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ABSTRACT 

This paper presents a modified version of Memcached which 

uses Hopscotch hashing technique, optimistic locking and the 

CLOCK algorithm. These techniques combined together 

enable the resulting system to perform better than the original 

Memcached. Although these modifications are implemented on 

top of Memcached, they apply more generally to many of 

today’s read-intensive caching systems.   
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1. INTRODUCTION 
Hash tables are fundamental data structures that implement an 

association between a key and a value. Provided a good hash 

function, hash tables provide the ability to lookup or insert a 

key in constant time. Given the ubiquitous nature of their usage 

in modern computing environments, any improvement in their 

performance is likely to have a wide ranging impact. 

Hopscotch hashing [6] is a recent proposal for a resizable 

hashing algorithm targeted at both uniprocessor and 

multiprocessor machines. This algorithm describes a multi-

phased technique that incorporates chaining, cuckoo-hashing 

and linear probing. This results in a hash table data structure 

with high cache hit ratios and low locking overheads. The 

proposed approach also improves upon the performance of 

existing approaches at high hash table densities, delivering 

good performance even when the table is over 90% full. 

This project aims to demonstrate the effectiveness of this new 

hopscotch based hashing algorithm on a production workload. 

In addition, it also aims to demonstrate the effectiveness of 

improved algorithm and data structure design while 

incorporating the hopscotch algorithm. As a case study, it 

focuses on Memcached [5]. 

Memcached is a high performance, distributed in-memory 

caching system. Memcached implements a hash table data 

structure, handling collisions and LRU cache eviction using 

linked lists. The design is fairly standard, relying on coarse-

grained locking to ensure consistency between multiple 

processes in a multi-core CPU environment. Additionally, to 

maintain LRU state, Memcached stores a significant amount of 

per-key metadata - the amount of memory consumed by the 

metadata is often significantly higher than that consumed by 

the keys themselves for many workloads. This project focuses 

on redesigning key internal components of Memcached to be 

more efficient in a multiprocessor environment when deployed 

with the Hopscotch algorithm.  

2. RELATED WORK 
MemC3 [4] proposes improvements to the Memcached system 

with the use of techniques like optimistic cuckoo hashing [7, 

10] – an approximate LRU algorithm – and comprehensive 

implementation of optimistic locking. improving memory 

efficiency and throughput. 

MemC3’s design takes advantage of cache locality, instruction 

pipelining and general workload characteristics. Many 

Memcached workloads are predominantly read, with a few 

writes. Hence in MemC3, Memcached’s expensive global lock 

is replaced with an optimistic locking scheme that makes the 

common case go fast. Exploiting the fact that many common 

Memcached workloads target very small objects, MemC3 

significantly reduces the amount of state stored per key and 

replaces the strict LRU replacement policy with a CLOCK [3] 

based approximate LRU replacement. 

3. HOPSCOTCH HASHING 
Hopscotch hashing is a new type of open-addressable resizable 

hash table that is directed at cache sensitive machines, a class 

that includes most, if not all of the state-of-the-art 

uniprocessors and multicore machines. It provides a contains() 

method that runs in deterministic constant time and requires 

only two cache loads. 

3.1 Prevalent hashing schemes 
Chained hashing consists of an array of buckets containing a 

linked list of items. Though this approach is more competent 

than other approaches regarding the time it takes to locate an 

item, its use of dynamic memory allocation and indirection 

makes for poor memory management. This approach is even 

more expensive in a concurrent environment, as dynamic 

memory management typically requires a thread-safe memory 

manager or garbage collector - this adds considerable overhead 

in a concurrent environment. 

Linear Probing is an open-addressable hashing scheme in 

which items are kept in a contiguous array, each entry of which 

is a bucket for one item. A new item is inserted by hashing a 

key to a particular entry, and scanning forward from that entry 

until an empty bucket is located. Lookup proceeds in a similar 

manner. Because the array is accessed sequentially, it has good 

cache locality, as each cache line can hold multiple entries of 

the array. Unfortunately, linear probing has inherent 

limitations: because every contains() call searches linearly for 

the key, performance degrades as the table fills up. 

Cuckoo hashing [10] is an open-addressed scheme that, unlike 

linear probing, requires only a deterministic constant number 

of steps to locate an item. Cuckoo hashing uses two hash 

functions. A new item, x, is inserted by hashing the item to two 

array indexes. If either slot is empty, x is added there. If both 

are full, one of the occupants is displaced by the new item. The 

displaced item is then reinserted using its other hash function, 

possibly displacing another item, and this repeats going 

forward. If the chain of displacements grows too long, the table 

is resized. A disadvantage of cuckoo hashing is accessing 

sequences of unrelated locations on different cache lines. 

Additionally, Cuckoo hashing performance degrades when the 

table is more than 50% full, forcing frequent table resizes for 

growing cache data. 
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3.2 Hopscotch hashing details 
The Hopscotch algorithm integrates advantageous 

characteristics of cuckoo hashing, chaining, and linear probing 

through a unique approach. It employs a singular hash function, 

denoted as h. An element subjected to hashing via h to a 

specific hash entry will be located at that precise location or 

within one of the subsequent (H - 1) entries. In the present 

implementation, H is a constant value of 32, corresponding to 

the standard machine word size. Consequently, a virtual bucket 

possesses a predetermined size and exhibits overlap with the 

succeeding (H - 1) buckets. Each entry within the hash table 

incorporates a hop-information bitmap, which delineates which 

of the ensuing (H - 1) entries were hashed to the virtual bucket 

associated with the current entry. This mechanism facilitates 

the rapid retrieval of an element by examining the bitmap to 

ascertain which entries belong to the bucket, followed by a 

sequential scan through the fixed number of entries. 

In the scenario where element x hashes to location I, the 

insertion algorithm operates as follows: commencing at entry I, 

linear probing is employed to locate an unoccupied slot at index 

j. If index j resides within (H - 1) positions of i, x is placed at 

that location, and the algorithm terminates. Otherwise, j is 

deemed excessively distant from i. To generate an unoccupied 

entry closer to i, an element y is sought whose hash value falls 

between i and j, yet remains within (H - 1) positions of j and 

whose entry lies beyond j. Displacing y to j creates a new 

unoccupied slot nearer to i. This iterative process continues 

until j is ultimately displaced to a location that falls within the 

neighborhood of i. Should no such element y exist, or if bucket 

i already contains H elements; the table is resized and rehashed. 

Essentially, the Hopscotch method endeavors to move the 

vacant slot towards the target bucket, in contrast to the 

approach of linear probing, where the slot remains at its 

discovered location, or cuckoo hashing, where an element is 

displaced from the target bucket prior to seeking an alternative 

location. The displacement sequence in cuckoo hashing can 

exhibit cyclical behavior, necessitating implementations to 

typically abort and resize if the chain of displacements becomes 

inordinately long. Consequently, cuckoo hashing demonstrates 

optimal performance when table occupancy remains below 

50%. Conversely, in Hopscotch hashing, the displacement 

sequence cannot form cycles; either the vacant slot is moved 

closer to the hash value of the new element, or such movement 

is unfeasible. As a consequence, Hopscotch hashing supports 

considerably higher load factors. 

Hopscotch hashing possesses the advantage of accommodating 

multiple elements within buckets. However, unlike chaining, it 

maintains exceptional locality, as elements are situated in 

contiguous memory locations. Furthermore, it facilitates 

element insertion in expected constant time, similar to linear 

probing, while simultaneously guaranteeing that elements are 

invariably found within their designated buckets in 

deterministic constant time. 

Figure 1: This figure [6]  illustrates the insert process in the Hopscotch algorithm when there is no free slot with the 

neighborhood. Element v was hashed to location 6 but there was only a free slot at position 13. Element at index 11 had to be 

displaced to element at index 13, element at index 9 was displaced to index 11, element at index 6 was moved over to the 

element at index 9 and finally the element v could be placed at the now-empty location 6. Note that all these transformations 

respect the rule that an element must be found with H locations of its original location.

4. MEMCACHED INTERNALS 
Memcached has a client-server architecture in which clients 

communicate with servers over the network using a simple 

GET/SET/DELETE interface. 

As an in-memory key-value cache, it houses arbitrary data 

fragments, encompassing strings and objects, produced from 

database operations, API requests, and page rendering 

processes. 
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Internally, Memcached uses a hashtable to index (key, value) 

tuples. Collisions are stored in a linked list in descending order 

of their access times. This facilitates the implementation of its 

least-recently-used (LRU) cache eviction policy. Chaining 

collisions in a linked list is efficient for updating single keys, 

but if a large number of keys collide, it could increase lookup 

times. 

Memcached uses slab-based memory allocation. Memory is 

divided into 1MB pages, each further divided into fixed-size 

chunks. Key-value pairs are stored in an appropriately sized 

chunk. The size and number of chunks in the slab class depends 

on the particular slab class. New keys are inserted into the slab 

class of appropriate size. 

Each slab class maintains the items in a strict LRU-based order. 

Figure 3 demonstrates the architecture of a slab class using a 

doubly linked list. Memcached maintains an array of LRU head 

and tail pointers that help keep the LRU nature. The least 

recently used item is maintained at the tail of the list and 

belongs to a particular slab class. Upon every access, an item is 

moved to the head of the corresponding slab list. 

There are two main components inside Memcached (as shown 

in Figure 3) - the item cache where the items, i.e (key, value) 

tuples are actually stored and the hashtable itself, which serves 

as an index into the cache. Thus, each item is a part of a linked 

list in the bucket to which it was hashed to, and the LRU list of 

the slab to which it belongs - this accounts for a total of 3 

pointers that Memcache must maintain for each of the items 

that it stores. 

 

Figure 2: Memcached slab-based LRU [9] 

 
Figure 3: Memcached core data structures [8] 

 

5. REAL LIFE WORKLOADS 
Atikoglu et al. [1] have shown that real-life  workloads are 

often read-heavy, and dominated by small objects. However, 

Memcached does not consider these factors in its current 

design. Though most queries are GETs, this operation is not 

optimized, and locks are used extensively on the query path. 

Each GET operation must acquire a lock for exclusive access 

to a particular key, and after reading the value, it must get a 

global lock to update the LRU linked list. 

The following sections demonstrate the techniques employed 

to remove locks from the query path of READ operations. The 

use of locks on the read path are removed by using optimistic 

locking. Since readers dominate writing, it is assumed there is 

only a single writer thread in the system, so there can never be 

writer-writer interleaving. The following section(s) detail the 

implementation of these ideas. 

6. OPTIMISTIC LOCKING 
The implementation ensures that inserts are atomic with respect 

to lookups. The single writer in the system only needs to 

consider the interleaving of an insert operation with a lookup 

operation. All other interleavings (insert-insert, lookup-lookup) 

are either impossible or non-problematic. This uses a 

straightforward and intuitive locking mechanism, similar to 

Memcached's approach, which employs locks at the hash table 

level and per slab. This simple yet reliable approach, while 

limiting scalability, provides a robust solution for the system. 

The implementation employs a single writer to synchronize 

Inserts and Lookups with minimal overhead. To avoid the use 

of locks, each key in the hash table is associated with a version 

counter. This counter is updated during insertion operations, 

and any concurrent modifications are detected by comparing 

version numbers during lookups. This strategy promotes both 

efficiency and the preservation of optimal system performance. 

A version counter for every key in the hash table is not stored, 

because that would take space proportional to the number of 

keys in the hash table, which could be millions. This approach 

could result in a race condition because checking or updating 

the version of a specific key requires an initial lookup in the 

hash table to locate the key-value object. However, this initial 

lookup is not thread-safe as it is not protected by any lock. 

Instead, a fixed size array of version counters is kept. Each key 

maps to one of the version counters in this array. In the 

implementation, the size of this array is 8192 i.e., it allocates 

space for 8192 version counters (32 KB) irrespective of the 

number of keys in the hash table. An array of this size can 

conveniently fit in the processor caches. The number of keys in 

the hash table will, more often than not, be higher than 8192, 

meaning multiple keys will share a version counter (as shown 

in Figure 4). This, in turn, means that an update operation on 

one key could stall a lookup operation on another key if they 

happen to share the same version counter. This approach does 

limit concurrency to some extent but it can be seen that the 

chance of “false retry” (re-reading a key due to modification of 

an unrelated key) is roughly about 0.01% [4]. 

The actual optimistic locking happens as follows. Before 

updating a key, the Insert process increments the version 

counter for the key. This indicates to the other Lookups that 

there is an ongoing update operation. After the update is done, 

the version counter is again incremented by one to indicate 

completion. As for Lookups, it first snapshots the version for 

that key. If the version is odd it knows that a concurrent update 

is going on and retries itself. If the version is even, the Lookup 

operation proceeds to completion. After it finishes reading, it 

snapshots the counter again and compares the new version with 

the old one. If the two versions differ, the writer must have 

modified the version and the Lookup should be retried. 
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Figure 4: Hash Table Overview: The hash table is an 

array of buckets where each bucket points into a key-

value object. Each key in the hash table is associated with 

one key version counter. As shown in the figure, more 

than one key could be associated with the same version 

counter. 

7. CLOCK ALGORITHM 
Memcached uses a strict LRU policy for evicting items from 

the cache. This policy has two main problems. First, two 

pointers (next, prev) are required to maintain the items in the 

per-slab doubly-linked LRU list. When the items are very 

small, this becomes a major source of space overhead. Second, 

all updates to a particular LRU list must be serialized, and 

hence, this is a synchronization bottleneck. 

The CLOCK [3] algorithm helps make the cache management 

efficient and concurrent. It is a mechanism to implement an 

approximate LRU instead of a strict LRU. The space saved by 

replacing pointers with bit entries allows the cache to store 

more entries, improving the hit ratio. 

A cache must implement two functions related to its 

replacement policy: 

1. Update to keep track of the recency after querying a 

key in the cache 

2. Evict to select keys to purge when inserting keys into 

a full cache 

Memcached keeps each key-value entry in a doubly-linked-list-

based LRU queue within its slab class. After each cache query, 

Update moves the accessed entry to the head of its queue; to 

free space when the cache is full, Evict replaces the entry at the 

tail of the queue with the new key-value pair. This ensures strict 

LRU eviction in each queue, but unfortunately, it also requires 

two pointers per key for the doubly-linked list, and, more 

importantly, all updates to one linked list are serialized. Every 

read access requires an update, and thus the queue permits no 

concurrency even for read-only workloads. 

In the CLOCK algorithm, there is a circular buffer and a virtual 

hand for each slab class. A bit in the buffer represents the 

recency for that item. A value of 1 means that the item is recent, 

otherwise it is not. Each Update simply sets the recency bit to 

1. Evict checks the bit currently pointed to by the hand. If the 

bit is 0, the corresponding item is selected for eviction. If the 

bit is 1, it is reset to 0 and the hand is advanced in the buffer 

until a bit of 0 is encountered. 

8. EVALUATION 
This section examines the effects that the proposed techniques 

and optimizations have had on performance and space 

efficiency. The investigation starts with the cache system, then 

evaluates the hash table and analyzes the entire system. 

8.1 Platform 
All experiments use an Amazon Web Services (AWS) Elastic 

Compute Cloud instance. Since the machine will spend most of 

its time performing memory reads and writes, an r3.xlarge EC2 

instance is used. It has the configuration in Table 1. 

Amazon recommends R3 instances for high performance 

databases, distributed memory caches and in-memory 

analytics. 

 

Table 1. Evaluation configuration 

CPU Intel Xeon E5-2670 v2 @ 2.50GHz 

Number of Cores 4 

DRAM 30.5 GB 

 

8.2 Workload Data 
A workload of 10 million key-value queries was generated 

using the YCSB benchmark [2], with the queries following a 

Zipfian distribution. The Zipfian distribution, which falls under 

the category of discrete power-law probability distributions, is 

frequently employed to model empirical data in the physical 

and social sciences due to its ability to approximate various 

real-world phenomena. 

Two workloads are generated using YCSB: a read-only 

workload, where 10 million elements are inserted into the hash 

table (the load stage) and then perform 10 million read-only 

queries on it, and a read-mostly workload, where 10 million 

elements are inserted into the hash table (the load stage) and 

then run 10 million queries on it, 95% of which are read. The 

rest of this paper refers to these two as Workload C and 

Workload B, respectively. 

The motivation behind Workload C (read-only) was to show 

the advantages of optimistic locking in a read-only scenario, 

where no locks need to be taken at all. Workload B was chosen 

because it represented the most common balance between reads 

and writes seen in the “real world.” 

8.3 Cache Microbenchmark 
Each key is 16 bytes and each value is 32 bytes. The cache size 

ranges from 64MB to 512MB. This cache size parameter does 

not  include the space occupied by the hash table, only the space 

used to store the item object. 

8.3.1 Space efficiency 
Table 2 shows how the maximum number of items (16-byte 

key and 32-byte value) a cache can store given the different 

cache sizes. The space to store the index hash tables is separate 

from the given cache space in Table 2. The hash table capacity 

is set to be larger than the maximum number of items that the 

cache space can possibly store. 

A linear scaling is observed in the number of items that can be 

stored with increase in cache size. Both MemC3 and Hopscotch 

have better space efficiency than Memcached. Memcached 

incurs a considerable overhead even for small key-value pairs. 

It always allocates 56 bytes regardless of item size. This is 

because of the number of pointers that it has to keep track of: 

two pointers (next and prev maintaining the LRU) and one for 

the hash table itself. MemC3 and this Hopscotch 
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implementation remove these pointers in replacing strict LRU 

with approximate LRU or the CLOCK algorithm. 

The space that is saved per item means that more items can be 

stored in the same amount of cache. Since the same slab and 

cache architecture as MemC3 is followed, and since (as 

mentioned above), the experiment is bounded by the cache size 

and not by the hash table size, the cache implementation with 

Hopscotch has the same number of items as MemC3. 

Table 2. Comparison of number of items stored as cache 

size increases 

 Number of items stored (in millions) 

Cache Size 

(in MB) 
Memcached MemC3 Hopscotch 

64 0.56 0.64 0.64 

128 1.11 1.29 1.29 

256 2.22 2.58 2.58 

512 4.47 5.16 5.16 

8.3.2 Cache hit ratio 
Table 3 compares the hit ratios of Memcached, MemC3, and 

Hopscotch. As expected from the previous table, showing the 

maximum number of items stored for each cache size, the hit 

ratios increase with cache sizes for all three systems. However, 

comparing the relative hit ratios between the three systems is 

more interesting. Predictably, MemC3 performs better than 

Memcached. The modified Hopscotch performs at par with or 

better than Memcached, but it still has lesser hit ratios than 

MemC3 for all sizes. 

MemC3 makes several optimizations in its system, one of 

which is to enable ``hugepages" in Linux. Hugepages is a 

mechanism that allows the Linux kernel to utilize the multiple 

page size capabilities of modern hardware architectures. Linux 

uses pages as the basic unit of memory, where physical memory 

is partitioned and accessed using the basic page unit. The 

default page size is 4096 Bytes in the x86 architecture. 

Hugepages allow large amounts of memory to be utilized with 

a reduced overhead. Linux uses “Translation Lookaside 

Buffers” (TLB) in the CPU architecture. These buffers contain 

mappings of virtual memory to actual physical memory 

addresses. So utilizing a huge amount of physical memory with 

the default page size consumes the TLB and adds processing 

overhead. 

The Linux kernel can set aside a portion of physical memory to 

be addressed using a larger page size. Since the page size is 

higher, there will be less overhead managing the pages with the 

TLB. Systems with large amounts of memory can be 

configured to utilize the memory more efficiently by setting 

aside a portion dedicated to huge pages. 

This optimization is likely responsible for the improvement in 

hit ratio that MemC3 is seeing over this paper’s 

implementation, and is planned to be added to the 

implementation for comparison in the future. 

8.4 Hash Table Microbenchmark 
8.4.1 Multithreaded scalability 
This subsection investigates the lookup performance of a single 

thread and the aggregate throughput of a varying number of 

threads all accessing the same hash table. The hash tables are 

linked into a workload generator directly and benchmarked on 

a local machine. 

Figure 5 and Figure 6 show the results of running Workload 

B and C on Memcached, MemC3 and this paper’s 

implementation of Hopscotch for 1, 2, 4, 6 and 8 threads. 

Recall that the r3.xlarge system has 4 cores, so the throughput 

is expected to scale up to 4 threads. This is observed in both 

Figure 5 and Figure 6. The throughput scales roughly linearly 

up to 4 threads. Beyond 4 threads Memcached and Hopscotch 

plateau. 

Interestingly, MemC3 continues to scale to 6 threads. Again, 

the MemC3 paper mentions CPU-affinity and scheduling 

optimizations that it makes while handling multiple requests. 

Again, future work will implement this optimization in this 

paper’s version of Hopscotch and compare it against MemC3. 

It is important to note that Figure 5 and 6 are only intended as 

a display of how throughput scales with the number of threads. 

They are not meant as a comparison of throughput between the 

three systems. Although the data points plotted are the average 

of three runs in each configuration, the amount of variance 

observed in the throughput was high. For example, in Workload 

C, for 6 threads, MemC3 showed a minimum of 68946.88 

requests per second and a maximum of 89911.20 requests per 

second. The suspicion is that AWS is to blame for this large 

variance. AWS is a multi-tenant system, and users do not have 

complete control of the hardware (in fact, a request for an 

instance returns a virtual machine, not a dedicated bare 

machine). 

 
Figure 5: Workload B multithreaded throughput 

 
Figure 6: Workload C multithreaded throughput 

It would be more informative to run on dedicated machines, so 

the experiment could record a series of data with low variance. 

This will give us a better platform to compare the throughputs 

of Memcached, MemC3 and this paper’s version of Hopscotch. 

Table 3. Comparison of hit ratios as cache size increases 

 Hit ratio 

Cache Size 

(in MB) 
Memcached MemC3 Hopscotch 

64 0.4956 0.5104 0.4941 

128 0.5553 0.5668 0.5516 

256 0.6296 0.6453 0.6345 

512 0.7408 0.7722 0.7643 



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.64, January 2025 

41 

9. CONCLUSION 
Memcached was to use the hopscotch hashing technique, 

optimistic locking for high concurrency and CLOCK-based 

cache management with only 1-bit per cache entry to 

approximate LRU eviction. The evaluation shows that the 

implementation achieves performance (both throughput and hit 

ratio) as good as Memcached or even better. The consistent hit 

ratios observed with different kinds of workloads for multiple 

runs of the same experiment gives us confidence about the 

correctness of this paper’s implementation. The main 

motivation for the project was the significant improvement of 

MemC3 over original Memcached as claimed by the authors of 

Memc3. The experiments show performance improvement 

with both hopscotch and Memc3 over original Memcached but 

not as high as mentioned in the Memc3 paper. 

10. FUTURE WORK 
This work could be extended both in terms of implementation 

and evaluation. As for implementation, optimizations 

employed by MemC3 (like enabling hugepage support, 

replacing memcmp with integer-based comparison, etc.) could 

be tried out. In terms of evaluation, there is a lot of scope for 

performing extensive scalability testing on multicore 

processors. This will give us a better idea as to how much 

performance improvement could be achieved using the 

optimistic locking approach. Also, both the above changes 

(namely optimistic locking and CLOCK algorithm) could be 

applied incrementally and their effects could be profiled 

individually 
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