
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.64, January 2025

36

A High-Performance Memcached Implementation using

Hopscotch Hashing and Lock-Free Techniques

Udbhav Prasad Suraj Dharmapuram

ABSTRACT

This paper presents a modified version of Memcached which

uses Hopscotch hashing technique, optimistic locking and the

CLOCK algorithm. These techniques combined together

enable the resulting system to perform better than the original

Memcached. Although these modifications are implemented on

top of Memcached, they apply more generally to many of

today’s read-intensive caching systems.

Keywords

Hopscotch Hashing, Optimistic Locking, Distributed Caching,

CLOCK Algorithm, Memory Efficiency

1. INTRODUCTION
Hash tables are fundamental data structures that implement an

association between a key and a value. Provided a good hash

function, hash tables provide the ability to lookup or insert a

key in constant time. Given the ubiquitous nature of their usage

in modern computing environments, any improvement in their

performance is likely to have a wide ranging impact.

Hopscotch hashing [6] is a recent proposal for a resizable

hashing algorithm targeted at both uniprocessor and

multiprocessor machines. This algorithm describes a multi-

phased technique that incorporates chaining, cuckoo-hashing

and linear probing. This results in a hash table data structure

with high cache hit ratios and low locking overheads. The

proposed approach also improves upon the performance of

existing approaches at high hash table densities, delivering

good performance even when the table is over 90% full.

This project aims to demonstrate the effectiveness of this new

hopscotch based hashing algorithm on a production workload.

In addition, it also aims to demonstrate the effectiveness of

improved algorithm and data structure design while

incorporating the hopscotch algorithm. As a case study, it

focuses on Memcached [5].

Memcached is a high performance, distributed in-memory

caching system. Memcached implements a hash table data

structure, handling collisions and LRU cache eviction using

linked lists. The design is fairly standard, relying on coarse-

grained locking to ensure consistency between multiple

processes in a multi-core CPU environment. Additionally, to

maintain LRU state, Memcached stores a significant amount of

per-key metadata - the amount of memory consumed by the

metadata is often significantly higher than that consumed by

the keys themselves for many workloads. This project focuses

on redesigning key internal components of Memcached to be

more efficient in a multiprocessor environment when deployed

with the Hopscotch algorithm.

2. RELATED WORK
MemC3 [4] proposes improvements to the Memcached system

with the use of techniques like optimistic cuckoo hashing [7,

10] – an approximate LRU algorithm – and comprehensive

implementation of optimistic locking. improving memory

efficiency and throughput.

MemC3’s design takes advantage of cache locality, instruction

pipelining and general workload characteristics. Many

Memcached workloads are predominantly read, with a few

writes. Hence in MemC3, Memcached’s expensive global lock

is replaced with an optimistic locking scheme that makes the

common case go fast. Exploiting the fact that many common

Memcached workloads target very small objects, MemC3

significantly reduces the amount of state stored per key and

replaces the strict LRU replacement policy with a CLOCK [3]

based approximate LRU replacement.

3. HOPSCOTCH HASHING
Hopscotch hashing is a new type of open-addressable resizable

hash table that is directed at cache sensitive machines, a class

that includes most, if not all of the state-of-the-art

uniprocessors and multicore machines. It provides a contains()

method that runs in deterministic constant time and requires

only two cache loads.

3.1 Prevalent hashing schemes
Chained hashing consists of an array of buckets containing a

linked list of items. Though this approach is more competent

than other approaches regarding the time it takes to locate an

item, its use of dynamic memory allocation and indirection

makes for poor memory management. This approach is even

more expensive in a concurrent environment, as dynamic

memory management typically requires a thread-safe memory

manager or garbage collector - this adds considerable overhead

in a concurrent environment.

Linear Probing is an open-addressable hashing scheme in

which items are kept in a contiguous array, each entry of which

is a bucket for one item. A new item is inserted by hashing a

key to a particular entry, and scanning forward from that entry

until an empty bucket is located. Lookup proceeds in a similar

manner. Because the array is accessed sequentially, it has good

cache locality, as each cache line can hold multiple entries of

the array. Unfortunately, linear probing has inherent

limitations: because every contains() call searches linearly for

the key, performance degrades as the table fills up.

Cuckoo hashing [10] is an open-addressed scheme that, unlike

linear probing, requires only a deterministic constant number

of steps to locate an item. Cuckoo hashing uses two hash

functions. A new item, x, is inserted by hashing the item to two

array indexes. If either slot is empty, x is added there. If both

are full, one of the occupants is displaced by the new item. The

displaced item is then reinserted using its other hash function,

possibly displacing another item, and this repeats going

forward. If the chain of displacements grows too long, the table

is resized. A disadvantage of cuckoo hashing is accessing

sequences of unrelated locations on different cache lines.

Additionally, Cuckoo hashing performance degrades when the

table is more than 50% full, forcing frequent table resizes for

growing cache data.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.64, January 2025

37

3.2 Hopscotch hashing details
The Hopscotch algorithm integrates advantageous

characteristics of cuckoo hashing, chaining, and linear probing

through a unique approach. It employs a singular hash function,

denoted as h. An element subjected to hashing via h to a

specific hash entry will be located at that precise location or

within one of the subsequent (H - 1) entries. In the present

implementation, H is a constant value of 32, corresponding to

the standard machine word size. Consequently, a virtual bucket

possesses a predetermined size and exhibits overlap with the

succeeding (H - 1) buckets. Each entry within the hash table

incorporates a hop-information bitmap, which delineates which

of the ensuing (H - 1) entries were hashed to the virtual bucket

associated with the current entry. This mechanism facilitates

the rapid retrieval of an element by examining the bitmap to

ascertain which entries belong to the bucket, followed by a

sequential scan through the fixed number of entries.

In the scenario where element x hashes to location I, the

insertion algorithm operates as follows: commencing at entry I,

linear probing is employed to locate an unoccupied slot at index

j. If index j resides within (H - 1) positions of i, x is placed at

that location, and the algorithm terminates. Otherwise, j is

deemed excessively distant from i. To generate an unoccupied

entry closer to i, an element y is sought whose hash value falls

between i and j, yet remains within (H - 1) positions of j and

whose entry lies beyond j. Displacing y to j creates a new

unoccupied slot nearer to i. This iterative process continues

until j is ultimately displaced to a location that falls within the

neighborhood of i. Should no such element y exist, or if bucket

i already contains H elements; the table is resized and rehashed.

Essentially, the Hopscotch method endeavors to move the

vacant slot towards the target bucket, in contrast to the

approach of linear probing, where the slot remains at its

discovered location, or cuckoo hashing, where an element is

displaced from the target bucket prior to seeking an alternative

location. The displacement sequence in cuckoo hashing can

exhibit cyclical behavior, necessitating implementations to

typically abort and resize if the chain of displacements becomes

inordinately long. Consequently, cuckoo hashing demonstrates

optimal performance when table occupancy remains below

50%. Conversely, in Hopscotch hashing, the displacement

sequence cannot form cycles; either the vacant slot is moved

closer to the hash value of the new element, or such movement

is unfeasible. As a consequence, Hopscotch hashing supports

considerably higher load factors.

Hopscotch hashing possesses the advantage of accommodating

multiple elements within buckets. However, unlike chaining, it

maintains exceptional locality, as elements are situated in

contiguous memory locations. Furthermore, it facilitates

element insertion in expected constant time, similar to linear

probing, while simultaneously guaranteeing that elements are

invariably found within their designated buckets in

deterministic constant time.

Figure 1: This figure [6] illustrates the insert process in the Hopscotch algorithm when there is no free slot with the

neighborhood. Element v was hashed to location 6 but there was only a free slot at position 13. Element at index 11 had to be

displaced to element at index 13, element at index 9 was displaced to index 11, element at index 6 was moved over to the

element at index 9 and finally the element v could be placed at the now-empty location 6. Note that all these transformations

respect the rule that an element must be found with H locations of its original location.

4. MEMCACHED INTERNALS
Memcached has a client-server architecture in which clients

communicate with servers over the network using a simple

GET/SET/DELETE interface.

As an in-memory key-value cache, it houses arbitrary data

fragments, encompassing strings and objects, produced from

database operations, API requests, and page rendering

processes.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.64, January 2025

38

Internally, Memcached uses a hashtable to index (key, value)

tuples. Collisions are stored in a linked list in descending order

of their access times. This facilitates the implementation of its

least-recently-used (LRU) cache eviction policy. Chaining

collisions in a linked list is efficient for updating single keys,

but if a large number of keys collide, it could increase lookup

times.

Memcached uses slab-based memory allocation. Memory is

divided into 1MB pages, each further divided into fixed-size

chunks. Key-value pairs are stored in an appropriately sized

chunk. The size and number of chunks in the slab class depends

on the particular slab class. New keys are inserted into the slab

class of appropriate size.

Each slab class maintains the items in a strict LRU-based order.

Figure 3 demonstrates the architecture of a slab class using a

doubly linked list. Memcached maintains an array of LRU head

and tail pointers that help keep the LRU nature. The least

recently used item is maintained at the tail of the list and

belongs to a particular slab class. Upon every access, an item is

moved to the head of the corresponding slab list.

There are two main components inside Memcached (as shown

in Figure 3) - the item cache where the items, i.e (key, value)

tuples are actually stored and the hashtable itself, which serves

as an index into the cache. Thus, each item is a part of a linked

list in the bucket to which it was hashed to, and the LRU list of

the slab to which it belongs - this accounts for a total of 3

pointers that Memcache must maintain for each of the items

that it stores.

Figure 2: Memcached slab-based LRU [9]

Figure 3: Memcached core data structures [8]

5. REAL LIFE WORKLOADS
Atikoglu et al. [1] have shown that real-life workloads are

often read-heavy, and dominated by small objects. However,

Memcached does not consider these factors in its current

design. Though most queries are GETs, this operation is not

optimized, and locks are used extensively on the query path.

Each GET operation must acquire a lock for exclusive access

to a particular key, and after reading the value, it must get a

global lock to update the LRU linked list.

The following sections demonstrate the techniques employed

to remove locks from the query path of READ operations. The

use of locks on the read path are removed by using optimistic

locking. Since readers dominate writing, it is assumed there is

only a single writer thread in the system, so there can never be

writer-writer interleaving. The following section(s) detail the

implementation of these ideas.

6. OPTIMISTIC LOCKING
The implementation ensures that inserts are atomic with respect

to lookups. The single writer in the system only needs to

consider the interleaving of an insert operation with a lookup

operation. All other interleavings (insert-insert, lookup-lookup)

are either impossible or non-problematic. This uses a

straightforward and intuitive locking mechanism, similar to

Memcached's approach, which employs locks at the hash table

level and per slab. This simple yet reliable approach, while

limiting scalability, provides a robust solution for the system.

The implementation employs a single writer to synchronize

Inserts and Lookups with minimal overhead. To avoid the use

of locks, each key in the hash table is associated with a version

counter. This counter is updated during insertion operations,

and any concurrent modifications are detected by comparing

version numbers during lookups. This strategy promotes both

efficiency and the preservation of optimal system performance.

A version counter for every key in the hash table is not stored,

because that would take space proportional to the number of

keys in the hash table, which could be millions. This approach

could result in a race condition because checking or updating

the version of a specific key requires an initial lookup in the

hash table to locate the key-value object. However, this initial

lookup is not thread-safe as it is not protected by any lock.

Instead, a fixed size array of version counters is kept. Each key

maps to one of the version counters in this array. In the

implementation, the size of this array is 8192 i.e., it allocates

space for 8192 version counters (32 KB) irrespective of the

number of keys in the hash table. An array of this size can

conveniently fit in the processor caches. The number of keys in

the hash table will, more often than not, be higher than 8192,

meaning multiple keys will share a version counter (as shown

in Figure 4). This, in turn, means that an update operation on

one key could stall a lookup operation on another key if they

happen to share the same version counter. This approach does

limit concurrency to some extent but it can be seen that the

chance of “false retry” (re-reading a key due to modification of

an unrelated key) is roughly about 0.01% [4].

The actual optimistic locking happens as follows. Before

updating a key, the Insert process increments the version

counter for the key. This indicates to the other Lookups that

there is an ongoing update operation. After the update is done,

the version counter is again incremented by one to indicate

completion. As for Lookups, it first snapshots the version for

that key. If the version is odd it knows that a concurrent update

is going on and retries itself. If the version is even, the Lookup

operation proceeds to completion. After it finishes reading, it

snapshots the counter again and compares the new version with

the old one. If the two versions differ, the writer must have

modified the version and the Lookup should be retried.

S

S

S

S

S

S

Ite I

I

Ite

Ite Ite

LR
U
Hea
ds

L
R
U
T
ail
s

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.64, January 2025

39

Figure 4: Hash Table Overview: The hash table is an

array of buckets where each bucket points into a key-

value object. Each key in the hash table is associated with

one key version counter. As shown in the figure, more

than one key could be associated with the same version

counter.

7. CLOCK ALGORITHM
Memcached uses a strict LRU policy for evicting items from

the cache. This policy has two main problems. First, two

pointers (next, prev) are required to maintain the items in the

per-slab doubly-linked LRU list. When the items are very

small, this becomes a major source of space overhead. Second,

all updates to a particular LRU list must be serialized, and

hence, this is a synchronization bottleneck.

The CLOCK [3] algorithm helps make the cache management

efficient and concurrent. It is a mechanism to implement an

approximate LRU instead of a strict LRU. The space saved by

replacing pointers with bit entries allows the cache to store

more entries, improving the hit ratio.

A cache must implement two functions related to its

replacement policy:

1. Update to keep track of the recency after querying a

key in the cache

2. Evict to select keys to purge when inserting keys into

a full cache

Memcached keeps each key-value entry in a doubly-linked-list-

based LRU queue within its slab class. After each cache query,

Update moves the accessed entry to the head of its queue; to

free space when the cache is full, Evict replaces the entry at the

tail of the queue with the new key-value pair. This ensures strict

LRU eviction in each queue, but unfortunately, it also requires

two pointers per key for the doubly-linked list, and, more

importantly, all updates to one linked list are serialized. Every

read access requires an update, and thus the queue permits no

concurrency even for read-only workloads.

In the CLOCK algorithm, there is a circular buffer and a virtual

hand for each slab class. A bit in the buffer represents the

recency for that item. A value of 1 means that the item is recent,

otherwise it is not. Each Update simply sets the recency bit to

1. Evict checks the bit currently pointed to by the hand. If the

bit is 0, the corresponding item is selected for eviction. If the

bit is 1, it is reset to 0 and the hand is advanced in the buffer

until a bit of 0 is encountered.

8. EVALUATION
This section examines the effects that the proposed techniques

and optimizations have had on performance and space

efficiency. The investigation starts with the cache system, then

evaluates the hash table and analyzes the entire system.

8.1 Platform
All experiments use an Amazon Web Services (AWS) Elastic

Compute Cloud instance. Since the machine will spend most of

its time performing memory reads and writes, an r3.xlarge EC2

instance is used. It has the configuration in Table 1.

Amazon recommends R3 instances for high performance

databases, distributed memory caches and in-memory

analytics.

Table 1. Evaluation configuration

CPU Intel Xeon E5-2670 v2 @ 2.50GHz

Number of Cores 4

DRAM 30.5 GB

8.2 Workload Data
A workload of 10 million key-value queries was generated

using the YCSB benchmark [2], with the queries following a

Zipfian distribution. The Zipfian distribution, which falls under

the category of discrete power-law probability distributions, is

frequently employed to model empirical data in the physical

and social sciences due to its ability to approximate various

real-world phenomena.

Two workloads are generated using YCSB: a read-only

workload, where 10 million elements are inserted into the hash

table (the load stage) and then perform 10 million read-only

queries on it, and a read-mostly workload, where 10 million

elements are inserted into the hash table (the load stage) and

then run 10 million queries on it, 95% of which are read. The

rest of this paper refers to these two as Workload C and

Workload B, respectively.

The motivation behind Workload C (read-only) was to show

the advantages of optimistic locking in a read-only scenario,

where no locks need to be taken at all. Workload B was chosen

because it represented the most common balance between reads

and writes seen in the “real world.”

8.3 Cache Microbenchmark
Each key is 16 bytes and each value is 32 bytes. The cache size

ranges from 64MB to 512MB. This cache size parameter does

not include the space occupied by the hash table, only the space

used to store the item object.

8.3.1 Space efficiency
Table 2 shows how the maximum number of items (16-byte

key and 32-byte value) a cache can store given the different

cache sizes. The space to store the index hash tables is separate

from the given cache space in Table 2. The hash table capacity

is set to be larger than the maximum number of items that the

cache space can possibly store.

A linear scaling is observed in the number of items that can be

stored with increase in cache size. Both MemC3 and Hopscotch

have better space efficiency than Memcached. Memcached

incurs a considerable overhead even for small key-value pairs.

It always allocates 56 bytes regardless of item size. This is

because of the number of pointers that it has to keep track of:

two pointers (next and prev maintaining the LRU) and one for

the hash table itself. MemC3 and this Hopscotch

Key
version
counter
s

Ha
sh
tabl
e

Key

Val

Met

Key
value
objec
t

k
e
y
x

k
e
y
y

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.64, January 2025

40

implementation remove these pointers in replacing strict LRU

with approximate LRU or the CLOCK algorithm.

The space that is saved per item means that more items can be

stored in the same amount of cache. Since the same slab and

cache architecture as MemC3 is followed, and since (as

mentioned above), the experiment is bounded by the cache size

and not by the hash table size, the cache implementation with

Hopscotch has the same number of items as MemC3.

Table 2. Comparison of number of items stored as cache

size increases

 Number of items stored (in millions)

Cache Size

(in MB)
Memcached MemC3 Hopscotch

64 0.56 0.64 0.64

128 1.11 1.29 1.29

256 2.22 2.58 2.58

512 4.47 5.16 5.16

8.3.2 Cache hit ratio
Table 3 compares the hit ratios of Memcached, MemC3, and

Hopscotch. As expected from the previous table, showing the

maximum number of items stored for each cache size, the hit

ratios increase with cache sizes for all three systems. However,

comparing the relative hit ratios between the three systems is

more interesting. Predictably, MemC3 performs better than

Memcached. The modified Hopscotch performs at par with or

better than Memcached, but it still has lesser hit ratios than

MemC3 for all sizes.

MemC3 makes several optimizations in its system, one of

which is to enable ``hugepages" in Linux. Hugepages is a

mechanism that allows the Linux kernel to utilize the multiple

page size capabilities of modern hardware architectures. Linux

uses pages as the basic unit of memory, where physical memory

is partitioned and accessed using the basic page unit. The

default page size is 4096 Bytes in the x86 architecture.

Hugepages allow large amounts of memory to be utilized with

a reduced overhead. Linux uses “Translation Lookaside

Buffers” (TLB) in the CPU architecture. These buffers contain

mappings of virtual memory to actual physical memory

addresses. So utilizing a huge amount of physical memory with

the default page size consumes the TLB and adds processing

overhead.

The Linux kernel can set aside a portion of physical memory to

be addressed using a larger page size. Since the page size is

higher, there will be less overhead managing the pages with the

TLB. Systems with large amounts of memory can be

configured to utilize the memory more efficiently by setting

aside a portion dedicated to huge pages.

This optimization is likely responsible for the improvement in

hit ratio that MemC3 is seeing over this paper’s

implementation, and is planned to be added to the

implementation for comparison in the future.

8.4 Hash Table Microbenchmark
8.4.1 Multithreaded scalability
This subsection investigates the lookup performance of a single

thread and the aggregate throughput of a varying number of

threads all accessing the same hash table. The hash tables are

linked into a workload generator directly and benchmarked on

a local machine.

Figure 5 and Figure 6 show the results of running Workload

B and C on Memcached, MemC3 and this paper’s

implementation of Hopscotch for 1, 2, 4, 6 and 8 threads.

Recall that the r3.xlarge system has 4 cores, so the throughput

is expected to scale up to 4 threads. This is observed in both

Figure 5 and Figure 6. The throughput scales roughly linearly

up to 4 threads. Beyond 4 threads Memcached and Hopscotch

plateau.

Interestingly, MemC3 continues to scale to 6 threads. Again,

the MemC3 paper mentions CPU-affinity and scheduling

optimizations that it makes while handling multiple requests.

Again, future work will implement this optimization in this

paper’s version of Hopscotch and compare it against MemC3.

It is important to note that Figure 5 and 6 are only intended as

a display of how throughput scales with the number of threads.

They are not meant as a comparison of throughput between the

three systems. Although the data points plotted are the average

of three runs in each configuration, the amount of variance

observed in the throughput was high. For example, in Workload

C, for 6 threads, MemC3 showed a minimum of 68946.88

requests per second and a maximum of 89911.20 requests per

second. The suspicion is that AWS is to blame for this large

variance. AWS is a multi-tenant system, and users do not have

complete control of the hardware (in fact, a request for an

instance returns a virtual machine, not a dedicated bare

machine).

Figure 5: Workload B multithreaded throughput

Figure 6: Workload C multithreaded throughput

It would be more informative to run on dedicated machines, so

the experiment could record a series of data with low variance.

This will give us a better platform to compare the throughputs

of Memcached, MemC3 and this paper’s version of Hopscotch.

Table 3. Comparison of hit ratios as cache size increases

 Hit ratio

Cache Size

(in MB)
Memcached MemC3 Hopscotch

64 0.4956 0.5104 0.4941

128 0.5553 0.5668 0.5516

256 0.6296 0.6453 0.6345

512 0.7408 0.7722 0.7643

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.64, January 2025

41

9. CONCLUSION
Memcached was to use the hopscotch hashing technique,

optimistic locking for high concurrency and CLOCK-based

cache management with only 1-bit per cache entry to

approximate LRU eviction. The evaluation shows that the

implementation achieves performance (both throughput and hit

ratio) as good as Memcached or even better. The consistent hit

ratios observed with different kinds of workloads for multiple

runs of the same experiment gives us confidence about the

correctness of this paper’s implementation. The main

motivation for the project was the significant improvement of

MemC3 over original Memcached as claimed by the authors of

Memc3. The experiments show performance improvement

with both hopscotch and Memc3 over original Memcached but

not as high as mentioned in the Memc3 paper.

10. FUTURE WORK
This work could be extended both in terms of implementation

and evaluation. As for implementation, optimizations

employed by MemC3 (like enabling hugepage support,

replacing memcmp with integer-based comparison, etc.) could

be tried out. In terms of evaluation, there is a lot of scope for

performing extensive scalability testing on multicore

processors. This will give us a better idea as to how much

performance improvement could be achieved using the

optimistic locking approach. Also, both the above changes

(namely optimistic locking and CLOCK algorithm) could be

applied incrementally and their effects could be profiled

individually

11. REFERENCES
[1] Berk Atikoglu et al. “Workload analysis of a large scale

key-value store”. In: ACM SIGMETRICS Performance

Evaluation Review. Vol. 40. 1. ACM. 2012, pp. 53–64.

[2] Brian F Cooper et al. “Benchmarking cloud serving

systems with YCSB”. In: Proceedings of the 1st ACM

symposium on Cloud computing. ACM. 2010, pp. 143–

154.

[3] Fernando J Corbato. A paging experiment with the multics

system. Tech. rep. DTIC Document, 1968.

[4] Bin Fan, David G Andersen, and Michael Kaminsky.

“MemC3: Compact and Concurrent MemCache with

Dumber Caching and Smarter Hashing.” In: NSDI. Vol.

13. 2013, pp. 385–398.

[5] Brad Fitzpatrick. “Distributed caching with memcached”.

In: Linux journal 2004.124 (2004), p. 5.

[6] Maurice Herlihy, Nir Shavit, and Moran Tzafrir.

“Hopscotch hashing”. In: Distributed Computing.

Springer, 2008, pp. 350–364.

[7] Hsiang-Tsung Kung and John T Robinson. “On optimistic

methods for concurrency control”. In: ACM Transactions

on Database Systems (TODS) 6.2 (1981), pp. 213–226.

[8] Memcached chaining.

https://www.usenix.org/sites/default/files/conference/prot

ected-files/fan_nsdi13_slides.pdf

[9] Memcached slabs.

https://software.intel.com/sites/default/files/m/a/3/2/a/0/4

5646-f-4.jpg

[10] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo

hashing”. In: Journal of Algorithms 51.2 (2004), pp. 122–

144.

IJCATM : www.ijcaonline.org

