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ABSTRACT 

Blockchain, an emerging and very important technology in the 

financial industry is facing many challenges especially security 

wise. The decentralized nature and characteristics of the 

blockchain makes it more difficult for conventional intrusion 

detection and prevention systems to identify and prevent 

fraudulent activities in real-time. This has posed serious 

challenges for fraud detection systems, thereby contributing to 

the wider attempts being made to ensure secure blockchain 

environments and build trust in cryptocurrency markets. This 

research hereby proposes an ensemble model approach to 

detect fraudulent cryptocurrency transaction. The proposed 

model will combine two deep learning algorithms namely, 

Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM). The ensemble model consistently 

demonstrated high precision and at the same time ensured that 

the transactions that were labelled fraudulent were indeed 

captured as true, while sustaining high recall to identify most 

of the fraudulent activities. This work has shown that ensemble 

learning can generate a more robust and accurate fraud 

detection system rather than the conventional or single models 

and this makes the model more relevant in situations with 

highly imbalanced datasets like cryptocurrency transactions 

like blockchain. 
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1. INTRODUCTION 
The emergence of cryptocurrency has created a significant 

change in the financial world by enabling a secured, 

decentralized, and borderless transactions. This phenomenon 

has been classified into various categories like Bitcoin and 

Ethereum which has enabled users to transact without fear of 

privacy invasion, identity disclosure, and has also given room 

for autonomy and financial inclusion of the end users (Conti et 

al., 2018). Despite all the added benefits of this phenomenon, 

it was pillaged by series of challenges especially in the area of 

security and fraud detection. One of the most prevalent areas of 

application of this is the Blockchain and this has made 

cryptocurrencies a level ground for unlawful and illegal 

activities like money laundering, Ponzi schemes, and phishing 

domain attacks (Foley et al., 2019). Due to the decentralized 

nature and characteristics of the blockchain, it is more difficult 

for conventional intrusion detection and prevention systems to 

identify and prevent fraudulent activities in real-time, and this 

is made more compounded by the pseudonymity of users (Chen 

et al., 2020). This has necessitated the introduction of more 

sophisticated fraud and intrusion detection systems in order to 

uphold the integrity and trustworthiness of transactions on the 

block (Hussaini et al., 2022). 

This research hereby proposes an ensemble model approach to 

detect fraudulent cryptocurrency transaction. This model will 

combine two deep learning algorithms namely: Recurrent 

Neural Networks (RNNs) and Long Short-Term Memory 

(LSTM) networks as they are most suitable for analyzing 

sequential time-series data, which is important for detection of 

temporal patterns in cryptocurrency transactions (Taher, 2024). 

The proposed model will ensure scalability, adaptability, and 

fraud detection accuracy of cryptocurrency transactions, 

hereby contributing to the wider attempts being made to ensure 

secured blockchain environments and build trust in 

cryptocurrency markets (Kim et al., 2023). 

2. RELATED WORKS 

2.1 Blockchain and Cryptocurrency 

Transactions 
Cryptocurrency has many areas of application with Blockchain 

technology being one major area. This Blockchain technology 

is a decentralized digital and distributed ledger system that 

records transactions across multiple computers, hereby 

ensuring security, transparency and immutability of records 

(Nakamoto, 2008, Tapscott & Tapscott, 2016). Cryptocurrency 

transactions encompass the transfer of digital assets by means 

of cryptographic algorithms that contains both public and 

private keys. The public key is meant for receiving of funds 

while the private key is meant for authorizing transactions. In 

spite of the security attribute of the blockchain technology, the 

system is not invulnerable to fraudulent activities, like 

phishing, Ponzi schemes, double-spending, exchange hacks, 

and ransomware (Bertoni, 2017; Nakamoto, 2010; Kharif, 

2014; Goodin, 2017). To mitigate these challenges, there is 

need for a more sophisticated fraud detection and prevention 

mechanisms to ensure the integrity, confidentiality of the 

blockchain environments. 

2.2 Fraud Detection in Blockchain 
The Blockchain technology is fundamentally a decentralized 

digital ledger that ensures that data once recorded, cannot be 

altered or tampered with without the consensus of the network. 

Coupled with the pseudonymous nature of the transactions, this 

has posed serious challenges for fraud detection systems.  

Conventional fraud detection techniques like the rule-based 

systems, statistical methods, and machine learning models still 

struggle with the evolving and intricate fraud patterns that 

characterized the  blockchain environments (Chandola et al., 

2009; Ngai et al., 2011; Han et al., 2011). The work of Quadir 

et al. (2023) that proposed a Novel Approach to Detecting 

Fraud in Ethereum Transactions Using Stacking by the 

combination of various classifiers to improve fraud detection 

performance by leveraging on different strengths of the 

combined models. Improved detection rates and reduced false 

positives were recorded. Even though the approach does not 

require any substantial computational resources, the model 
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developed may not be easily scalable. Pahuja and Kamal (2023) 

proposed an Ensemble Learning-Based Ethereum Fraud 

Detection Using CRISP-DM Framework to detect fraudulent 

activities in Ethereum transactions. The model could not 

perform as expected due to the heavy reliance on the quality 

and relevance of the input features. 

Airlangga (2024) proposed an Anomaly Detection in 

Blockchain Transactions within the Open Metaverse Using 

Unsupervised Learning within decentralized metaverse 

environments. The paper highlighted the ability of 

unsupervised methods to identify unusual patterns without 

labelled data hereby addressing fraud detection in a new and 

evolving context, though it acknowledges the limitations of 

unsupervised learning in handling diverse and complex 

transaction patterns. These showed the efficiency of Machine 

learning models, particularly ensemble techniques in 

improving fraud detection accuracy within the context of 

cryptocurrencies. Additionally, the need for real-time detection 

is a driving factor. Conventional fraud detection systems often 

experience delays and high false-positive rates, which hinder 

their ability to prevent financial losses in cryptocurrency 

transactions (Khan and Alshahrani, 2023). The stacking 

ensemble method combining RNN and LSTM models will 

improve real-time detection accuracy, helping to maintain user 

trust and security within blockchain ecosystems (Nguyen & 

Nguyen, 2023). Despite these efforts and many more, 

challenges like scalability, data privacy, and model adaptability 

still continue to serve as obstacles. 

2.3 Machine Learning Approaches 
Recent literatures have explored the use of machine learning 

models for blockchain fraud detection. Saxena et al. (2024) 

proposed an ensemble learning technique for blockchain 

transaction deanonymization, while the work of Quadir et al. 

(2023) used stacking classifiers to improve fraud detection in 

Ethereum transactions. Several other approaches, like the work 

of Pahuja and Kamal (2023) and Airlangga (2024), have also 

proved the efficiency of ensemble methods and unsupervised 

learning in blockchain fraud detection. Despite the success of 

these methods, scalability and ability to detect new and 

evolving fraud patterns in real-time still serve as challenges. 

3. METHODOLOGY 

3.1 Data Collection and Preprocessing 
The dataset employed for this work was sourced from Kaggle 

and consists of 9,841 rows, with 51 features, each labeled as 

either fraudulent or legitimate activities. The Data 

preprocessing steps are as followed: 

i. Missing Data: Missing values were assigned 

using the mean for numerical features and the 

mode for categorical variables using the mean 

imputation as shown in equation 1  

𝑋𝑖𝑚𝑝𝑢𝑡𝑒𝑑 =  
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

                       𝑒𝑞𝑛 1 

Where: 

𝑋𝑖𝑚𝑝𝑢𝑡𝑒𝑑  is the value used to replace the missing data. 

𝑋𝑖 are the observed values of the feature. 

𝑛 is the number of non-missing observations. 

 

ii. Encoding Categorical Variables: Categorical variables 

were one-hot encoded to transform them into a numerical 

format suitable for machine learning models. 

 

iii.  Normalization: Numerical features were normalized using 

the StandardScaler to ensure uniform scaling across all features 

by transforming them to have a mean of 0 and a standard 

deviation of 1 which is given as: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

𝑋 − 𝑋𝑚𝑖𝑛
                             𝑒𝑞𝑛 2 

Where: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 is the normalized value, 𝑋 is the original feature value, 

𝑋𝑚𝑖𝑛  𝑎𝑛𝑑 𝑋𝑚𝑎𝑥 are the minimum and maximum values of the 

feature, respectively. 

The dataset was then split into training and testing sets, 

ensuring that the models were evaluated on unseen data. 

3.2 Feature Engineering and Selection 
Feature engineering was performed to enhance the model's 

predictive power. New features, such as transaction frequency 

and amount variability, were derived from the original dataset. 

Feature selection was conducted using a Random Forest model, 

which identified the most important features for fraud 

detection. These selected features were then standardized to 

ensure uniform scaling and to optimize model performance. 

3.3 Synthetic Minority Over-sampling 

(SMOTE) 
To address class imbalance, where fraudulent transactions were 

vastly outnumbered by legitimate ones, SMOTE was applied. 

This technique generates synthetic fraudulent transactions by 

interpolating between instances of the minority class, balancing 

the dataset and improving model learning. 
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3.4 Ensemble Model Design 

 
Figure 1: The Proposed Ensemble Architecture

The proposed system was designed using a stacking ensemble 

method that combines the predictions of RNN and LSTM 

models and leveraged on their complementary strengths: 

i. RNNs: RNNs are designed to capture short-term 

dependencies in transactional data, making them 

effective for detecting immediate patterns indicative 

of fraud making them a strong choice for analysing 

cryptocurrency transactions, which occur in a time-

series format. The RNN model is used to detect 

short-term dependencies in transactional data, 

focusing on recent transaction patterns that may 

indicate fraudulent behaviour which are represented 

by the: 

a. Hidden State Update: 

ℎ𝑡 = 𝑡𝑎𝑛ℎ (𝑊ℎℎ𝑡−1 + 𝑈ℎ𝑥𝑡 + 𝑏ℎ)      𝑒𝑞𝑛 3 

             Equation 3 above Updates the hidden state ℎ𝑡 based on 

the previous hidden state ℎ𝑡−1  and current input  𝑥𝑡  . 

b. Output Computation: 

𝑦𝑡 =  𝜎(𝑊ℎℎ𝑡 + 𝑏𝑦)                                   𝑒𝑞𝑛 4 

Produces the output 𝑦𝑡 from the hidden state ℎ𝑡 using a dense 

layer and activation function 𝜎 

c. Loss Function: 

𝐿𝑜𝑠𝑠 = −
1

𝑇
∑ [𝑦𝑡 𝑙𝑜𝑔(𝑦𝑡) + (1 − 𝑦𝑡) 𝑙𝑜𝑔(1 −𝑇

𝑡=1

  𝑦𝑡)]                                                                 𝑒𝑞𝑛 5  

Measures the error between the true labels 𝑦𝑡 and the predicted 

probabilities 𝑦𝑡  ,typically using binary cross-entropy for 

classification. In essence, the RNN updates its hidden state over 

time and uses it to generate predictions, with training focused 

on minimizing the error between predicted and actual values. 

ii. LSTMs: LSTM networks, designed to overcome the 

vanishing gradient problem, are particularly effective at 

capturing long-term dependencies, which are crucial for 

detecting complex fraud patterns in cryptocurrency 

transactions. 

The predictions from both models were combined into a meta-

model, such as logistic regression, which optimized the final 

fraud detection output for improved accuracy ability to handle 

diverse patterns through: 

i. Cell State Update: 

𝐶𝑡 = 𝑓𝑡 ⨀  𝐶𝑡−1  +  𝑖𝑡 ⨀ 𝐶𝑡                         𝑒𝑞𝑛 6  

 

Updates the cell state 𝐶𝑡 using the forget gate 𝑓𝑡, previous cell 

state 𝐶𝑡−1, input gate 𝐶𝑡−1, and candidate cell state 𝐶𝑡. 

 

ii. Hidden State Update: 

ℎ𝑡 = 0𝑡 𝑡𝑎𝑛ℎ ⨀(𝐶𝑡)                      𝑒𝑞𝑛 7 

iii. Gate Computations: 
i. Forget Gate:  

𝑓𝑡  =  𝜎(𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑓)             𝑒𝑞𝑛 8  

ii. Input Gate:  

𝑓𝑡  =  𝜎(𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑖)                𝑒𝑞𝑛 9  

a. Candidate Cell State: 

𝑓𝑡  =  𝜎(𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑐)              𝑒𝑞𝑛 10  

b. Output Gate:  

𝑓𝑡  =  𝜎(𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑐)         𝑒𝑞𝑛 11 

ii. Loss Function: 

 𝐿𝑜𝑠𝑠 = −
1

𝑇
 ∑ [𝑦𝑡 𝑙𝑜𝑔(𝑦𝑡) + (1 −𝑇

𝑡=1

𝑦𝑡) 𝑙𝑜𝑔(1 −  𝑦𝑡)]               𝑒𝑞𝑛 12  

4. RESULTS AND DISCUSSION 

4.1 Evaluation Metrics 
The performance of the models was evaluated using the 

following metrics: 
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i. Accuracy: The proportion of correctly classified 

transactions represented by  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
     𝑒𝑞𝑛 13 

ii. Precision: The proportion of true fraudulent transactions 

identified out of all transactions predicted as fraudulent. This is 

represented by: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)           𝑒𝑞𝑛 14 

iii. Recall: The proportion of true fraudulent transactions 

identified out of all actual fraudulent transactions using  

equation 15 

𝑅𝑒𝑐𝑎𝑙𝑙 =   𝑇𝑃/(𝑇𝑃 +  𝐹𝑁)                 𝑒𝑞𝑛 15 

iv. F1-Score: The harmonic mean of precision and recall, 

providing a balanced measure of performance. It is the harmonic 

mean of precision and recall, and a higher F1 score that indicates 

a good balance between the two and this is represented in 

equation 16 below 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒

=             2 𝑋 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
        𝑒𝑞𝑛 16 

 
AUC-ROC: The area under the receiver operating characteristic 

curve, which measures the model’s ability to discriminate 

between fraudulent and legitimate transactions is shown as  

𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)                         𝑒𝑞𝑛 17  

𝐴𝑈𝐶 − 𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)       𝑒𝑞𝑛 18
1

0
   

4.2 Model Performance 
Class Distribution After Smote   
After applying Synthetic Minority Over-sampling Technique 

(SMOTE) on the dataset, the distribution of fraudulent and non-

fraudulent transactions in the dataset becomes more balanced 

by generating synthetic samples of the minority class 

(fraudulent transactions), ensuring that both classes have 

roughly equal representation. 

Before SMOTE, the dataset was heavily skewed towards non-

fraudulent transactions, which made it challenging for the 

model to learn patterns associated with fraud. After SMOTE, 

the number of fraudulent transactions is artificially increased 

by interpolating between existing data points of the minority 

class. 

4.3 Model Performance 

Class Distribution After Smote 
The Blockchain technology is fundamentally a decentralized 

After applying SMOTE (Synthetic Minority Over-sampling 

Technique), the distribution of fraudulent and non-fraudulent 

transactions in the dataset becomes more balanced by 

generating synthetic samples of the minority class (fraudulent 

transactions), ensuring that both classes have roughly equal 

representation. 

Before SMOTE, the dataset was heavily skewed towards non-

fraudulent transactions, which made it challenging for the 

model to learn patterns associated with fraud. After SMOTE, 

the number of fraudulent transactions is artificially increased 

by interpolating between existing data points of the minority 

class. 

 

 
Figure 2a: Class Distribution Before SMOTE  

 

Figure 2b: Class Distribution After SMOTE 

Figures 2a and 2b show the class distributions before and after 

the application of SMOTE on the datasets respectively. The 

count of the fraudulent dataset in Figure 2a was low while 

Figure 2b shows an increase in the count of the fraudulent 

dataset, which equals the count of the non-fraudulent dataset. 

4.4 LSTM Model Evaluation 
After training, the LSTM model was evaluated on the test set 

to assess its performance on unseen data The model achieved 

an accuracy of 97.65% and a precision of 94% on the test set. 

The binary cross-entropy loss was also reported. The trained 

model was saved for future use in detecting fraudulent 

transactions. 

 
Figure 3: LSTM Accuracy 
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The training process was visualized via the training and 

validation losses plot and training and validation accuracies. 

Plot. The plots help in understanding the model's performance 

over time and identifying any potential overfitting. 

 
Figure 4a: LSTM Loss Plot 

 

Figure 4b: LSTM Accuracy Plot 

The training and the validation loss plot indicates change over 

the epochs. A decreasing validation loss indicates that the 

model is improving during training while the accuracy plot 

monitors the model’s accuracy on both the training and 

validation sets, hereby giving a visual representation of how the 

model reacts to unseen data. 

4.5 RNN Model Evaluation 
The RNN model was used to access the test data in order to 

evaluate its performance on unseen data. The results showed an 

accuracy of 97% and a precision of 95% on the test set.  

 
Figure 5: RNN Accuracy 

To visualize the training process, the training and validation 

losses as well as the accuracies were plotted in Figures 6a and 

6b to further provide insights into the model's convergence and 

help in detecting potential overfitting. 

  

Figure 6a: RNN Loss Plot 

 
Figure 6b: RNN Accuracy Plot 

 

4.6 Ensemble Model Evaluation  

To evaluate the performance of the ensemble model, standard 

metrics like accuracy, precision, recall, F1-score, and ROC 

AUC were employed. Moreso, the confusion matrix was also 

generated to determine the model’s performance. 

  
Figure 7: Ensemble Model Metrics 

From Figure 7 above, an accuracy of 0.98, precision of 0.98, f1 

score of 0.978, ROC and AUC of 0.99, and recall of 0.976 were 

recorded from the training of the meta learner. 
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To further access the performance of the model, the ROC curve 

and a heatmap of the confusion matrix were generated. The 

ROC curve was to evaluate the model's ability to discriminate 

between fraudulent and legitimate classes while the area under 

the curve (AUC) provided a single measure of this 

performance. The ROC curve was plotted to visualize the 

disparity between the false positive and the true positive rate 

and also differentiate between the fraudulent and legitimate 

transactions. 

Figure 8: The Receiver Operating Characteristic 

(ROC) curve 

In figure 8, the ROC curve area is 1.0 which shows a very good 

prediction performance of the model. A heatmap of the 

confusion matrix graph as represented in figure 8 represented 

the number of true positives, true negatives, false positives, and 

false negatives to give a clearer insight to the model's 

performance. The heat map was used to visualize the confusion 

matrix using the color intensity to represents the frequency of 

correct and incorrect predictions. 

 

Figure 9: Heatmap of the Confusion Matrix 

In figure 9, the figure between the actual and predicted values 

are balanced due to the increase in the negative part of it having 

a high frequency. Summarily, the  

i. LSTM Model achieved an accuracy of 97.65% and 

precision of 94%, demonstrating its effectiveness in 

capturing long-term fraud patterns while the  

ii. RNN Model: Achieved an accuracy of 97% and 

precision of 95%, focusing on short-term patterns 

indicative of fraud. However, the Ensemble Model 

which combines both RNN and LSTM outputs, achieved 

an accuracy of 98%, precision of 98%, recall of 97.6%, 

F1-score of 97.8%, and AUC-ROC of 99.87%. 

This demonstrates the effectiveness of the ensemble approach 

in capturing both short-term and long-term fraud patterns, 

enhancing overall detection accuracy in a cryptocurrency 

blockchain . 

5. CONCLUSION 
The ensemble model that combines the predictions of both the 

LSTM and RNN models has proven to be an effective model 

algorithm for the detection of fraudulent transactions on the 

blockchain. The RNN model was able to identify short-term 

dependencies in the transactional data, while the LSTM model 

was able to successfully identify the long-term patterns that 

may emerge over time. The model presented an improved 

overall accuracy and successfully reduced the classification of 

false positives and false negatives. 

The ensemble model consistently demonstrated high precision 

and at the same time ensured that the transactions that were 

labelled fraudulent were indeed captured as true, while 

sustaining high recall to identify most of the fraudulent 

activities. 

Finally, this work has shown that ensemble learning can 

ge4nerate a more robust and accurate fraud detection system 

rather than the conventional or single models and this makes 

the model more relevant in situations with highly imbalanced 

datasets like cryptocurrency transaction. 
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