
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.65, January 2025

Adaptive Congestion Control Protocol based on
Meta-Reinforcement Learning for Data Communication

Networks

Mugoh Mwaura
Jomo Kenyatta University

of Agriculture and Technology
Nairobi, Kenya

Stephen Kiambi
Jomo Kenyatta University

of Agriculture and Technology
Nairobi, Kenya

Hezekiah Nganga
Jomo Kenyatta University

of Agriculture and Technology
Nairobi, Kenya

ABSTRACT
Congestion control protocols aim to optimize network capacity uti-
lization and maximize throughput by selecting appropriate trans-
mission rates for the sender. When approached as a Reinforcement
Learning (RL) problem, congestion control policies derived from
this framework exhibit superior performance compared to manu-
ally designed protocols. However, the practical implementation of
RL algorithms encounters a significant challenge due to the dy-
namic nature of network conditions, which hampers their ability
to generalize to new scenarios. This study presents a solution to
this issue by considering the vast range of network conditions as
an unknown task, treating it as a concealed variable that can be in-
ferred from observed network history. By acquiring the capability
to estimate this task as an underlying state and conditioning the
protocol to respond accordingly, the proposed approach achieves
continuous adaptation to evolving network conditions. The results
demonstrate that this method not only enhances the utilization of
network capacity in congestion control algorithms but also ensures
protocol consistency across diverse network characteristics.

Keywords
Congestion control, reinforcement learning, latent models, meta-
learning

1. INTRODUCTION
In a communication link, each connection has a sender which
streams packets of traffic onto the link, and a receiver that sends
packets of acknowledgement (ACKs) to the source of traffic. The
sender responds to this feedback by adjusting its sending rate to
ensure effective utilization of the channel.
The adjustment of the transmission rate in a communication link is
determined by a congestion control protocol implemented at each
endpoint of the connection [3, 12]. This protocol utilizes network
parameters, such as bandwidth, inferred from the acknowledgment
history, to determine the next transmission sending rate. It can be
denoted as a function fψ:

fψ : xt:t−H → kt (1)

kt : The sending rate at time t
xt:t−H : Perceived ACKs history from time t

to the size of the history length t−H
H : Number of buffered ACKs

The objective of congestion control protocols is to select an op-
timal rate that meets the node’s throughput and latency require-
ments based on the specific application. An optimal transmission
rate should be sufficiently high to efficiently utilize the link capac-
ity, while ensuring that the traffic in transit does not exceed the
bandwidth-delay product of the link [11]. However, since the band-
width is not directly observed and requires estimation techniques
[21], achieving a balance between bandwidth utilization and con-
gestion avoidance is challenging for the congestion control proto-
col. The protocol aims to address this challenge through the design
of the control parameters ψ in Equation 1.
The protocol’s parameters ψ can be manually configured using
Additive Increase Multiplicative Decrease (AIMD) algorithms [5].
AIMD-based algorithms linearly increase the congestion window
and exponentially decrease it when congestion is detected. Ex-
amples of protocols that employ AIMD include Binary Increase
Congestion Control (BIC) [3] and Transmission Colntrol Protocol
based on cubic window growth function (TCP CUBIC) [12]. How-
ever, a drawback of these algorithms is that they decrease the send-
ing rate whenever a packet loss occurs, even though not all losses
are necessarily caused by congestion. Increasing the sending rate
can effectively mitigate losses unrelated to congestion.
The challenge of congestion control has been approached by re-
framing it as an RL problem [26], aiming to learn an optimal con-
gestion control policy that determines the appropriate action for
adjusting the sending rate. RL-based control policies have shown
superior performance compared to manually designed protocols
[17, 15, 28, 16]. In this context, the congestion control function fψ
in Equation 1 is redefined as a policy πθ(at|st), which maps the
current network history st = xt:t−H to the optimal control action
at (next sending rate).
Aurora [15] applies RL to internet congestion control and demon-
strates its ability to capture complex network patterns, surpassing
widely adopted and state-of-the-art protocols [12, 3, 7] at the time
of publication. However, Aurora does not address the challenge of

1

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.65, January 2025

generalizing to new network conditions. When the congestion con-
trol protocol operates in a network beyond its training domain, it
fails to achieve the same competitive performance.
Conventional on-policy and off-policy RL algorithms [27, 19, 23]
are incapable of generalizing to novel environments. Consequently,
an RL-based congestion control protocol may perform poorly in
unfamiliar network conditions, potentially even worse than a man-
ually designed protocol.
To tackle this issue, the proposed approach focuses on learning a
control policy that can adapt to variations in network conditions
over time. This approach extends the capabilities of Aurora, an
RL-based control protocol, by leveraging meta-learning, where al-
gorithms adapt their behavior based on past experiences to match
the current task [10, 22, 13]. Specifically, the approach initially fo-
cuses on variations in link bandwidth to simplify the handling of
network dynamics. However, since the solution effectively adapts
to network changes, it should deliver desirable performance when
all key link parameters (bandwidth, latency, random packet loss and
queue size) [29] vary significantly. This adaptability arises from
treating these parameters as hidden latent variables inferred from
experience. Incorporating additional variables merely increases the
number of network dimensions the algorithm needs to learn, neces-
sitating more interaction with the environment.
The objective of the approach is to create a congestion control al-
gorithm that can continuously adapt to non-trivial changes in net-
works and minimize congestion while ensuring efficient bandwidth
utilization, across networks with different characteristics.
The remaining sections of the document are structured as follows:
In Chapter 2, the proposed method is examined. Chapter 3 show-
cases the results and discussion of the experiments conducted,
while Chapter 4 comprises the conclusion.

2. META RL-BASED ADAPTIVE
CONGESTION CONTROL
Meta RL has had successful application in robotics for continuous
task adaptation and generalisation across unseen agents in multi-
agent RL [1]. These settings show the potential of application of
meta RL to congestion control which shares a similar problem in
terms of task adaptation and generalisation to novel environment
characteristics.

2.1 Congestion control as Reinforcement Learning
A Markov Decision Process (MDP), characterized by the property
that the subsequent state st+1 is solely determined by the current
state st and action at, can be expressed as

M = (S,A, R, P, p0, γ, T) (2)

where S is the state space while A represents the action space. R
represents the reward function R : S × A → R, P is the en-
vironment transition dynamics function P : S × A × S → R+

suttonbachbarto2018.p0 defines the initial state distribution, γ the
cumulative reward discount factor and T the horizon of the envi-
ronment episode. The objective of RL methods is to find a pol-
icy that maximizes the expected cumulative reward over trajec-
tories τ = (s0,a0, . . . , sT ,aT) induced by the policy R(τ) =∑T
t=0 γ

tr(st,at).
To apply the MDP framework to congestion control, this work
adopts an approach inspired by Aurora:

—A: The action space A represents changes to the transmission
rate kt. Time is divided into monitor intervals (MI) dong2015,

Fig. 1: Tasks as partially observable MDPs.

where kt remains fixed within each MI. The sending rate is up-
dated by the Aurora algorithm as follows:

kt+1 =

{
xt × (1 + αat+1),at+1 > 0

xt/(1− αat+1), at+1 < 0
(3)

at : proposed next agent action
α : dampening factor controlling oscillations

—S: The state space S consists of a history of network statistics
derived from packet acknowledgements. These statistics include:
(i) the derivative of latency with respect to time, (ii) the ratio of
sent to acknowledged packets, and (iii) the ratio of the mean
latency of the current MI to the minimum recorded MI mean la-
tency.
The history length is a hyper-parameter. Longer histories are ex-
pected to improve performance.

—r(st,at): The reward function is designed to maximize through-
put while minimizing latency and packet loss, expressed as
throughput− latency − loss.

2.2 Meta-RL of Congestion Control with Latent
Dynamics Models

The fundamental concept is that the process of inferring the state of
a network and predicting significant variations in the network based
on observations and rewards is essentially the same as the task
of estimating hidden variables from accumulated experience. This
concept is demonstrated in Figure 1, where latent variables zt in a
partially observable environment can provide insights into the true
state by examining the history of observations (x0,xt+1, . . . ,xT).
The task, which is obtained from the distribution of the environ-
ment T ∼ p(T), is considered as a component of zt. Therefore,
the latent variable encompasses both the hidden state st and the
task. The proposed method aims to learn valuable representations
of the network statistics described in Section 2.1 and encode them
in a latent variable zt.
The latent variable model [8] makes inferences on the belief over
the latent zt and adjusts the posterior of this belief at each time step
based on the incomplete observation from the current time step.
By incorporating rewards into the input of the latent model, the
hidden state zt can encompass task-related information, thereby
facilitating meta-learning.
The maximum log-likelihood of the input data, consisting of obser-
vations and rewards, is achieved by learning the latent state model
over the inferred variables zt

2

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.65, January 2025

max
ϕ

E
T ∼p(T)

 E
at∼πθ(·|gt)
xt∼pT (·|st)

st+1∼pT (·|st,at)
rt∼rT (·|st,at)

[log pϕ (x1:T , r1:T |a1:T−1)]

 (4)

Given an observation xt and reward rt from the current timestep,
the agent uses the posterior from the previous time step zt−1 to
update its posterior belief. Posterior inference shows the belief gt
over the current time-step hidden variable zt, i.e.

gt ∼ p(zt|x1:t, r1:t,at−1) (5)

Conditioning the congestion policy on the inferred belief i.e.
πθ(at|gt), gives it the ability to adapt its behaviour in varying
network conditions and uses. The policy adaptation objective in-
corporates posterior inference on the latent state model, giving the
following meta-learning objective:

max
θ

E
T ∼p(T)

 E
at∼πθ(·|gt)
xt∼pT (·|st)

st+1∼pT (·|st,at)
rt∼rT (·|st,at)

[
T∑
t=1

γtrt

] (6)

where gt = p(zt|x1:t, r1:t,at−1)

2.2.1 Variational Inference of the Latent State. Variational in-
ference [2] converts the inference problem into an optimization
problem with the aim of maximizing the evidence lower bound
(ELBO) [6] on the log-likelihood of the meta-RL objective. The
optimization of the ELBO, as presented in [31], is applied to the
log-likelihood objective described in Equation 4, maximizing the
ELBO objective in the following manner:

Ez1:T∼qϕ [log p(x1:T , r1:T |a1:T−1] ≥ Lmodel (7)

where Lmodel is the training loss of the latent state model and is
defined as:

Lmodel(x1:T , r1:T ,a1:T−1)

=Ez1:T∼qϕ

T∑
t=1

pϕ(xt|zt) + log pϕ(rt|zt) (8)

−DKL(qϕ(z1|x1, r1)||p(z1)

−
T∑
t=1

DKL (qϕ(zt+1|xt+1, rt+1, zt,at)||pϕ(zt+1|zt,at))

The terms pϕ(xt|zt) and pϕ(rt|zt) serve to incentivize the
model to extract valuable information from the inputs (xt, rt),
which is condensed in the latent variable. The inference function
qϕ(zt|at−1, rt) and the latent dynamics function pϕ(zt+1|zt,at)
are both fully connected neural networks. The model employs sep-
arate encoders for the reward p(r̃t|rt) and for the observation
p(x̃t|xt), as well as decoders pϕ(xt|zt) and pϕ(rt|zt) for obser-
vations and rewards, respectively. The policy is learned using Soft
Actor Critic (SAC) haarnoja2018sac, which is advantageous for its
off-policy nature, resulting in improved sample efficiency.
The learning procedure cycles between using the current policy
to collect trajectories, using the objective in Equation (6) to train

Algorithm 1 RL congestion control with latent representations

Require: A distribution of network training tasks p(T)
1: Initialize the model qϕ, critic Qφ and policy πθ
2: Initialize the memory buffers Bi for each task
3: repeat
4: for each task Ti ∈ p(T) do ▷ Collect data
5: Infer first posterior g1 = qϕ(z1|x1, r1)
6: Take action a1 ∼ πθ(a1|g1)
7: for each step t = 2 to max steps T − 1 do
8: vt ← rt,at−1,xt
9: Infer the posterior gt ∼ qϕ(z|zt−1,vt)

10: Sample the action at ∼ πθ(a|gt)
11: end for
12: Add transitions {x1:T , r1:T , a1:T−1} to the current

task’s buffer Bi
13: end for
14:
15: for each training step to max steps do
16: for each task Ti ∈ p(T) do ▷ Train the model
17: Sample trajectories {x1:T , r1:T ,a1:T−1} ∼ Bi

from task buffer
18: v1:T ← (r1:T ,a1:T−1,x1:T)
19: Infer posteriors g1:T = qϕ(z|z1:T−1,v1:T)
20: Reconstruct observations x̃1:T and rewards r̃1:T
21: Minimize the reconstruction error
22: Li = Lmodel(((x̃1:T , r̃1:T), (x1:T , r1:T)))
23: end for
24: Update the model
25: ϕ← ϕ− α∇ϕ

∑
i Li

26: end for
27: for each policy training step t to max steps do
28: for each task Ti ∈ p(T) do ▷ Train the actor-critic
29: Train the actor πθ(at|gt)) and critic Qψ(at,gt)
30: conditioned on the latent representation g1:T ∼ qϕ
31: end for
32: Update the actor
33: Update the critic
34: end for
35: until performance is desirable

Algorithm 2 Meta-testing congestion control

Require: Test network task T ∼ p(T)
Infer first posterior g1 = qϕ(z1|x1, r1)
Take action a1 ∼ πθ(a1|g1)
for each step t = 2 to max steps T − 1 do

vt ← rt,at−1,xt
Infer the posterior gt ∼ qϕ(z|zt−1,vt)
Sample the action at ∼ πθ(a|gt), get xt+1, reward rt+1

end for

the latent state model and updating the policy as outlined in Algo-
rithm 1.

2.3 Running environment
The congestion control protocol was trained using Aurora’s envi-
ronment [15], which emulates a solitary traffic source with vary-
ing network parameters. To evaluate the trained protocols, distinct
environments with tasks different from the training ones were em-
ployed.

3

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.65, January 2025

3. RESULTS AND DISCUSSION
The study aimed to explore the adaptability of congestion control
protocols to substantial network changes through the use of meta-
learning latent representations of the network. The experimental
analysis sought to compare the performance of a meta RL agent
with that of a standard RL agent. Specifically, the study examined
how the actions taken by each agent impacted the utilization of
network capacity and the ability to control congestion in network
patterns that were not encountered during the training phase.

3.1 Environment setup
The network environment simulated by [15] was expanded to facil-
itate the training and evaluation of both the meta-learned agent and
Aurora’s agent. This environment is initialized with a designated
task, where a task refers to a collection of pairs consisting of mini-
mum and maximum values for various network parameters such as
bandwidth, latency, queue size, and random loss rate. At each time
step, the current value of a network parameter is randomly chosen
from within the specified minimum and maximum values for that
parameter.
For the experiments conducted, the variations in tasks were lim-
ited to the bandwidth alone. This was done to simplify the environ-
ment and accelerate the learning process of the congestion control
agents. Consequently, the remaining network parameters were kept
constant within a predetermined range of minimum and maximum
values, while the bandwidth minimum and maximum range dif-
fered for each task. After the completion of each training episode,
a new task was chosen for the subsequent episode.
In the course of this evaluation, the algorithm under investigation
in this study is referred to as MLLD (Meta-learning Latent Dy-
namics), and PPO (Proximal Policy Gradients) as the algorithm
employed by Aurora, against which the comparison of congestion
control agents is conducted. The term ”agent” is used interchange-
ably with congestion control protocol.

3.2 Evaluating the protocol in unseen network
conditions

The evaluation process involved testing the trained congestion con-
trol policy in a network environment with random bandwidth vari-
ations that fall within the same distribution as those encountered
during the training phase. The evaluation episodes were limited to
a length of 150, and a total of 20 evaluation tasks were performed.
For each task, the agent underwent evaluation in four episodes.
Each task consisted of a random pair of minimum and maximum
bandwidth values. These minimum/maximum bandwidths thresh-
olds were set to deviate within a 50% range from a central band-
width value (cbw) cbw : cbw±cbw× rand(0, 0.5). The center band-
width is selected from a set of n equally spaced bandwidth val-
ues ranging from 1 to 1000 Mbps, spaced out by pre-set ranges of
1000/n. Thus, the bandwidth task is a set bwset comprising n pairs
of minimum-maximum bandwidth thresholds.

bwset = {(minbw0
, maxbw0

), . . . , (minbwn , maxbwn)}

At the conclusion of each evaluation episode, the network environ-
ment was reset, and a new random pair of bandwidth thresholds
was generated based on the current task. The findings of the evalu-
ation report the averaged values of selected network features across
the time steps of each evaluation task.

3.2.1 Throughput. In Aurora environment used, throughput is di-
rectly proportional to the quantity of bytes acknowledged and in-

versely proportional to the size of the network receive-window. If
more data is transmitted per unit monitor-interval-time in the net-
work, the resulting throughput will be higher.

throughput = (bytes ack− packet size)/receive duration (9)

Improved utilisation of the link capacity with increase in band-
width results in higher throughput. MLLD has a throughput that
steadily increases over the course of evaluation, while PPO exhibits
an initial high throughput that quickly decreases as it encounters
new network variations as illustrated in Figure 2. This behaviour
demonstrates MLLD ’s agent’s ability to identify it’s current net-
work pattern, act to maximize throughput, and get better with more
environment interaction.
The sharp decline in the PPO agent can be attributed to its in-
ability to derive meaningful network representations from states
that differ from those encountered during training. Acting outside
the training distribution, PPO tends to take actions that disregard
the training objective, negatively impacting the protocol’s through-
put. Past the first 40 evaluation episodes in Figure 2b, it attained a
constant throughput, indicating that the agent takes similar actions
when optimising for network throughput regardless of the current
bandwidth.

(a) MLLD

(b) PPO

Fig. 2: Comparison of task-averaged evaluation throughput of MLLD and
PPO on the same network tasks

4

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.65, January 2025

3.2.2 Loss rate. The loss rate of the PPO agent is an order of
magnitude lower than MLLD ’s as illustrated in Figure 4. This loss-
rate difference can be attributed to the lower utilization of the link
by PPO when the bandwidth is varied, as opposed to the MLLD
which has higher link utilisation, that increases with increase in the
link bandwidth. A constant loss rate percentage at a given band-
width, will theoretically result in a rise in the amount of packets
lost as the bandwidth gets higher. This interpretation fits the loss-
rate curve of MLLD . As further illustrated in Figure 5 MLLD has
a higher sending ratio (1.5 − 3.5) compared to PPO’s (1.0 − 1.1).
PPO’s sending ratio also declines as evaluation progresses — the
inverse of the sending ratio behaviour with the protocol trained
on MLLD . Thus, though MLLD has a higher loss rate than PPO,
the ratio of packets sent to those transmitted successfully is much
higher than that of PPO.

(a) MLLD

(b) PPO

Fig. 3: Comparison of task-averaged evaluation latency on the same net-
work tasks

3.2.3 Latency. The MELD agent demonstrated a lower latency
threshold (0.4955 − 0.4990) which remained almost constant in
previously unseen environments compared to the PPO agent whose
latency ranged between (0.5900− 0.6450) . This is shown in Fig-
ure 3. The lower variance in latency shows MLLD is able to make

more informed decisions on which actions in the current network
satisfy a low latency property while still utilizing the link effi-
ciently.

(a) MLLD

(b) PPO

Fig. 4: Comparison of task-averaged evaluation loss rate on the same net-
work tasks

5

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.65, January 2025

(a) MLLD

(b) PPO

Fig. 5: Comparison evaluation sending ratio across task-averaged episodes

4. CONCLUSION
This work has presented a novel approach for learning congestion
control protocols that can continuously adapt to changing network
conditions by extracting valuable latent features related to the net-
work state. The variations in the network are modeled as partially
observable task distributions, which are learned by an adaptation
function based on the latent features. By treating significant net-
work variations as hidden variables, latent variable models can be
employed to extract meaningful network representations from the
observed network history and estimate the unknown variables effi-
ciently. By conditioning the meta-learner on these variables and en-
abling it to explore different network characteristics, the learner be-
comes capable of adapting to new network patterns and ultimately
generalizing to unseen dynamic network conditions. The approach
can be applied in real-world networks to create adaptive congestion
control protocols that optimally utilize the network capacity while
generalizing to network variations.
For future work, attention mechanisms can be used to aid with
credit assignment to improve the learning ability of a long sequence
of optimal sending rates. Reward-shaping methods could also be
used to investigate how the optimizing of a certain network feature
may affect other feature. Contrastive learning methods could be ap-
plied together with auto-encoders to improve the learning of bet-

ter network representations based on the network dynamics. These
methods would allow capturing of more task-relevant features.
Reward shaping and credit assignment: Since a congestion con-
trol protocol relies on long-term credit assignment, it’s difficult to
learn a long sequence of optimal sending rates. Attention mecha-
nisms [14] can be used to aid with credit assignment over the long
network horizons.
Single objective reward functions could be explored to examine
how the optimizing for a certain network feature like throughput
affects the rest of the features. Reward shaping methods [4] would
prove useful in this area.
Learning better network representations: Selection of network
state features used for conditioning the policy is done on the basis
of domain knowledge. This may include inductive biases. A solu-
tion would be looking into how to incorporate the relevant infor-
mation from all the state features efficiently to learn a good repre-
sentation [24] for the network dynamics. Methods on constrastive
learning [25, 9] could help learn more useful representations. Loss
auto-encoders could further be used to capture more task-relevant
features for invariant representation learning [30].
Generalizing to non-stationary network environments:
With network dynamics changing over time, the congestion control
policy should be robust to the non-stationality of the environment.
In this work, we explored the changing environment representa-
tions as latent variables. An alternative approach would be assump-
tion of uncertainty in the transitions and learn robust agents that
consider worst-case environment situations [18]. The use of ran-
domization and state augmentation during training [20] can also be
tried as an approach to generalizing the policies in real networks.
The present study has examined the capacity of the congestion con-
trol protocol to adapt to significant variations in bandwidth. An area
for further investigation would involve assessing the agent’s capa-
bility to fulfill evolving network demands that encompass multi-
ple objectives for the congestion control protocol, such as diverse
combinations of user requirements for network bandwidth, latency,
sending rate, or buffer queue size. Conducting tests on the protocol
within an actual network environment would represent a progres-
sion towards its practical implementation.
The approach explored changing environment representations as
latent variables. An alternative method would be assumption of un-
certainty in the transitions and learning of robust agents that con-
sider worst-case environment situations. Reward shaping and credit
asignment method can also be examined. For instance, single ob-
jective reward functions could be explored to examine how the op-
timizing for a certain network feature like throughput affects the
rest of the features.

5. REFERENCES
[1] Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong,

Luisa Zintgraf, Chelsea Finn, and Shimon Whiteson. A sur-
vey of meta-reinforcement learning, 2023.

[2] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe.
Variational inference: A review for statisticians. Journal of
the American Statistical Association, 112(518):859–877, Apr
2017.

[3] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, So-
heil Hassas Yeganeh, and Van Jacobson. Bbr: Congestion-
based congestion control. Queue, 14(5):20–53, 2016.

[4] Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser,
and Anthony Francis. Learning navigation behaviors end-
to-end with autorl. IEEE Robotics and Automation Letters,
4(2):2007–2014, 2019.

6

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.65, January 2025

[5] Dah-Ming Chiu and Raj Jain. Analysis of the increase and de-
crease algorithms for congestion avoidance in computer net-
works. Computer Networks and ISDN Systems, 17(1):1–14,
1989.

[6] Justin Domke and Daniel Sheldon. Importance weighting and
variational inference. CoRR, abs/1808.09034, 2018.

[7] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi
Gilad, Brighten Godfrey, and Michael Schapira. PCC vi-
vace: Online-learning congestion control. In 15th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 18), pages 343–356, Renton, WA, April 2018.
USENIX Association.

[8] B. Everett. An Introduction to Latent Variable Models.
Springer Science & Business Media, Mar 2013.

[9] Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov,
and Sergey Levine. Contrastive learning as goal-conditioned
reinforcement learning, 2023.

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research, pages
1126–1135. PMLR, 06–11 Aug 2017.

[11] S. Floyd and K. Fall. Promoting the use of end-to-end con-
gestion control in the internet. IEEE/ACM Transactions on
Networking, 7(4):458–472, 1999.

[12] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-
friendly high-speed tcp variant. ACM SIGOPS Operating Sys-
tems Review, 42(5):64–74, 2008.

[13] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey.
Meta-learning in neural networks: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
44(09):5149–5169, sep 2022.

[14] Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan
Wu, Mehdi Mirza, Federico Carnevale, Arun Ahuja, and Greg
Wayne. Optimizing agent behavior over long time scales by
transporting value. Nature Communications, 10(1), 2019.

[15] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael
Schapira, and Aviv Tamar. A deep reinforcement learning per-
spective on internet congestion control. In Kamalika Chaud-
huri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pages
3050–3059. PMLR, 09–15 Jun 2019.

[16] Huiling Jiang, Qing Li, Yong Jiang, GengBiao Shen, Richard
Sinnott, Chen Tian, and Mingwei Xu. When machine learning
meets congestion control: A survey and comparison. Com-
puter Networks, 192:108033, 2021.

[17] Wei Li, Fan Zhou, Kaushik Roy Chowdhury, and Waleed
Meleis. Qtcp: Adaptive congestion control with reinforce-
ment learning. IEEE Transactions on Network Science and
Engineering, 6(3):445–458, 2019.

[18] Daniel J. Mankowitz, Nir Levine, Rae Jeong, Yuanyuan Shi,
Jackie Kay, Abbas Abdolmaleki, Jost Tobias Springenberg,
Timothy Mann, Todd Hester, and Martin Riedmiller. Robust
reinforcement learning for continuous control with model
misspecification, 2020.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin

Riedmiller. Playing atari with deep reinforcement learning,
2013.

[20] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba,
and Pieter Abbeel. Sim-to-real transfer of robotic control with
dynamics randomization. 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2018.

[21] R. Prosad, C. Davrolis, M. Murray, and K.c. Claffy. Band-
width estimation: metrics, measurement techniques, and
tools. IEEE Network, 17(6):27–35, 2003.

[22] Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn,
and Sergey Levine. Efficient off-policy meta-reinforcement
learning via probabilistic context variables, 2019.

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms, 2017.

[24] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas
Rhinehart, and Sergey Levine. Parrot: Data-driven behavioral
priors for reinforcement learning, 2020.

[25] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl:
Contrastive unsupervised representations for reinforcement
learning, 2020.

[26] Richard S. Sutton, Francis Bach, and Andrew G. Barto. Rein-
forcement Learning: An Introduction. MIT Press Ltd, 2018.

[27] Ronald J. Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning (reinforce).
Reinforcement Learning, page 5–32, 1992.

[28] Zhenchang Xia, Libing Wu, Fei Wang, Xudong Liao, Haiyan
Hu, Jia Wu, and Dan Wu. Glider: rethinking congestion
control with deep reinforcement learning. World Wide Web,
26(1):115–137, Jun 2022.

[29] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan,
Riad S. Wahby, Philip Levis, and Keith Winstein. Pantheon:
the training ground for internet congestion-control research.
In 2018 USENIX Annual Technical Conference (USENIX ATC
18), pages 731–743, Boston, MA, July 2018. USENIX Asso-
ciation.

[30] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal,
and Sergey Levine. Learning invariant representations for re-
inforcement learning without reconstruction, 2021.

[31] Tony Z. Zhao, Anusha Nagabandi, Kate Rakelly, Chelsea
Finn, and Sergey Levine. Meld: Meta-reinforcement learning
from images via latent state models, 2021.

7

	Introduction
	Meta RL-based adaptive congestion control
	Congestion control as Reinforcement Learning
	Meta-RL of Congestion Control with Latent Dynamics Models
	Variational Inference of the Latent State

	Running environment

	Results and Discussion
	Environment setup
	Evaluating the protocol in unseen network conditions
	Throughput
	Loss rate
	Latency

	Conclusion
	References

