify results and debug

problems. Using tools like Conda or virtual environments to

capture those dependencies allows for consistent execution

across machines and environments. Techniques for keeping

track of integration between code, datasets, and experiments

(like using DVC or Git) help with traceability. Centralized logs

or dashboards can document preprocessing, and model

configuration steps resulting in allowing other researchers to

reproduce experiments.

5.5 Foster Collaboration
Depending on the nature of the ML project, team members play

diverse roles including Annotation and data labeling, Data

Science, and Model development. Git or other shared

repositories act as a centralized code, data, and documentation

store. Pull requesting makes it possible to have pull request peer

review processes to better validate contribution quality and

consistency. Centralized dashboards (e.g. W&B, MLflow) help

team members share the results of the experiments they have

run, the insights drawn, and the progress made, thus improving

transparency and minimizing misalignment.

5.6 Integrate Continuous Integration and

Deployment (CI/CD)
CI/CD pipelines increase efficiency by automating the testing

workflow of ML workflows, deployment, etc. Automatic data

preprocessing, model validation, and deployment processes can

help transitions between development and production go

smoothly. Tools such as Kubeflow [12], MLflow, etc. are

helping in simplifying this part of pipelines and log the

performance in production. They also help configure and raise

alarms for example, in case of data drift, or performance

degradation.

5.7 Plan for Scalability
ML projects often tend to extend beyond original intentions, so

scalability becomes a key property. Distributed storage

solutions such as HDFS or cloud storage systems enable

efficient storage for large datasets. Scalable training platforms

like Kubernetes help teams cope with increasingly complex

workflows while pulling version control for all artifacts

together into a unified system. Scaling ML workflows requires

efficient data pipelines that integrate distributed processing

frameworks. Inspired by approaches such as MapReduce [11],

modern ML pipelines incorporate data versioning, caching, and

lineage tracking to manage dataset evolution.

Applying these practices enables teams to build efficient,

collaborative, and scalable ML workflows. These best practices

would give ML projects the capability to be reproducible and

organized while also being upgradable to new research and

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.65, January 2025

23

production challenges.

6. CASE STUDY: VERSION CONTROL

IN A MACHINE LEARNING

WORKFLOW

6.1 Scenario Overview
For the case study, let’s consider an e-commerce platform that

needs to add a recommendation feature to its set of services.

This feature will be used by merchants to suggest personalized

product recommendations based on customer behavior data

such as sales interactions and preferences. The team building

this product faces a few challenges. As data becomes larger, it

becomes more complex to track and manage various model

versions. They also need to keep track of the updates made to

data as it becomes larger over time. Managing safe

deployments without affecting customers is another challenge.

At this point, reproducibility, scalability, and seamless

collaboration are critical to ensuring the project’s success.

6.2 The Challenges
The team’s problems start with data management. They collect

customer behavior data, like clicks, purchases, product views,

and product details. This data changes frequently as new

customers join, old products are discontinued, and new features

are added. Tracking these changes and knowing exactly which

version of the data was used for training a model proves to be

difficult. Data preprocessing steps, like cleaning and feature

extraction, add another layer of complexity, often introducing

errors that are hard to trace.

Model management is another challenge. The team tries

multiple approaches—like collaborative filtering and deep

learning-based methods, resulting in a growing list of trained

models. Each model comes with unique configurations and

performance metrics, but when performance drops in

production, identifying the problematic version or rolling back

to a previous one becomes a daunting task.

Tracking experiments is becoming harder over time. As

multiple teams work on different components of the system,

tracking what, why, and how of various model versions is not

easily achievable. Also, ensuring that all team members stay

informed and are on the same page about different stages such

as development, testing, and production, adds another layer of

complexity.

6.3 The Proposed Solution
To tackle these challenges, the team decides to take a formal

version control approach with its own tools adapted specifically

for a machine learning workflow.

6.3.1 Data Versioning with DVC
To manage the dynamic nature of the dataset, the team

implements Data Version Control (DVC) to version datasets

alongside code. DVC allows the team to store large datasets in

external storage (e.g., AWS S3 or Google Cloud Storage) while

keeping lightweight metadata in Git.

Each dataset version is linked to a specific Git commit,

enabling the team to trace back to the exact dataset used for any

experiment [10]. Additionally, DVC pipelines are used to

version preprocessing steps, such as data cleaning and feature

extraction, ensuring that any changes to the data pipeline are

tracked and reproducible. This approach guarantees that team

members can replicate experiments using the exact dataset and

preprocessing steps, even as the data evolves over time.

6.3.2 Model Versioning with MLflow
For model versioning, the team adopts MLflow to manage the

lifecycle of trained models. Each model is logged in MLflow

with metadata such as hyperparameters, training

configurations, and evaluation metrics. The MLflow Model

Registry is used to organize models into stages (e.g., 'staging,'

'production'), allowing the team to track which versions are

ready for deployment.

If a model underperforms in production, the team can easily roll

back to a previous version by referencing the registry.

Additionally, MLflow's integration with CI/CD pipelines

ensures that models are automatically validated and deployed,

reducing the risk of human error. This structured approach to

model versioning ensures that the team can maintain model

integrity and quickly respond to performance issues.

6.3.3 Experiment Tracking with Weights & Biases

(W&B)
To streamline experimentation, the team integrates Weights &

Biases (W&B) into their workflow. W&B logs

hyperparameters, training metrics, and performance

visualizations for each experiment, providing a centralized

dashboard for real-time monitoring. The team uses W&B's

interactive dashboards to compare multiple experiments side-

by-side, identifying trends and understanding the impact of

different hyperparameter configurations.

For example, they can visualize how changes in learning rate

or batch size affect model convergence and performance. W&B

also facilitates collaboration by allowing team members to

share experiment results and insights, ensuring that everyone

stays aligned on the progress and direction of the project. This

level of transparency and real-time feedback accelerates the

experimentation process and helps the team identify the best-

performing models more efficiently.

6.3.4 Collaboration and Integration
Git remains the foundation for versioning code and facilitating

collaboration within the team. By integrating Git with DVC and

MLflow, the team creates a unified system that links datasets,

models, and code changes. Continuous Integration (CI)

pipelines are set up to automate testing and deployment

processes, ensuring that changes to code or data are validated

before being merged into the main branch.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.65, January 2025

24

Fig 2: ML Versioning and Experiment Tracking Pipeline

For example, when a new dataset version is pushed, the CI

pipeline automatically triggers data validation checks and

retrains the model if necessary. This integration not only

improves efficiency but also reduces the risk of errors during

deployment. Additionally, the team uses pull requests and code

reviews to ensure that contributions are thoroughly vetted,

maintaining high-quality standards across the project.

To effectively manage dataset updates, model retraining, and

deployments, our case study follows the structured version

control workflow shown in Figure 2. This pipeline ensures

tracking across all ML assets.

6.4 Expected Outcomes
By adopting the proposed version control approach, the team

expects to achieve several significant improvements in their

machine learning workflow. First, the use of DVC for dataset

versioning ensures full reproducibility of experiments, as each

dataset version is linked to a specific Git commit. This

eliminates discrepancies between training and evaluation

datasets, leading to more reliable results. Second, MLflow's

model registry streamlines model lifecycle management,

allowing the team to version and tag models based on their

stage (e.g., 'staging,' 'production'). This makes it easy to

identify which versions are ready for deployment and enables

quick rollback in case of performance issues.

The integration of Weights & Biases (W&B) further enhances

the workflow by providing real-time tracking of

hyperparameters, metrics, and training curves. This allows the

team to monitor progress and make data-driven decisions

during model development. Side-by-side comparisons of

experiments help identify the best-performing configurations,

reducing the time spent on trial-and-error. Additionally, the

combination of Git, DVC, and MLflow fosters seamless

collaboration among team members, ensuring that everyone

has access to the latest datasets, models, and experiment results.

Finally, the implementation of CI/CD pipelines automates

repetitive tasks such as data validation, model training, and

deployment. This not only speeds up the development process

but also reduces the risk of human error. The proposed

approach is designed to scale with the growing complexity of

the project, ensuring that the system can handle larger datasets

and more complex models as the project evolves. These

improvements collectively enhance the team's ability to deliver

a robust, scalable, and production-ready recommendation

system.

6.5 Lessons Learned
This case study illustrates how complexities in a modern

machine learning workflow can be managed with a

combination of tools like DVC, MLflow, and W&B and

applying good version control practices. By systematically

organizing their datasets, models, and experiments, the team

tackles their troubles and lays the groundwork for a scalable,

reproducible recommendation system.

This example highlights the importance of adopting specialized

tools in ML engineering, showing that thoughtful planning and

the right tools can make even the most complex projects run

smoothly.

7. CHALLENGES AND LIMITATIONS
Although versioning tools and practices offer many advantages

for the management of ML workflows, they do have some

challenges and limitations. Understanding these challenges

helps practitioners avoid pitfalls and improve their workflows.

7.1 Scalability Issues
Dealing with scalability, particularly with datasets, is one of the

most difficult challenges in ML version control [13]. And,

unlike code repositories, ML projects typically contain large

datasets and model artifacts that can rapidly exceed local

storage or standard Git repositories. Even with the use of tools

such as DVC that allow the external storage of large files, the

management and file access on distributed environments need

solid infrastructure for that, which can lead to high costs,

mainly if using cloud solutions.

7.2 Complexity of Integration
While moving a workflow into production, integrating with

various tools can be cumbersome and time-consuming. DVC,

MLflow, Weights & Biases and other tools to track models

often need pre-existing Git and pipelines with a good amount

of tweaking to work nicely together. Making sure these tools

and environments (local development, cloud platforms, on-

premises systems etc.) are compatible can create one more level

of complexity.

7.3 Learning Curve
ML version control comes with its unique workflows and

terminology that can create a steep learning curve for team

members not familiar with it. Examples can be establishing

pipelines with DVC or configuring experiment monitoring with

MLflow − they need background knowledge − familiar with

command-line tools, running the script, or integration

processes. It takes time to train and onboard team members to

use these tools, which can slow down initial progress.

7.4 Lack of Standardization
While general version control tools can be used for most ML

workflows, there is not yet a widely adopted standard for

version control of ML itself, despite the recent emergence of

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.65, January 2025

25

ML-specific version control tools. Common teams had to stitch

together several tools touching on different aspects of the

workflow (data tracking, model versioning, experiments

logging, etc.). Which can cause inconsistency and more

difficult to collaborate between the organization or project.

7.5 Cost and Resource Overheads
Version control can become another overhead of working with

ML projects at scale. Hosting massive datasets in the cloud,

procuring compute for tracking and logging, and needing to pay

for premium tools licensing can all inflate the project’s budget.

In addition, supporting the nuances of pipelines and CI/CD

requires engineering resources, which might not always be

advantageous for smaller teams or organizations.

7.6 Reproducibility in Dynamic

Environments
In the case of dynamic environments where data and

requirements change often, reproducibility is still a challenge.

Keeping parts of the workflow (code, data, models) in sync

takes a lot of work. Small oversights in larger projects can lead

to irreproducible experiments or deployment issues. Tackling

these challenges involves not only the selection of the right

tools but also building good workflows, training team

members, and investing in the infrastructure to accommodate

the scale and complexity of ML projects.

8. FUTURE DIRECTIONS
ML engineering is a fast-evolving industry, and as ML

workflows keep getting increasingly complex over time,

practices and tools for version control will need to evolve in

parallel. Following are some key emerging trends and future

directions likely to emerge within the ML version control

landscape.

8.1 Advances in Automation
With ML workflows only growing larger and becoming more

complex over time, automation is poised to be a critical

underpinning component in making versioning easier to

navigate. In the future, tooling themselves are going to embed

AI and machine learning capabilities to automate the way of

things such as change detection, configuration identification,

rollback suggestions, etc. This will increase overhead for

managing datasets, models and experiments.

8.2 Standardization of Practices
In the absence of a standard method for ML versioning,

community-wide efforts will help move us toward

standardization. In reputable organizations and open-source

communities, best practices and single frameworks for end-to-

end ML workflows would possibly be employed. With

standardized pipelines, tools become easier for teams to

onboard with and help them to work across organization

boundaries.

8.3 Enhanced Collaboration Features
Collaboration tools will emerge for machine learning to help

more distributed teams working on machine learning projects

work together. Sharing experiments in real time, interactive

dashboards and shared cloud-based repositories would become

more seamless and frictionless in the team workflow. Enhanced

role-based access controls might also help keep things safe and

efficient when teams work together.

8.4 Improved Scalability
Future tools will focus more on addressing current limitations

in handling large datasets and models. Distributed version

control systems and optimized cloud storage solutions will

make sure that even the largest ML projects are kept in control.

High-performance computing in conjunction with edge

computing frameworks enables scale in training and

deployment.

8.5 Focus on Sustainability
The increasing awareness of MLE (Machine Learning

Engineering) is expected to promote the upcoming tools and

practices of version control to become more sustainable. With

this will come a need for efficient tracking of data driven

decisions and models, along with optimizations leading to

energy-efficient computation. Tools might develop

functionality to evaluate and reduce the carbon footprint of ML

pipelines.

8.6 Integration with Emerging

Technologies
As technologies like federated learning and edge computing

gain traction, version control systems will need to adapt. For

example, managing decentralized datasets and models in

federated learning scenarios presents unique challenges.

Similarly, tracking and versioning models deployed on edge

devices will require new strategies.

8.7 AI-Assisted Version Control
AI will most likely heavily impact version control in ML if it

can make predictions to help with frequent workflow problems.

It could even suggest which type of model to use based on

previous results, identify duplicate experiments, and optimize

data cleaning or preparation pipelines, for instance. Such

breakthroughs could greatly help with the trial-and-error

process of ML development.

8.8 Integration with End-to-End Platforms
Finally, E2E ML platforms are gaining traction and have tightly

integrated version control into the entire ML lifecycle. Such

platforms are tools like Kubeflow and Vertex AI, and as

organizations strive for a more unified approach to their

individual systems for any ML workflows, adoption will likely

continue to grow.

Instead of manual version tracking, the future of version control

in machine learning is more likely to be collaborative,

automated, and scalable, allowing teams to take on more

complex problems with confidence. Keeping up with these

trends allows practitioners to be ready to embrace next-

generation tools and workflows, accelerating efficiency,

reproducibility, and innovation in ML initiatives.

9. CONCLUSION
Version control has emerged as a critical part of machine

learning (ML) workflows — helping this once-nascent field

transition from the experimental into production. Different

from regular software development where the focus is mainly

on the traditional code and its versions, ML projects face extra

hurdles due to the need for various artifacts such as datasets,

trained models, and experiment configurations. The ML

workflow is typically more complex and iterative, which

provides additional challenges for reproducibility, scalability

and collaboration that require specialized tools and practices to

address.

In this paper, shortcomings of the standard version control were

discussed along with the need to shift to tools like Data Version

Control (DVC), MLflow and W&B for better understandability

of model performance with time. Together, these tools plus best

practices like standardizing workflows, automating the

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.65, January 2025

26

tracking of artifacts, and enhancing collaboration form a strong

foundation for effectively managing ML projects.

However, issues with scalability, integration complexity, and a

lack of standardization remain across tools and methodology.

However, recent trends are driving ML version control towards

automation, standardization, and sustainability. New

technologies, such as AI-assisted version control and end-to-

end ML platforms, will build on those successes and trend

toward better and easier ML workflow management.

Leveraging the strategies and tools covered, ML practitioners

can construct well-structured, reproducible, and scalable

workflows that enable smooth progression from research to

production. Such practices enhance the efficiency and

collaboration elements of these properties but also constitute

the basis for innovation in MLE and the ability of teams to

tackle more complex use cases with the same commitment to

reliability

10. REFERENCES
[1] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,

D. Ebner, V. Chaudhary, M. Young, and J.-F. Crespo,

"Hidden technical debt in machine learning systems," in

*Proc. 28th Int. Conf. Neural Inf. Process. Syst.

(NeurIPS)*, 2015, pp. 2503–2511.

[2] DVC Documentation, "Data Version Control (DVC): Git

for Data & Models," Available: https://dvc.org/,

Accessed: Jan. 2024.

[3] MLflow Documentation, "MLflow: Open-source

platform for machine learning lifecycle," Available:

https://mlflow.org/, Accessed: Jan. 2024.

[4] Weights & Biases Documentation, "Experiment tracking

for machine learning teams," Available: https://wandb.ai/,

Accessed: Jan. 2024.

[5] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, M. Hong,

and A. Konwinski, "Accelerating the machine learning

lifecycle with MLflow," in *Proc. Conf. Mach. Learn.

Syst. (MLSys)*, 2016.

[6] D. Baylor, E. Breck, H. Cheng, N. Fiedel, and N.

Polyzotis, "TFX: A TensorFlow-based production-scale

machine learning platform," in *Proc. 23rd ACM

SIGKDD Int. Conf. Knowl. Discov. Data Mining

(KDD)*, 2017.

[7] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, "A

large-scale study about quality and reproducibility of

Jupyter notebooks," in *Proc. 16th Int. Conf. Mining

Softw. Repositories (MSR)*, 2019.

[8] GitHub Documentation, "Git: Distributed version control

system," Available: https://github.com/, Accessed: Jan.

2024.

[9] TensorFlow Model Garden, "Pre-trained models for

reproducibility," Available:

https://www.tensorflow.org/lite/models/, Accessed: Jan.

2024.

[10] E. Muškardin and T. Burgstaller, "Active model learning

of Git version control system," in *Proc. IEEE Int. Conf.

Softw. Test. Verification, and Validation Workshops*,

2024.

[11] M. Zaharia, A. Chen, et al., "Data pipeline in

MapReduce," in *Proc. IEEE 9th Int. Conf. e-Science*,

2013.

[12] Kubeflow Documentation, "Machine learning toolkit for

Kubernetes," Available: https://www.kubeflow.org/,

Accessed: Jan. 2024.

[13] J. F. Pimentel, et al., "Version control challenges in ML,"

Int. J. Softw. Eng., 2019.

IJCATM : www.ijcaonline.org

