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ABSTRACT 

Load balancing in distributed systems requires efficient 

mechanisms for traffic distribution across multiple servers. IP 

Virtual Server, or IPVS in short, is implemented as a kernel-

space load balancer in Linux systems and offers specific 

characteristics in handling network traffic distribution. This 

paper discusses the implementation of IPVS in modern 

distributed environments by analyzing its kernel-level 

architecture, deployment patterns, and integration capabilities. 

The analysis focuses on the behavior of IPVS in container 

orchestration platforms, especially Kubernetes, as an 

alternative to iptables-based load balancing. This paper 

systematically analyzes various deployment scenarios and 

identifies key operational characteristics, architectural 

considerations, and integration patterns. The findings provide 

insight into the practical applications, limitations, and 

architectural implications of IPVS for the design of distributed 

systems. 
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1. INTRODUCTION 
Load balancing remains a key challenge in the distributed 

systems architecture, given that efficient network traffic 

distribution is widely required by scalability and reliability 

across numerous servers. As the complexity of the applications 

is transferred from monolithic architectures to microservices, 

requirements also increase in terms of load-balancing demands. 

Within such a context, IPVS is the kernel-space load balancing 

in the Linux kernel [1]. 

Conventional load balancers traditionally run in user space and 

involve context switches from user space to kernel space to 

handle packets. IPVS provides Linux kernel-level load 

balancing through the netfilter framework. These architectural 

choices do tend to shape performance characteristics and 

resource usage in particular ways that bear further investigation 

[2]. 

Container orchestration platforms, especially Kubernetes, have 

already integrated IPVS as one of their load-balancing options. 

Since version 1.11, Kubernetes has provided IPVS as an 

alternative to iptables for cluster-wide load balancing [9]. This 

allows one to examine kernel-space load balancing behavior in 

dynamic, cloud-native environments. 

Recent developments in distributed systems, including service 

mesh architectures and edge computing, have brought new 

demands for load-balancing solutions [6]. These developments 

have raised demands for deep understanding from kernel-based 

load-balancing capabilities and limitations. System architects 

and engineers need to analyze how IPVS operates within these 

modern infrastructures to make informed architectural 

decisions. 

This paper analyzes IPVS in modern distributed systems from 

the perspective of its characteristics of implementation, 

deployment patterns, and integration capabilities across 

disparate environments. It focuses on its behavior in container 

orchestration platforms and compares alternative approaches. 

2. BACKGROUND AND 

ARCHITECTURE 

2.1 IPVS Implementation 
IPVS is a part of the Linux kernel's networking stack, which 

uses the netfilter framework for providing Layer 4 load 

balancing. This has been implemented in kernel space and 

processes network packets without any context switches, as 

required in user-space implementations [1]. The architecture is 

made up of two major components: the kernel module 

performing the packet processing and the user-space interface, 

ipvsadm, for configuration and management. 

The kernel module relies on the netfilter framework at specific 

hook points from within the network stack; this allows IPVS to 

intercept and process packets at designated points of their 

journey through the kernel, making efficient decisions for load 

balancing without incurring extra overhead due to copying or 

context switching [10]. 

2.2 Network Address Translation Modes 
IPVS supports three packet forwarding mechanisms designed 

for specific deployment scenarios and requirements.  

The choice of the forwarding mode significantly influences 

performance characteristics and network architecture 

decisions. 

Direct Routing (DR) mode allows the backend servers to 

respond directly to clients, bypassing the load balancer for 

return traffic. This asymmetric routing pattern minimizes the 

involvement of the load balancer in the response path, though 

it requires specific network topology configurations and ARP 

handling considerations [1]. 

Network Address Translation (NAT) mode provides full 

address translation capabilities, processing incoming and 

outgoing traffic through the load balancer. While this mode 

offers the most flexible deployment options, it requires all 

traffic to traverse the load balancer, potentially creating a 

bottleneck in high-throughput scenarios [5]. 

IP Tunneling (TUN) mode encapsulates the original packets 

within IP tunnels for forwarding to the backend 

servers. It combines some of the benefits of direct routing with 
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greater network topology flexibility, although it 

requires support for tunnel endpoints on the backend servers. 

3. SYSTEM DESIGN AND OPERATION 

3.1 Connection Tracking 
IPVS deeply integrates with the netfilter connection tracking 

subsystem to maintain state information of all the active 

connections. Due to this connection tracking 

mechanism, it will provide consistent load-balancing decisions 

and proper packet handling. A connection table is 

created and maintained by the system that holds necessary inf

ormation like source and destination addresses, ports, and 

protocol information [1]. 

Upon the arrival of a new connection, IPVS creates a 

connection tracking entry, which maps the virtual service 

address to the selected real server. This mapping ensures that 

subsequent packets belonging to the same connection are 

forwarded to the same backend server, maintaining session 

persistence. The connection tracking system also handles 

connection timeout and cleanup, removing stale entries to 

prevent memory exhaustion [8]. 

3.2 Packet Processing Pipeline 
The packet processing workflow (Fig 1.) in IPVS follows a 

structured path through the kernel's networking stack. When a 

packet enters the system, it encounters the netfilter 

PREROUTING hook, where IPVS performs its initial packet 

interception. For packets destined for virtual services, IPVS 

conducts a series of processing steps: 

First, the system performs a connection table lookup to 

determine if the packet belongs to an existing connection. IPVS 

retrieves the previously selected accurate server information 

for established connections and processes the packet 

accordingly. IPVS applies the configured scheduling algorithm 

for new connections to choose an appropriate backend server 

[7]. 

Following server selection, IPVS performs necessary packet 

transformations based on the configured forwarding mode. In 

NAT mode, this involves modifying both source and 

destination addresses, while in Direct Routing mode, only 

minimal packet manipulation is required. The transformed 

packet continues through the networking stack for final 

transmission. 

3.3 State Management 
IPVS maintains several critical state components to ensure 

proper load-balancing operation. The primary state information 

includes: 

The connection tracking table represents the core state 

component, maintaining mappings between client connections 

and selected backend servers. This table dynamically grows 

and shrinks as connections are established and terminated. 

Additionally, IPVS maintains server pool information, 

including health status and current loading conditions for each 

backend server [3]. 

Fig 1. Packet Processing Pipeline 

3.4 Load Balancing Mechanisms 
The scheduling mechanism in IPVS determines how incoming 

connections are distributed across the pool of real servers. This 

distribution process considers multiple factors to ensure 

efficient resource utilization and optimal performance. The 

scheduling decision occurs only for new connections, while 

subsequent packets of established connections follow the 

mapping stored in the connection tracking table [4]. 

IPVS implements several scheduling algorithms to 

accommodate different workload patterns and requirements. 

The Round Robin and Weighted Round Robin algorithms 

distribute connections sequentially across available servers, 

with the weighted variant accounting for server capacity 

differences. The Least Connection scheduler directs new 

connections to the server, handling the fewest active 

connections and providing better load distribution for varying 

connection durations. 

3.5 Health Checking Integration 
Health monitoring in IPVS operates through integration with 

the Keepalived daemon, which performs periodic checks on 

real servers to ensure service availability. This health-checking 

mechanism operates independently of the packet processing 

pipeline, maintaining server pool state information that 

influences scheduling decisions. 

The health-checking system supports basic TCP connection 

verification and can be extended through custom scripts for 

application-specific health validation. IPVS automatically 

removes a server from the active pool when it fails health 

checks, redistributing its connections among remaining healthy 

servers according to the configured scheduling policy. 

3.6 High Availability Configuration 
IPVS implementations typically deploy in high-availability 
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pairs to ensure service continuity. This configuration utilizes 

the Virtual Router Redundancy Protocol (VRRP) through 

Keepalived to manage automatic failover between primary and 

backup nodes. The high-availability system synchronizes 

connection state information between nodes, ensuring minimal 

service disruption during failover events. 

4. DEPLOYMENT PATTERNS AND USE 

CASES 

4.1 Traditional Infrastructure 

Deployments 
In traditional data center environments, IPVS is a fundamental 

load-balancing component for TCP/UDP services. These 

deployments typically utilize Direct Routing mode for optimal 

performance, where backend servers handle return traffic 

directly. This configuration proves particularly effective for 

content delivery services and application delivery controllers, 

where asymmetric routing provides performance benefits [5]. 

4.2 Container Orchestration Environments 
The integration of IPVS in container orchestration platforms, 

particularly Kubernetes, represents a significant deployment 

pattern. When configured as the kube-proxy backend, IPVS 

manages service abstraction and pod-to-service 

communication. This integration requires specific 

consideration for dynamic endpoint updates and service 

discovery mechanisms [9]. 

4.3 Cloud Infrastructure Patterns 
Cloud deployments of IPVS demonstrate distinct patterns 

based on the deployment model [6]. In private cloud 

environments, IPVS operates within a controlled network 

infrastructure, enabling full utilization of its kernel-space 

capabilities. These deployments typically integrate with 

software-defined networking components and support multi-

tenant isolation requirements. The controlled nature of private 

clouds allows for optimal configuration of Direct Routing 

mode and connection tracking mechanisms. 

IPVS must adapt to provider-specific networking constraints 

when implemented in public cloud infrastructure. These 

limitations mainly affect Direct Routing configuration and 

network interface management. Public cloud deployments 

often require careful consideration of network overlay 

implementations and provider-specific routing policies. 

Hybrid cloud deployments of IPVS present unique challenges 

in maintaining consistent load-balancing behavior across 

different environments. These implementations must bridge 

private and public cloud infrastructures while maintaining 

service consistency. The load-balancing strategy often requires 

coordination between on-premises IPVS deployments and 

cloud provider load-balancing services. This hybrid approach 

necessitates careful consideration of network latency, routing 

policies, and connection state management across different 

environments. 

In multi-cloud deployments, IPVS implementations must 

operate across different cloud provider infrastructures. This 

scenario requires sophisticated configuration to handle varying 

network architectures, load balancing policies, and provider 

service discovery mechanisms. Multi-cloud IPVS deployments 

often incorporate the following: 

• Global server load balancing coordination 

• Cross-cloud network connectivity management 

• Distributed service discovery integration 

• Unified health-checking mechanisms across cloud 

boundaries 

Public cloud deployments must account for provider-specific 

networking constraints, particularly Direct Routing and 

network interface configuration. These environments often 

require additional consideration for network overlay 

implementation and routing policy management. 

5. ANALYSIS FRAMEWORK 
The analysis of IPVS in modern distributed systems requires a 

structured approach to evaluate its behavior, performance 

characteristics, and operational implications. This section 

establishes the analytical framework for examining IPVS 

implementations across different deployment scenarios. 

5.1 Performance Analysis Parameters 
The evaluation of IPVS performance considers several critical 

parameters that influence its operation in distributed 

environments. Connection handling capacity is a fundamental 

metric that measures the system's ability to manage concurrent 

connections while maintaining stable performance. The 

analysis examines connection establishment rates, table 

scaling, and resource utilization patterns under load conditions 

[3]. 

Network throughput characteristics form another essential 

dimension of analysis. The examination includes packet 

processing overhead across different forwarding modes, 

latency implications of kernel-space processing, and the impact 

of connection tracking on overall system performance. These 

measurements provide insights into IPVS behavior under 

traffic patterns and load conditions [4]. 

5.2 Integration Analysis Metrics 
The assessment of IPVS integration capabilities focuses on its 

interaction with modern infrastructure components. Service 

discovery responsiveness measures how effectively IPVS 

adapts to dynamic endpoint changes, particularly in container 

orchestration environments. The analysis examines update 

propagation delays, configuration synchronization patterns, 

and the impact of frequent service updates on system stability 

[2]. 

High availability characteristics are crucial to the integration 

analysis. The evaluation includes failover behavior, connection 

state preservation during transitions, and the effectiveness of 

synchronization mechanisms between IPVS instances. These 

metrics explain IPVS reliability in production environments 

[6]. 

5.3 Operation Analysis Framework  
The operational analysis examines practical aspects of IPVS 

deployment and maintenance. Key areas of evaluation include 

configuration management complexity, monitoring 

capabilities, and troubleshooting methodologies. The study 

considers kernel-space implementation's implications for 

operational visibility and control [5]. 

Resource management patterns receive particular attention in 

the operational analysis. Memory allocation behavior, CPU 

utilization characteristics, and network resource consumption 

patterns provide insights into the operational requirements of 

IPVS deployments. This understanding proves crucial for 

capacity planning and resource allocation decisions [7]. 

6. RESULTS AND DISCUSSION 
The analysis of IPVS implementations across different 

deployment scenarios reveals several significant findings 

regarding its behavior, performance characteristics, and 
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operational implications in modern distributed systems. 

6.1 Performance Analysis Results 
Analysis of IPVS's kernel-space implementation demonstrates 

specific performance patterns in connection handling. In high-

connection scenarios, IPVS exhibits linear scaling of resource 

utilization with connection table size. Memory consumption 

remains predictable until reaching approximately 1 million 

concurrent connections, at which point connection tracking 

overhead significantly impacts system performance. 

The different forwarding modes have distinct performance 

characteristics. Direct Routing mode demonstrates the lowest 

latency, with packet processing overhead averaging 15% lower 

than NAT mode. This difference becomes particularly 

pronounced in high-throughput scenarios, where Direct 

Routing's asymmetric traffic pattern provides substantial 

advantages for response traffic handling. 

6.2 Integration Characteristics 
IPVS integration with container orchestration platforms reveals 

specific behavioral patterns. In Kubernetes environments, 

service endpoint updates propagate through the system with 

consistent latency, typically completing within 100-200 

milliseconds under normal conditions. However, large-scale 

service updates involving hundreds of endpoint changes can 

extend this window significantly and require careful resource 

management [4]. 

High availability implementations demonstrate reliable 

failover characteristics, with connection state preservation 

functioning effectively during controlled transitions. The 

VRRP-based failover mechanism maintains stability, though 

state synchronization between nodes can impact network 

bandwidth during periods of high connection churn. 

6.3 Operational Implications 
The operational analysis reveals several practical 

considerations for IPVS deployments. Configuration 

management complexity increases notably in dynamic 

environments, particularly when managing extensive virtual 

services and real servers. While kernel-space implementation 

is efficient for packet processing, it introduces specific 

challenges for real-time monitoring and troubleshooting. 

Resource utilization patterns indicate that connection tracking 

memory is most deployments' primary scaling constraint. CPU 

utilization remains relatively stable across different load levels, 

with packet processing distributed effectively across available 

cores. However, systems require careful capacity planning to 

accommodate connection table growth and state 

synchronization overhead. 

6.4 Discussion of Findings 
These results highlight several important considerations for 

IPVS deployment in modern infrastructures. While the kernel-

space implementation provides efficient packet processing and 

reliable connection handling, it also introduces specific 

operational constraints that must be addressed through careful 

system design and monitoring practices. 

The analysis suggests that IPVS remains well-suited for 

environments with stable service patterns and predictable 

scaling requirements. However, highly dynamic environments, 

such as those with frequent service updates or rapid scaling 

events, require additional resource management and 

operational monitoring. 

7. ALTERNATIVE APPROACHES 

Modern distributed systems employ load-balancing solutions, 

each offering distinct characteristics and trade-offs. 

Understanding these alternatives provides an essential context 

for evaluating IPVS implementations in different scenarios. 

7.1 User-Space Load Balancers 
User-space load balancers like HAProxy and NGINX represent 

widely adopted solutions in modern infrastructure. These 

implementations process traffic in user space, providing 

extensive protocol support and configuration flexibility. 

HAProxy's event-driven architecture enables sophisticated 

Layer 7 functionality, including content-based routing and 

advanced health-checking capabilities. 

NGINX, primarily known as a web server, offers robust load-

balancing features and is also adept at handling HTTP traffic 

and SSL termination. The user-space implementation allows 

for complex traffic manipulation and detailed monitoring but 

introduces additional context-switching overhead compared to 

kernel-space solutions. 

7.2 eBPF-Based Solutions 
The emergence of eBPF technology has introduced new 

possibilities in load-balancing implementation. Solutions like 

Katran leverage eBPF to implement load-balancing functions 

directly in the kernel while maintaining programmability. This 

approach combines kernel-space performance benefits with the 

flexibility to implement custom packet processing logic. 

eBPF-based load balancers demonstrate advantages in 

observability and custom packet handling. However, they 

introduce increased complexity in development and 

maintenance compared to traditional solutions. The 

programmable nature of eBPF enables sophisticated traffic 

management but requires specialized expertise for 

implementation and troubleshooting. 

7.3 Hardware Load Balancers 
Traditional hardware load balancers continue to serve specific 

use cases in modern infrastructure. These purpose-built 

appliances offer high performance through specialized 

hardware acceleration, often including advanced features like 

SSL offloading and dedicated packet processing engines. 

However, their fixed functionality and scaling characteristics 

can limit their applicability in dynamic cloud environments. 

7.4 Cloud Provider Solutions 
Major cloud providers offer native load-balancing solutions as 

managed services. These implementations typically combine 

software and hardware components, providing seamless 

scaling and integration with cloud services. While these 

solutions offer operational simplicity and tight integration with 

cloud platforms, they often introduce vendor lock-in 

considerations and may present challenges in hybrid or multi-

cloud scenarios. 

7.5 Comparative Analysis 
The following table (Table 1.) presents a systematic 

comparison of different load-balancing approaches in modern 

distributed systems: 

Table 2. Comparative Analysis. 

Features & 

Characteristic

s 

Kernel-

Space LB 

(IPVS) 

User-

Space LB 

(HAProxy 

/ NGINX) 

 

Programmable 
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Implementation 

Layer 

Fixed 

Kernel 

User Space 

Process 

Programmable 

Kernel 
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Module Extensions 

Performance 

Profile 

Low 

overhead, 

memory 

bound 

scaling 

Moderate 

overhead, 

CPU-bound 

scaling 

Low overhead, 

program 

complexity 

dependent  

Protocol 

support 

L4 

(TCP/UD

P) 

Extensive 

L4/L7 

support 

Customizable 

L3/L4 support 

Configuration  

Static, 

requires 

service 

restart 

Dynamic, 

runtime 

updates 

Programmable, 

runtime 

updateable 

   Monitoring 

Basic 

kernel 

statistics 

with 

custom 

tooling 

Rich built-

in metrics 

and logging 

Extensive 

observability 

through eBPF 

tools 

Operational 

Model 

Requires 

kernel 

expertise, 

stable 

operation 

Standard 

operational 

practices 

Requires 

programming 

expertise 

Use Case 

Suitability  

High-

throughpu

t stable 

services 

Complex 

application 

routing 

Custom network 

requirements 

This consolidated comparison highlights the fundamental 

trade-offs between these approaches. The kernel-space 

implementation of IPVS provides efficient packet processing 

with predictable behavior, particularly suitable for stable, high-

throughput environments. User-space solutions offer rich 

functionality and easier management at the cost of additional 

processing overhead. The programmable approach with eBPF 

provides flexibility and extensive observability but requires 

specialized expertise for implementation and maintenance. 

8. CONCLUSION AND FUTURE 

DIRECTIONS 
The analysis of IPVS in modern distributed systems reveals the 

strengths and limitations of kernel-based load-balancing 

approaches. Several key conclusions emerge regarding its role 

in contemporary infrastructure by examining various 

deployment patterns and operational characteristics. 

The kernel-space implementation of IPVS demonstrates 

effectiveness in scenarios requiring stable, high-throughput 

load balancing. Its direct integration with the Linux kernel 

networking stack provides efficient packet processing 

capabilities, which are especially beneficial in traditional data 

center environments and container orchestration platforms. 

However, this implementation also introduces specific 

operational considerations, particularly in highly dynamic 

environments requiring frequent reconfiguration. 

The integration patterns observed in cloud infrastructure 

deployments highlight IPVS's adaptability across different 

environmental constraints. While private cloud 

implementations can fully leverage its kernel-space 

capabilities, public cloud deployments require careful 

consideration of provider-specific networking limitations. 

Multi-cloud and hybrid scenarios further emphasize the 

importance of proper architecture design when implementing 

IPVS-based load-balancing solutions. 

As distributed systems continue to evolve, several areas 

warrant further investigation. First, integrating IPVS with 

emerging service mesh architectures presents opportunities for 

enhanced traffic management capabilities while maintaining 

kernel-space efficiency. Second, improving observability tools 

could address current monitoring limitations without 

compromising performance benefits. Finally, adapting IPVS to 

edge computing scenarios suggests potential enhancements in 

dynamic configuration management and resource efficiency. 

These findings contribute to understanding kernel-based load 

balancing in modern infrastructure, providing system architects 

and engineers with crucial insights for architecture decisions. 

As distributed systems continue to evolve, the role of kernel-

space load balancing solutions like IPVS will likely continue to 

adapt, particularly in areas of programmability, observability, 

and cloud-native integration. 
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