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ABSTRACT 

Managing the complexity of machine learning workflows is a 

significant challenge, as these projects often involve not just 

code but also large datasets, model maintenance, and extensive 

experimentation. While traditional version control tools like 

Git are effective for software development, they do not fully 

accommodate the unique requirements of ML workflows, such 

as tracking multiple dataset versions, managing evolving 

models, and maintaining experiment histories. Specific utilities 

and frameworks have been developed to address these 

challenges, and this paper explores some of these available 

tools in detail. Incorporating structured workflows and best 

practices for managing artifacts helps ML practitioners 

improve reproducibility, scalability, and collaboration across 

teams. 

Furthermore, these tools can be leveraged as part of an end-to-

end ML pipeline combined with CI/CD practices to facilitate 

tasks such as data preprocessing, model training, and 

deployment solutions. Through a hands-on case study of a retail 

recommendation system, this paper demonstrates how these 

techniques effectively tackle real-world challenges, including 

handling dynamic datasets, optimizing iterative 

experimentation, and maintaining model integrity. Finally, the 

paper explores emerging trends such as automation and 

sustainability in ML workflows, highlighting how integrating 

these strategies can enhance scalability and enable teams to 

build more efficient and production-ready ML systems. 
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1. INTRODUCTION 
ML has made a huge impact by bringing a data-driven solution 

to the complex problems at hand. However, developing and 

deploying an ML system brings in its unique set of challenges 

[1]. Unlike traditional software engineering, ML workflows 

extend beyond code management to handling datasets, training 

models, and experimentation in iterative manners. This added 

complexity creates barriers to reproducibility, collaboration, 

and managing the lifecycle of ML assets as projects evolve 

from research toward production. 

Version control is a basic software engineering practice that is 

particularly important in organizing and managing changes in 

ML workflows. Traditional tools, however, are not sufficient 

for the dynamic and varied needs of ML projects. Large and 

constantly evolving datasets are hard to track, while models 

need versioning to manage configurations, weights, and 

metadata over time. Also, iterative experimentation demands 

the most stringent documentation of hyperparameters, 

configurations, and performance metrics. Without a robust 

version control system, ML projects can quickly degenerate 

into chaos where collaboration and reproducibility go for a toss. 

In this paper, advanced versioning tools like Data Version 

Control (DVC) [2], MLflow [3], and Weights & Biases (W&B) 

[4] are discussed, which enhances these versioning practices to 

make interdependencies with datasets, hyperparameters & 

model artifacts effective. Utilities such as DVC extend 

traditional version control to handle datasets and pipelines 

effortlessly, while MLflow and W&B represent systems that 

embed features relevant to experiment tracking and model 

lifecycle management, respectively [5]. These tools introduce 

structured workflow management into a data scientist's flow of 

work, enhancing the overall efficiency and reliability of the 

process. 

The paper covers deficiencies in traditional version control for 

ML, advanced tools for ML workflows, and best practices to be 

followed while implementing an effective versioning system. 

With these strategies and tools, ML practitioners will be able to 

bring further optimization into their workflows, thereby 

assuring better reproducibility and seamless transitions from 

experimentation to production-ready systems [6]. 

2. UNDERSTANDING VERSION 

CONTROL IN MACHINE LEARNING 
Version control is an important aspect in the development of 

software because it provides a structured method to track 

changes, collaborate with others, and reproduce results. 

However, when applied to machine learning workflows, this 

concept requires solving many unique challenges. Unlike 

classic software projects, ML workflows have many 

components that include code, data, models, and experiments; 

all these have their own peculiar needs regarding tracking and 

versioning. This section discusses the application of version 

control to particular aspects of ML and also the challenges it 

resolves. 

2.1 What is Version Control? 
Version control, or management, in general, is the term used 

for the controlled handling of all changes of files, codebases, 

and generally any kind of artifacts in a structured and regulated 

fashion. Version control makes every change of code traceable 

and, therefore, easily recoverable and makes sharing work 

among people is easier. In ML, versioning goes beyond source 

code since there are datasets to be considered, model files, and 

experiment metadata because ML workflow is complex. 

2.2 Importance of Version Control in 

Machine Learning 
Version control has proved to be an indispensable aspect in 

machine learning due to several reasons: 

2.2.1 Reproducibility 
Reproducibility guarantees that the results can be reliably 

reproduced with the same dataset, configuration, and model 

version. 
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Fig 1: ML Version Control Workflow 

2.2.2 Collaboration 
Collaboration allows the opportunity for teamwork, where 

multiple people can work on different parts of a project while 

having a unified record of changes. 

2.2.3 Scalability 
Scalability allows for large datasets and multiple model 

iterations as projects grow in size and complexity. 

2.3 Version Control Challenges Unique to 

Machine Learning 

2.3.1 Dataset Versioning 
By their nature, machine learning datasets change over time, 

and this happens frequently, in order to be in sync with the 

changes made to the models. Such traditional version control 

tools don't support large files, and at the same time, neither can 

they track data changes accurately. Tools like DVC let 

versioning of datasets be saved into some external storage and 

its references into version control systems like Git [8]. 

2.3.2 Versioning Models 
Trained models get updated rather frequently during both 

experimentation and deployment. Versioning models involves 

tracking models' architecture, weights, and their training 

configurations. Tools like MLflow[2] and Weights & Biases[3] 

offer functionality to record model versions and compare them 

such that the best-performing configurations are preserved. 

2.3.3 Experiment Tracking 
By their very nature, machine learning workflows are iterative 

and require systematic tracking of hyperparameters, training 

metrics, and results. Unlike software projects where the final 

output is often a static application, ML projects are all about 

continuous experimentation to optimize performance. Tools 

like MLflow and W&B track these experiments, linking results 

to specific datasets, configurations, and code versions. 

3. CORE COMPONENTS OF VERSION 

CONTROL IN ML 
This section highlights various core components that are 

involved in ML workflows and some best practices for 

managing and tracking versions of those components. Version 

control in machine learning extends beyond traditional 

software practices and various interconnected components such 

as code, data, models and experiments should be versioned 

effectively.  

3.1 Versioning Code 
Code is the foundation of ML workflows, much like software 

engineering. But coding in ML encompasses project source 

code, scripts, notebooks and configurations for data processing. 

Traditional methods like Git work great for versioning code in 

ML workflows as well. 

3.1.1 Branching Strategies 
Always maintain a clean main/master branch for production-

ready code. Experiments or bug fixes should be tracked in a 

separate feature branch forked off of the main branch.  

3.1.2 Notebook Versioning 
While Git integrates with notebook, widely used tools such as 

AWS code commit works great with AWS Sagemaker 

notebooks and offer git-like features to version code for 

machine learning projects. Converting these notebook logics to 

scripts and managing them outside with git simplifies 

collaboration and debugging.  

3.1.3 Commit Messages 
Ensure that clear and descriptive commit messages are added 

so that the purpose of any particular change moving through 

the pipeline can be tracked. 

3.2 Versioning Data 
Datasets can evolve dynamically in ML workflows due to data 

collection updates, changes in processing upstream, 

preprocessing logic changes, or domain shifts. It is critical to 

track these changes so that the model can be trained and 

evaluated consistently. Traditional version control tools like 

Git, don’t offer much support when it comes to versioning data.  

3.2.1 Data Version Control (DVC) 
Tools such as Data Version Control (DVC) track data in files 

without having to store them in the git repository. It tracks 

various changes that might have been made to the data like 

more or less/data than before, changing schemas, or changes in 

the time that batched data is usually ingested. This approach 

also provides an efficient mechanism to handle large volumes 

of data.  

3.2.2 Metadata Management 
Always record metadata around the data that is being used such 

as time of ingestion, data source, preprocessing steps and 

versions. This ensures data lineage and reproducibility and 

helps with quicker investigations for critical issues.  

3.2.3 Immutability 
Taking model needs into consideration, after sufficient analysis 

a dataset is chosen for consumption. This chosen dataset should 

be locked for writes (immutable) to prevent accidental changes 

that can affect model training can be prevented. 

3.3 Versioning Models 
A trained model is one of the most critical components of ML 

workflows. Versioning the model becomes very important to 

track changes in model architecture, weights, and 

configurations over time. This is essential for reproducing 

results and deploying the most effective model. 

3.3.1 Artifact Storage 
Consider using tools like MLFlow to store trained models. This 

also helps store other metadata around the trained model such 

as parameters and evaluation metrics.  

3.3.2 Model Tags 
Assigning tags to models based on their purpose, for example, 

production-ready, experimental, etc. can simplify tracking.  
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3.3.3 Integration with Pipelines 
Versioned models should also be linked to specific datasets and 

training scripts to provide end-to-end reproducibility.  

4. VERSION CONTROL TOOLS FOR 

MACHINE LEARNING 
Specific needs of machine learning workflows have led to a few 

tools that enhance conventional version control of datasets, 

models, and experiments. Such tools fix challenges visible 

within traditional systems like Git, which assist machine 

learning practitioners manage the complexities of their 

projects. There are various features and advantages of such 

increasingly popular version control tools. Over time, wider 

ML communities have adopted these tools embedding them 

into machine learning workflows.  

4.1 Git 
With its strong features to track changes in code, collaborate, 

and manage development workflows, GIT has emerged as the 

primary version control tool in use within software 

development. While absolutely indispensable for versioning 

scripts and configurations, Git proves to be limited when used 

with large datasets and model artifacts. Git has the following 

key features.  

4.1.1 Code Management 
Git takes care of branching, merging, and collaborative 

development of ML scripts and notebooks 

4.1.2 Integration 
Integrates with GitHub, GitLab, and Bitbucket to help teams 

collaborate and manage remote repositories 

4.1.3 Limitations 
Git struggles with large files, such as datasets and model 

weights, necessitating additional tools for effective 

management. 

4.2 Data Version Control (DVC) 
DVC is a software tool that manages the version of datasets and 

pipelines. DVC, when used with Git, is an open-source 

platform designed to disconnect the actual large data files from 

a Git repository and to be kept within external storage solutions 

while maintaining versions in Git. DVC offers a host of 

important features including: 

4.2.1 Data Tracking 
DVC allows for the tracking of variations in datasets and data-

pipelines without the need for saving huge files in the 

repository. 

4.2.2 Multiple Storage Options 
DVC supports multiple storage-types including cloud-based 

storage (AWS S3 and Google Cloud Storage) on one hand and 

local storage on the other. 

4.2.3 Pipeline Management 
Users can define ML pipelines as directed acyclic graphs 

(DAGs) so that the workflow can be reproducible. 

4.2.4 Integration with Git 
DVC complements Git, linking data files and pipeline stages to 

a specific Git commit. 

4.2.5 Example use-case 
Some example use cases of DVC includes needing to keep 

track of different versions of the same dataset while 

preprocessing or to ensure experiments could be reproduced on 

the exact same dataset. 

4.3 MLflow 
MLflow is also an open-source platform to manage the 

complete end-to-end lifecycle of an ML project. Also available 

for experiment tracking, model versioning, and deployment, it 

acts as a complete solution for ML workflows. The following 

are the key aspects of MLflow 

4.3.1 Experiment Tracking 
Log hyperparameters, metrics, and artifacts for each 

experiment to make comparisons across runs. 

4.3.2 Model registry 
Provides a centralized repository to manage model versions 

with metadata and stage transitions, such as "staging" and 

"production." 

4.3.3 Deployment tools 
Supports model deployment into several deployment 

environments, such as cloud services or REST APIs. 

4.3.4 Integration 
MLflow integrates with well-known ML frameworks such as 

TensorFlow [9], PyTorch, and Scikit-learn. 

4.3.5 Example use-case 
An example of its use case is logging diverse training runs to 

contrast the performance of hyperparameter configurations and 

determine the best-fitting model. 

4.4 Weights & Biases (W&B) 
Another popular experiment tracking and visualization 

platform that has been on the market for a few years is Weights 

& Biases. It has the reputation of an intuitive tool that works 

well with typical ML workflows and focuses on the 

visualization part a little bit more. It might be convenient for 

data science teams, where cooperation on projects is key. Some 

important features are: 

4.4.1 Experiment Tracking 
Logs training runs, hyperparameters, and metrics support in-

depth comparisons through easy-to-use interactive dashboards. 

4.4.2 Visualization 
Provides mechanisms to visualize training curves, loss 

functions, and other metrics right in an easy way.  

4.4.3 Artifact Management 
Helps with versioning of datasets, models, and other ML 

assets 

4.4.4 Collaboration 
Exposes options to share experiments, visualizations, and 

results between colleagues 

4.4.5 Example use-case 
Tracking the progress of training runs in real-time and sharing 

insights with team members to refine the ML model. 

4.5 TensorFlow Model Garden 
TensorFlow Model Garden is a TensorFlow-provided platform 

for versioning and sharing pre-trained models in a way that 

emphasizes ease of use with TensorFlow-based projects and 

guarantees reproducibility. Some key features include,  

4.5.1 Model Repository 
A model repository to maintain clear, well-documented, and 

versioned collection of pre-trained models. 

4.5.2 Reproducibility 
This makes sure that results can be replicated by users, through 

the provision of code, datasets, and configuration files. 
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4.5.3 Integration with TensorFlow 
TensorFlow Model Garden is developed for full integration 

with TensorFlow platform and provides seamless integration. 

4.5.4 Example use-case 
Using a pre-trained model from TensorFlow Model Garden as 

a starting point for transfer learning while keeping track of 

custom modifications. 

4.6 Comparison and Choosing the Right 

Tool 
Choosing the appropriate option for version control depends on 

various circumstances and requirements such as, 

4.6.1 Code and Basic Versioning 
Git should be more than sufficient in this case as it provides 

enough versioning abilities to manage scripts and configuration 

files.  

4.6.2 Dataset Management 
DVC seems to stand out as the best choice to manage large data 

files and complex data pipelines.  

4.6.3 Experiment Tracking 
MLflow and W&B are ideal for logging and comparing 

training/experiment runs.  

4.6.4 Collaborative Teams 
W&B excels in sharing and visualization and stands out as the 

top choice for this category 

4.6.5 TensorFlow Projects 
TensorFlow Model Garden provides the best integration with 

TensorFlow and provides pre-trained model and 

reproducibility for TensorFlow users.  

ML practitioners can build robust and scalable ML pipelines by 

leveraging the strengths of these tools and integrating them. 

Therefore, users must be mindful of the pros and cons of all 

relevant tools before committing to a particular option as it’s 

not always straightforward to change tools after using a given 

option for an extended period. In the next section, best practices 

for using these tools and how they can fit into the ML workflow 

will be explored in detail. 

5. OPTIMAL VERSION CONTROL IN 

MACHINE LEARNING 

5.1 Establishing Clear Workflows 
Clearly defined workflows create structure and consistency, 

ensuring that everyone on the team does things the same way. 

For better branch management and organization, stable and 

production-ready changes can be merged into the main branch 

while keeping experimental changes in another branch. 

Automated solutions such as DVC or CI/CD systems help 

automate repetitive tasks such as pipeline deployments and 

version tracking, ensuring human errors are prevented. 

5.2 Automated Dataset and Model 

Tracking 
Automated versioning of datasets and models is critical to help 

manage the complexity associated with ML workflows. Tools 

such as DVC facilitate dataset tracking by associating data 

versions to code commits while keeping larger files in scalable 

storage solutions e.g. cloud buckets. For models, there are tools 

like MLflow, W&B to make a model versioning easier, to track 

and track model artifacts with meta data like Hyperparameters, 

training configurations, performance metrics etc. These 

practices make it easier to identify the best-performing models 

and roll back to earlier versions if needed. 

5.3  Standardize Naming Conventions 
Following naming conventions helps reduce confusion, 

especially in larger projects where there are multiple users. 

Give responsive names to your datasets, experiments, and 

models, e.g., customer_data_v1.csv file for datasets or exp-01-

learning-rate-0.01 for experiments. In organizations where 

there are multiple contributors, teams should come up with 

standard naming practices that can be followed across the 

organization. This helps with identifying the purpose and 

version of files under use, which can be an important data point 

for debugging. 

5.4 Ensure Reproducibility 
ML Models need to be reproducible to verify results and debug 

problems. Using tools like Conda or virtual environments to 

capture those dependencies allows for consistent execution 

across machines and environments. Techniques for keeping 

track of integration between code, datasets, and experiments 

(like using DVC or Git) help with traceability. Centralized logs 

or dashboards can document preprocessing, and model 

configuration steps resulting in allowing other researchers to 

reproduce experiments. 

5.5 Foster Collaboration 
Depending on the nature of the ML project, team members play 

diverse roles including Annotation and data labeling, Data 

Science, and Model development. Git or other shared 

repositories act as a centralized code, data, and documentation 

store. Pull requesting makes it possible to have pull request peer 

review processes to better validate contribution quality and 

consistency. Centralized dashboards (e.g. W&B, MLflow) help 

team members share the results of the experiments they have 

run, the insights drawn, and the progress made, thus improving 

transparency and minimizing misalignment. 

5.6 Integrate Continuous Integration and 

Deployment (CI/CD) 
CI/CD pipelines increase efficiency by automating the testing 

workflow of ML workflows, deployment, etc. Automatic data 

preprocessing, model validation, and deployment processes can 

help transitions between development and production go 

smoothly. Tools such as Kubeflow [12], MLflow, etc. are 

helping in simplifying this part of pipelines and log the 

performance in production. They also help configure and raise 

alarms for example, in case of data drift, or performance 

degradation. 

5.7 Plan for Scalability 
ML projects often tend to extend beyond original intentions, so 

scalability becomes a key property. Distributed storage 

solutions such as HDFS or cloud storage systems enable 

efficient storage for large datasets. Scalable training platforms 

like Kubernetes help teams cope with increasingly complex 

workflows while pulling version control for all artifacts 

together into a unified system. Scaling ML workflows requires 

efficient data pipelines that integrate distributed processing 

frameworks. Inspired by approaches such as MapReduce [11], 

modern ML pipelines incorporate data versioning, caching, and 

lineage tracking to manage dataset evolution. 

Applying these practices enables teams to build efficient, 

collaborative, and scalable ML workflows. These best practices 

would give ML projects the capability to be reproducible and 

organized while also being upgradable to new research and 
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production challenges. 

6. CASE STUDY: VERSION CONTROL 

IN A MACHINE LEARNING 

WORKFLOW 

6.1 Scenario Overview 
For the case study, let’s consider an e-commerce platform that 

needs to add a recommendation feature to its set of services. 

This feature will be used by merchants to suggest personalized 

product recommendations based on customer behavior data 

such as sales interactions and preferences. The team building 

this product faces a few challenges. As data becomes larger, it 

becomes more complex to track and manage various model 

versions. They also need to keep track of the updates made to 

data as it becomes larger over time. Managing safe 

deployments without affecting customers is another challenge. 

At this point, reproducibility, scalability, and seamless 

collaboration are critical to ensuring the project’s success. 

6.2 The Challenges 
The team’s problems start with data management. They collect 

customer behavior data, like clicks, purchases, product views, 

and product details. This data changes frequently as new 

customers join, old products are discontinued, and new features 

are added. Tracking these changes and knowing exactly which 

version of the data was used for training a model proves to be 

difficult. Data preprocessing steps, like cleaning and feature 

extraction, add another layer of complexity, often introducing 

errors that are hard to trace. 

Model management is another challenge. The team tries 

multiple approaches—like collaborative filtering and deep 

learning-based methods, resulting in a growing list of trained 

models. Each model comes with unique configurations and 

performance metrics, but when performance drops in 

production, identifying the problematic version or rolling back 

to a previous one becomes a daunting task. 

Tracking experiments is becoming harder over time. As 

multiple teams work on different components of the system, 

tracking what, why, and how of various model versions is not 

easily achievable. Also, ensuring that all team members stay 

informed and are on the same page about different stages such 

as development, testing, and production, adds another layer of 

complexity. 

6.3 The Proposed Solution 
To tackle these challenges, the team decides to take a formal 

version control approach with its own tools adapted specifically 

for a machine learning workflow. 

6.3.1 Data Versioning with DVC 
To manage the dynamic nature of the dataset, the team 

implements Data Version Control (DVC) to version datasets 

alongside code. DVC allows the team to store large datasets in 

external storage (e.g., AWS S3 or Google Cloud Storage) while 

keeping lightweight metadata in Git.  

Each dataset version is linked to a specific Git commit, 

enabling the team to trace back to the exact dataset used for any 

experiment [10]. Additionally, DVC pipelines are used to 

version preprocessing steps, such as data cleaning and feature 

extraction, ensuring that any changes to the data pipeline are 

tracked and reproducible. This approach guarantees that team 

members can replicate experiments using the exact dataset and 

preprocessing steps, even as the data evolves over time. 

6.3.2 Model Versioning with MLflow 
For model versioning, the team adopts MLflow to manage the 

lifecycle of trained models. Each model is logged in MLflow 

with metadata such as hyperparameters, training 

configurations, and evaluation metrics. The MLflow Model 

Registry is used to organize models into stages (e.g., 'staging,' 

'production'), allowing the team to track which versions are 

ready for deployment.  

If a model underperforms in production, the team can easily roll 

back to a previous version by referencing the registry. 

Additionally, MLflow's integration with CI/CD pipelines 

ensures that models are automatically validated and deployed, 

reducing the risk of human error. This structured approach to 

model versioning ensures that the team can maintain model 

integrity and quickly respond to performance issues. 

6.3.3  Experiment Tracking with Weights & Biases 

(W&B) 
To streamline experimentation, the team integrates Weights & 

Biases (W&B) into their workflow. W&B logs 

hyperparameters, training metrics, and performance 

visualizations for each experiment, providing a centralized 

dashboard for real-time monitoring. The team uses W&B's 

interactive dashboards to compare multiple experiments side-

by-side, identifying trends and understanding the impact of 

different hyperparameter configurations.  

For example, they can visualize how changes in learning rate 

or batch size affect model convergence and performance. W&B 

also facilitates collaboration by allowing team members to 

share experiment results and insights, ensuring that everyone 

stays aligned on the progress and direction of the project. This 

level of transparency and real-time feedback accelerates the 

experimentation process and helps the team identify the best-

performing models more efficiently. 

6.3.4 Collaboration and Integration 
Git remains the foundation for versioning code and facilitating 

collaboration within the team. By integrating Git with DVC and 

MLflow, the team creates a unified system that links datasets, 

models, and code changes. Continuous Integration (CI) 

pipelines are set up to automate testing and deployment 

processes, ensuring that changes to code or data are validated 

before being merged into the main branch.  
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Fig 2: ML Versioning and Experiment Tracking Pipeline 

For example, when a new dataset version is pushed, the CI 

pipeline automatically triggers data validation checks and  

retrains the model if necessary. This integration not only 

improves efficiency but also reduces the risk of errors during 

deployment. Additionally, the team uses pull requests and code 

reviews to ensure that contributions are thoroughly vetted, 

maintaining high-quality standards across the project.  

To effectively manage dataset updates, model retraining, and 

deployments, our case study follows the structured version 

control workflow shown in Figure 2. This pipeline ensures 

tracking across all ML assets. 

6.4 Expected Outcomes 
By adopting the proposed version control approach, the team 

expects to achieve several significant improvements in their 

machine learning workflow. First, the use of DVC for dataset 

versioning ensures full reproducibility of experiments, as each 

dataset version is linked to a specific Git commit. This 

eliminates discrepancies between training and evaluation 

datasets, leading to more reliable results. Second, MLflow's 

model registry streamlines model lifecycle management, 

allowing the team to version and tag models based on their 

stage (e.g., 'staging,' 'production'). This makes it easy to 

identify which versions are ready for deployment and enables 

quick rollback in case of performance issues. 

The integration of Weights & Biases (W&B) further enhances 

the workflow by providing real-time tracking of 

hyperparameters, metrics, and training curves. This allows the 

team to monitor progress and make data-driven decisions 

during model development. Side-by-side comparisons of 

experiments help identify the best-performing configurations, 

reducing the time spent on trial-and-error. Additionally, the 

combination of Git, DVC, and MLflow fosters seamless 

collaboration among team members, ensuring that everyone 

has access to the latest datasets, models, and experiment results. 

Finally, the implementation of CI/CD pipelines automates 

repetitive tasks such as data validation, model training, and 

deployment. This not only speeds up the development process 

but also reduces the risk of human error. The proposed 

approach is designed to scale with the growing complexity of 

the project, ensuring that the system can handle larger datasets 

and more complex models as the project evolves. These 

improvements collectively enhance the team's ability to deliver 

a robust, scalable, and production-ready recommendation 

system. 

6.5 Lessons Learned 
This case study illustrates how complexities in a modern 

machine learning workflow can be managed with a 

combination of tools like DVC, MLflow, and W&B and 

applying good version control practices. By systematically 

organizing their datasets, models, and experiments, the team 

tackles their troubles and lays the groundwork for a scalable, 

reproducible recommendation system. 

This example highlights the importance of adopting specialized 

tools in ML engineering, showing that thoughtful planning and 

the right tools can make even the most complex projects run 

smoothly. 

7. CHALLENGES AND LIMITATIONS 
Although versioning tools and practices offer many advantages 

for the management of ML workflows, they do have some 

challenges and limitations. Understanding these challenges 

helps practitioners avoid pitfalls and improve their workflows. 

7.1 Scalability Issues 
Dealing with scalability, particularly with datasets, is one of the 

most difficult challenges in ML version control [13]. And, 

unlike code repositories, ML projects typically contain large 

datasets and model artifacts that can rapidly exceed local 

storage or standard Git repositories. Even with the use of tools 

such as DVC that allow the external storage of large files, the 

management and file access on distributed environments need 

solid infrastructure for that, which can lead to high costs, 

mainly if using cloud solutions. 

7.2 Complexity of Integration 
While moving a workflow into production, integrating with 

various tools can be cumbersome and time-consuming. DVC, 

MLflow, Weights & Biases and other tools to track models 

often need pre-existing Git and pipelines with a good amount 

of tweaking to work nicely together. Making sure these tools 

and environments (local development, cloud platforms, on-

premises systems etc.) are compatible can create one more level 

of complexity. 

7.3 Learning Curve 
ML version control comes with its unique workflows and 

terminology that can create a steep learning curve for team 

members not familiar with it. Examples can be establishing 

pipelines with DVC or configuring experiment monitoring with 

MLflow − they need background knowledge − familiar with 

command-line tools, running the script, or integration 

processes. It takes time to train and onboard team members to 

use these tools, which can slow down initial progress. 

7.4 Lack of Standardization 
While general version control tools can be used for most ML 

workflows, there is not yet a widely adopted standard for 

version control of ML itself, despite the recent emergence of 
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ML-specific version control tools. Common teams had to stitch 

together several tools touching on different aspects of the 

workflow (data tracking, model versioning, experiments 

logging, etc.). Which can cause inconsistency and more 

difficult to collaborate between the organization or project. 

7.5 Cost and Resource Overheads 
Version control can become another overhead of working with 

ML projects at scale. Hosting massive datasets in the cloud, 

procuring compute for tracking and logging, and needing to pay 

for premium tools licensing can all inflate the project’s budget. 

In addition, supporting the nuances of pipelines and CI/CD 

requires engineering resources, which might not always be 

advantageous for smaller teams or organizations. 

7.6 Reproducibility in Dynamic 

Environments 
In the case of dynamic environments where data and 

requirements change often, reproducibility is still a challenge. 

Keeping parts of the workflow (code, data, models) in sync 

takes a lot of work. Small oversights in larger projects can lead 

to irreproducible experiments or deployment issues. Tackling 

these challenges involves not only the selection of the right 

tools but also building good workflows, training team 

members, and investing in the infrastructure to accommodate 

the scale and complexity of ML projects. 

8. FUTURE DIRECTIONS 
ML engineering is a fast-evolving industry, and as ML 

workflows keep getting increasingly complex over time, 

practices and tools for version control will need to evolve in 

parallel. Following are some key emerging trends and future 

directions likely to emerge within the ML version control 

landscape. 

8.1 Advances in Automation 
With ML workflows only growing larger and becoming more 

complex over time, automation is poised to be a critical 

underpinning component in making versioning easier to 

navigate. In the future, tooling themselves are going to embed 

AI and machine learning capabilities to automate the way of 

things such as change detection, configuration identification, 

rollback suggestions, etc. This will increase overhead for 

managing datasets, models and experiments. 

8.2 Standardization of Practices 
In the absence of a standard method for ML versioning, 

community-wide efforts will help move us toward 

standardization. In reputable organizations and open-source 

communities, best practices and single frameworks for end-to-

end ML workflows would possibly be employed. With 

standardized pipelines, tools become easier for teams to 

onboard with and help them to work across organization 

boundaries. 

8.3 Enhanced Collaboration Features 
Collaboration tools will emerge for machine learning to help 

more distributed teams working on machine learning projects 

work together. Sharing experiments in real time, interactive 

dashboards and shared cloud-based repositories would become 

more seamless and frictionless in the team workflow. Enhanced 

role-based access controls might also help keep things safe and 

efficient when teams work together. 

8.4 Improved Scalability 
Future tools will focus more on addressing current limitations 

in handling large datasets and models. Distributed version 

control systems and optimized cloud storage solutions will 

make sure that even the largest ML projects are kept in control. 

High-performance computing in conjunction with edge 

computing frameworks enables scale in training and 

deployment.  

8.5 Focus on Sustainability 
The increasing awareness of MLE (Machine Learning 

Engineering) is expected to promote the upcoming tools and 

practices of version control to become more sustainable. With 

this will come a need for efficient tracking of data driven 

decisions and models, along with optimizations leading to 

energy-efficient computation. Tools might develop 

functionality to evaluate and reduce the carbon footprint of ML 

pipelines. 

8.6 Integration with Emerging 

Technologies 
As technologies like federated learning and edge computing 

gain traction, version control systems will need to adapt. For 

example, managing decentralized datasets and models in 

federated learning scenarios presents unique challenges. 

Similarly, tracking and versioning models deployed on edge 

devices will require new strategies. 

8.7 AI-Assisted Version Control 
AI will most likely heavily impact version control in ML if it 

can make predictions to help with frequent workflow problems. 

It could even suggest which type of model to use based on 

previous results, identify duplicate experiments, and optimize 

data cleaning or preparation pipelines, for instance. Such 

breakthroughs could greatly help with the trial-and-error 

process of ML development.  

8.8 Integration with End-to-End Platforms 
Finally, E2E ML platforms are gaining traction and have tightly 

integrated version control into the entire ML lifecycle. Such 

platforms are tools like Kubeflow and Vertex AI, and as 

organizations strive for a more unified approach to their 

individual systems for any ML workflows, adoption will likely 

continue to grow. 

Instead of manual version tracking, the future of version control 

in machine learning is more likely to be collaborative, 

automated, and scalable, allowing teams to take on more 

complex problems with confidence. Keeping up with these 

trends allows practitioners to be ready to embrace next-

generation tools and workflows, accelerating efficiency, 

reproducibility, and innovation in ML initiatives. 

9. CONCLUSION 
Version control has emerged as a critical part of machine 

learning (ML) workflows — helping this once-nascent field 

transition from the experimental into production. Different 

from regular software development where the focus is mainly 

on the traditional code and its versions, ML projects face extra 

hurdles due to the need for various artifacts such as datasets, 

trained models, and experiment configurations. The ML 

workflow is typically more complex and iterative, which 

provides additional challenges for reproducibility, scalability 

and collaboration that require specialized tools and practices to 

address.  

In this paper, shortcomings of the standard version control were 

discussed along with the need to shift to tools like Data Version 

Control (DVC), MLflow and W&B for better understandability 

of model performance with time. Together, these tools plus best 

practices like standardizing workflows, automating the 
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tracking of artifacts, and enhancing collaboration form a strong 

foundation for effectively managing ML projects. 

However, issues with scalability, integration complexity, and a 

lack of standardization remain across tools and methodology. 

However, recent trends are driving ML version control towards 

automation, standardization, and sustainability. New 

technologies, such as AI-assisted version control and end-to-

end ML platforms, will build on those successes and trend 

toward better and easier ML workflow management. 

Leveraging the strategies and tools covered, ML practitioners 

can construct well-structured, reproducible, and scalable 

workflows that enable smooth progression from research to 

production. Such practices enhance the efficiency and 

collaboration elements of these properties but also constitute 

the basis for innovation in MLE and the ability of teams to 

tackle more complex use cases with the same commitment to 

reliability 
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