
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.64, January 2025

Code and Performance-based Metrics for Multithreaded
Object-Oriented Software

R. Gururaj, PhD
BITS Pilani, Hyderabad Campus

Tarimala Vignesh Reddy
BITS Pilani, Hyderabad Campus

Revanth Nalla
BITS Pilani, Hyderabad Campus

ABSTRACT
In the era of multicore processors and distributed systems, the effi-
cient design and performance evaluation of multithreaded programs
have become crucial for achieving scalable, high-performance soft-
ware. However, traditional metrics for evaluating these programs
often fall short of capturing the complex interactions between
threads, resources, synchronization mechanisms, and execution
flow. They often fail to capture the intricacies in multithreaded en-
vironments.
This paper introduces advanced metrics tailored for multithreaded
applications. This paper proposes a set of complex metrics that can
be used to judge the quality of a multi-threaded program based on
both the static code and the program’s performance. The aim is to
identify both good and bad code practices while coding a multi-
threaded program. Using these metrics, developers can get action-
able insights into the quality and performance of the code, enabling
them to refine their designs and optimize execution for better scal-
ability and reliability.

Keywords
Software Metrics, Object-Oriented Software, Static Metrics, Dy-
namic Metrics, Multi-threading

1. INTRODUCTION
With the widespread adoption of multicore processors and dis-
tributed computing environments, developing complex and scal-
able multithreaded systems is an important software engineering
skill [1, 4]. Multithreaded programming, however, introduces new
challenges compared to traditional single-threaded software.
Unlike traditional single-threaded programs, multithreaded sys-
tems must carefully manage how threads interact with each other
while sharing resources, such as databases or memory. Without
proper coordination, these interactions can lead to serious issues
[3, 14]. For example, race conditions occur when two threads try
to modify the same resource at the same time, leading to unpre-
dictable outcomes. Similarly, deadlocks can happen when threads
become stuck waiting for each other indefinitely, essentially freez-
ing the system [1]. Even more subtle problems, like data inconsis-
tencies, arise when simultaneous operations create discrepancies in
the information stored or processed [3, 9].
These challenges are not just theoretical, but have real-world im-
plications. A poorly designed multithreaded system can result in
performance bottlenecks, crashes, or corrupted data [4]. Worse yet,

these issues can be difficult to identify and fix, especially in large-
scale systems with many interconnected components. As software
engineers strive to build scalable systems, the need for better met-
rics to assess and manage multiple threads has become increasingly
urgent [7, 11].
This research is motivated by the growing demand for such tools.
Specifically, it aims to fill a critical gap by developing a compre-
hensive suite of advanced metrics tailored for multithreaded appli-
cations [1, 3]. These metrics will serve as a diagnostic toolkit for
developers, helping them uncover inefficiencies and potential prob-
lems that might otherwise go unnoticed. By offering clear insights
into how threads interact, how resources are utilized, and where
bottlenecks occur, these metrics will empower developers to opti-
mize their systems more effectively.
The idea behind this research is to address the gap by developing
a suite of advanced metrics for multi-threaded applications. These
metrics will reveal inefficiencies and potential issues that impact
the functioning of the program and also the ability for developers
to understand the code base [8, 9]. The remainder of the paper is
organized as follows. In Section 2, we discuss related work, and in
Section 3, we elaborate on the proposed metrics. The Section 4 fo-
cuses on verification of the proposed concepts, and in Section 5 we
provide details of analysis. Finally, the Section 6 gives concluding
remarks.

2. LITERATURE REVIEW
Object-oriented metrics have long served as essential tools for as-
sessing software quality in terms of complexity, maintainability,
and reliability. Early research into these metrics has emphasized
both static and dynamic measures to capture different dimensions
of software design and execution. Static metrics, derived from code
structures and design documents, typically include parameters such
as Lines of Code (LOC), Weighted Methods per Class (WMC), and
Coupling Between Objects (CBO). Dynamic metrics, in contrast,
focus on runtime behavior, providing insights into how classes and
objects interact during actual execution [1, 5, 6, 9, 14]. The work
[1] explores combining static and dynamic indicators to form hy-
brid metrics that offer a more comprehensive evaluation, revealing
both design-time and runtime quality attributes.
Over the years, object-oriented metrics have been categorized into
several key dimensions, each reflecting specific aspects of software
quality [5, 10]:

—Size Metrics: Include measures like the number of classes, meth-
ods, and LOC, providing a basic scale of the system [6].

1



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.64, January 2025

—Complexity Metrics: Assess class hierarchies, control flow in-
tricacies, and polymorphic behavior, giving a sense of how chal-
lenging the code may be to understand or maintain [9].

—Coupling Metrics: Evaluate the degree of interdependence be-
tween classes. High coupling often indicates that changes in one
class can propagate widely, reducing maintainability [14].

—Cohesion Metrics: Examine how well the internal elements of a
class work together. Low cohesion suggests scattered logic that
can hinder comprehension and maintenance [1, 9].

—Inheritance Metrics: Look at how effectively classes reuse at-
tributes and methods through inheritance. Deeper inheritance
trees can suggest better reuse but may also increase complexity
[2, 7].

Several well-known metric suites have emerged from these cate-
gories. In [14], the CK metrics, introduced by Chidamber and Ke-
merer, are widely cited for their empirical correlations with soft-
ware defects and maintenance effort. Studies applying CK metrics
have found that while larger classes or classes with more complex
methods may be prone to defects, not all metrics yield consistent
linear relationships with defect counts [3]. For instance:

—Larger class size often correlates with increased defects.
—Weighted methods per class (WMC) and coupling between ob-

jects (CBO) may not always show strong linear correlations with
defect density.

Another set of metrics known as MOOD (Metrics for Object-
Oriented Design) focuses on encapsulation, inheritance, coupling,
and polymorphism introduced in [2]. Empirical evaluations high-
light:

—Method Hiding Factor (MHF) and Attribute Hiding Factor
(AHF): Higher values indicate better encapsulation and thus
greater modularity.

—Method Inheritance Factor (MIF) and Attribute Inheritance
Factor (AIF): Larger values suggest effective code reuse and
potentially simpler extension mechanisms.

—Coupling Factor (CF): Lower values denote looser inter-class
dependencies, making the system easier to maintain.

—Polymorphism Factor (PF): Higher values indicate greater use
of polymorphism, which can enhance system adaptability and
extensibility as mentioned in [2, 7].

From [5, 10, 12], it can be derived that despite these advance-
ments, researchers have encountered difficulties in defining univer-
sal thresholds and interpretations for such metrics. Quality norms
may differ based on application domains, project sizes, or develop-
ment methodologies, making it challenging to apply one-size-fits-
all benchmarks. Moreover, some studies [3] emphasize the com-
plexity of directly linking certain metrics to defects, suggesting that
non-linear relationships or transformations might be necessary .
As software evolves, especially with the rise of multicore
processors and distributed systems, traditional object-oriented
metrics—initially conceived for single-threaded, sequential pro-
grams—fall short in capturing the complexities introduced by con-
currency [1, 4, 11, 13]. Issues like thread contention, race con-
ditions, deadlocks, and synchronization overheads arise not from
static structures but from dynamic interactions between concur-
rently executing threads. These concurrency-specific challenges
demand metrics that can:

—Assess synchronization overhead and waiting time.

—Measure the load imbalance caused by uneven work distribution
among threads.

—Evaluate thread contention probabilities for shared resources.
—Identify potential deadlocks or starvation scenarios.

The need to adapt or create new metrics tailored for multithreaded
programs is becoming increasingly critical as parallelism be-
comes the norm rather than the exception [8, 9, 13]. Integrating
concurrency-aware metrics with traditional object-oriented mea-
sures would provide a more holistic toolkit, enabling developers
to diagnose inefficiencies, optimize execution paths, and enhance
both the scalability and maintainability of modern software sys-
tems. In essence, while classical object-oriented metrics lay the
groundwork for evaluating structure and maintainability, expand-
ing them to consider concurrency opens new avenues for under-
standing software quality in the face of complex, parallel execution
environments.

3. PROPOSED NEW METRICS FOR PROGRAM
EVALUATION

The metrics proposed as part of this paper can be divided into two
categories:

—Static Metrics: These are code quality metrics which can help
analyse the multithreaded program based on its static code. It
mostly focuses on the good coding practices that are followed.

—Dynamic Metrics: These are metrics that are calculated at run-
time using a profiler and analyse the performance of the multi-
threaded program based on factors like its CPU utilisation, usage
of other resources, deadlocks, starvation etc.

3.1 Static Metrics/Code Quality Metrics
3.1.1 Thread Coupling Factor. This metrics defines the degree to
which classes are interdependent through threading constructs on
classes which are not responsible for the creation of those threads.
It can be given by the following formula:

TCF =
Number of Inter-class Thread Interactions

Total number of possible Inter-class Interactions

A high Value of TCF can indicate that thread management is han-
dled across multiple classes which can lead to more deadlocks and
an overall bad-quality program. On the other hand, a low value can
indicate more independent classes which promotes better encapsu-
lation and less requirement for testing.

3.1.2 Lines of Code per Critical Section. It measures the average
number of lines per critical section of the program. Critical sections
are parts of code that require synchronization and primarily include
regions which deal with database access etc. Long critical sections
indicate complex synchronization, which increases the difficulty of
reading and understanding the code. A high value of LOC-CS sug-
gests that critical sections are too large leading to more complicated
interactions between threads. This makes the code hard to follow.
It can be calculated by the following formula:

LOC-CS =
Total Lines of Code in Critical Sections

Number of critical sections
3.1.3 Synchronous Call Frequency. This metric measures the
proportion of synchronous calls in a multithreaded program. It can
be calculated as the following:

SCF =
Number of Synchronous Calls
Total number of Function calls

2



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.64, January 2025

A synchronous call forces a thread to wait for another thread
to complete a task, introducing potential bottlenecks or blocking
behaviour. A high SCF suggests that the program has frequent
points where threads are blocked waiting for each other, leading to
more complex flow control and reduced readability. Reducing syn-
chronous calls where appropriate can enhance both performance
and readability.

3.1.4 Concurrency Complexity Metric. This metric measures the
complexity introduced by concurrent threads and their critical sec-
tions. It is based on the intuition that main defects in code arise
when a large number of threads compete for a critical section.
Therefore the quality of the program depends on the number of
threads competing for the critical section, not just based on the
length of the critical section.
It is calculated as the following:

n∑
i=1

Ti × Li

where Ti = Number of threads in the ith critical section and Li

represents the number of Lines of code in the ith critical section.
The larger the critical section or the more threads interacting with
it, the harder the code is to read and maintain. High CCM values
indicate more complicated thread interaction, which increases the
difficulty of understanding and managing the code. Large or nu-
merous critical sections usually reduce the readability of the code
due to the intricacies of synchronisation and potential contention.

3.1.5 Thread Contention Probability. In multithreaded programs
it is important to understand how likely it is that threads will con-
tend for critical sections. High contention probability can lead to
performance bottlenecks. The goal of the metric is to predict the
chances of thread contention based on the number of threads ac-
cessing critical sections and the size of those sections. It can be
calculated as follows:

TCP =
∑

CS

(
NTA
TT

× SCS
TCS

)
(1)

where TCP is the Thread Contention Probability, CS is the Critical
Sections, NTA is the Number of Threads Accessing the Critical
Section, TT is the Total Threads, SCS is the Size of the Critical
Section, and TCS is the Total Code Size.

3.2 Dynamic/Performance metrics
3.2.1 Parallelism Overhead. The metric measures the proportion
of program execution time spent in synchronization, for example,
acquiring and releasing locks. It is calculated as the following:

PO =
Time spent in synchronization
Total Program Execution time

High overhead can indicate inefficient use of threads or poor syn-
chronization strategies, which often correlates with difficult-to-read
code. A high PO suggests that the program is spending too much
time on synchronization instead of executing useful work. This can
often point to complicated synchronization logic that makes the
code harder to follow.

3.2.2 Thread Starvation Rate. It is a metric that measures the
amount of time threads are unable to proceed because they are wait-
ing for resources or conditions to be met. This is prevalent in pro-
grams that use a large number of threads run on single-core systems
where threads wait for CPU allocation for a significant amount of

time relative to the amount of useful work they perform. It is cal-
culated as:

TSR =
Time thread is starved

Total thread execution time
× 100

A high thread starvation rate indicates poor resource management
or contention, where threads spend excessive time waiting rather
than executing tasks. Avoiding thread starvation by using better
scheduling algorithms or load balancing ensures that the thread pro-
gresses and the program remains responsive.

3.2.3 Lock Competitiveness Index. When multiple threads fre-
quently contend for locks, it can create bottlenecks, and deadlocks
and reduce parallelism. This metric quantifies the level of lock com-
petition by comparing the number of times threads attempt to ac-
quire a lock to the number of successful acquisitions, weighted by
the size of the critical section. Values close to 0 indicate that every
lock acquisition was correct in the first few attempts which implies
that the code is very efficient. It is calculated as follows:

LCI =
∑

L

(
FLA
TLA

× SCS
TCS

)
(2)

Where: LCI is the Lock Contention Index, L is the Locks, FLA
is the Failed Lock Acquisitions, TLA is the Total Lock Attempts,
SCS is the Size of the Critical Section, and TCS is the Total Code
Size.

3.2.4 Load Imbalance. it measures the workload distribution
among threads. It is calculated as:

LI =
Max-Thread execution time − Min-Thread execution time

Max Thread execution time

3.2.5 Thread Resource Utilization Coefficient. This metric eval-
uates how well threads are at utilising the resources that they ac-
quire such as CPU, memory, IO etc. It is calculated as:

TRUC =

∑
R

(
TRU
TRH

)
TNR

(3)

Where: TRUC is the Thread Resource Utilization Coefficient, R is
the Resources, TRU is the Time Resource is Actively Used, TRH is
the Time Resource is Held by Thread, and TNR is the Total Number
of Resources.
Values near 1 indicate optimal resource usage, while values less
than half suggest inefficient resource utilisation i.e, resource are
held for significantly longer time than they are used.
A high Load imbalance(close to 1) means that some threads are
overworked while others are underutilized, leading to inefficient
resource use. Proper workload distribution, improving overall, per-
formance and reducing idle time.

4. VERIFICATION
In order to verify if the experimental outcomes of the metric com-
putation align with the intuitive reasoning behind the develop-
ment of the metric, common multithreading use cases in Java were
used to compute the metrics. Two programs which implement a
producer-consumer problem in two different methodologies were
used, Program A uses synchronization methods to implement the
problem, while Program B uses Java Blocking queue to implement
the same. The comparative analysis of the metrics on Programs A
and B are plotted in Fig 1, Fig 2 and also tabulated in Table 1 and
Table 2.

3



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.64, January 2025

TCF LOC-CS SCF CCM TCP
0

2

4

M
et

ri
c

V
al

ue
s

Program A: Blue
Program B: Orange

Fig. 1: Static Metric Comparison for Programs A and B

PO TSR LCI LI TRUC
0

1

2

3

4

M
et

ri
c

V
al

ue
s

Program A: Blue
Program B: Orange

Fig. 2: Dynamic Metric Comparison for Programs A and B

Static Metric Program A Program B
TCF 0.556 0.222

LOC-CS 4.5 1
SCF 1 1
CCM 4.174 2.302
TCP 0.1 0.0833

Table 1. : Static Metrics for Programs A and B

Lower TCF in Program B indicates less inter-class thread inter-
action, implying better modularity, which is as expected as Java
Blocking queue prevents any unnecessary thread interaction be-
tween the producer and the consumer. Also Program B has a
smaller critical section making it more readable. Program B’s lower
concurrency complexity (CCM) suggests simpler and more main-
tainable code. Lower TCP in Program B indicates lower contention
probability, supporting better concurrency. So the overall conclu-
sion from the static metric analysis is that Program B is relatively
simple to read, and understand and overall more maintainable code
which concurs with the fact that it was written with more abstract
data structures compared to Program A.
Program B’s lower parallelism overhead suggests more efficient use
of synchronization. Program B has less thread starvation, suggest-
ing better resource scheduling and fewer blocking delays. Also it’s
lack of lock contention implies reduced chances of deadlock and
better resource access. Both programs have nearly identical load
imbalance, indicating similar workload distribution among threads.
Both programs have high resource utilization, suggesting that each
utilizes its acquired resources effectively.
Another set of 2 programs C and D were chosen which perform
Linked List operations. In program C, a single lock is applied over
the entire list while in program D each node had its own lock. Met-

Dynamic Metric Program A Program B
PO 0.703 1.818
TSR 0.886 3.583
LCI 0.769 0
LI 0.998 0.999
TRUC 0.9991 0.9996

Table 2. : Graphical analysis of the Dynamic metrics

rics were calculated both manually in the case of the static metrics
and Java utility libraries to calculate the dynamic metrics. The re-
sults are displayed in Fig 3, Fig 4 and Table 3 and Table 4

TCF LOC-CS SCF CCM TCP
0

2

4

6

M
et

ri
c

V
al

ue
s

Program C: Blue
Program D: Orange

Fig. 3: Static Metric Comparison for Programs C and D

PO TSR LCI LI TRUC
0

0.5

1

M
et

ri
c

V
al

ue
s

Program C: Blue
Program D: Orange

Fig. 4: Dynamic Metric Comparison for Programs C and D

One of the notable metrics here to be observed is the TCP. which
is very low in Program D as the same number of threads are con-
tending for more number of locks i.e for each node. But in case of
Program C, all threads are competing for the same single lock over
the entire linked list. Thus it can be experimentally concluded that
Program C is likely to face more contention compared to D
Also, another set of two programs, E and F, were designed to eval-
uate multithreaded file-writing operations. In Program E, synchro-
nized methods were used to control thread access to a shared file
resource, while in Program F, a java.util.concurrent ReentrantRead-
WriteLock was employed to manage thread access more efficiently.
The verification process concluded that Program F is superior in
terms of readability, maintainability, and concurrency efficiency.
The use of ReentrantReadWriteLock in Program F resulted in re-
duced contention and better scheduling of threads, aligning with the
intuitive reasoning behind its design. Program F’s dynamic metrics

4



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.64, January 2025

Static Metric Program C Program D
TCF 0.33 1
LOC-CS 4 6
SCF 1 0.1
CCM(ln) 5.991 6.397
TCP 0.012 0.00033

Table 3. : Graphical analysis of the static metrics

Dynamic Metric Program C Program D
PO 0.076 0.142
TSR 0.9978 0.9925
LCI 0.039 0.045
LI 0.998 0.942
TRUC 0.567 0.522

Table 4. : Graphical analysis of the Dynamic metrics

highlighted its ability to handle multithreaded operations more ef-
fectively than the synchronized approach of Program E. This con-
firms that Program F offers a more modular and scalable solution.

5. ANALYSIS
5.1 Thread Coupling Factor (TCF)
It helps identify interdependencies across classes involving thread-
ing constructs, thus allowing developers to analyse the modularity
of thread management. A low value of TCF, signifies better encap-
sulation, reducing the likelihood of deadlocks and improving testa-
bility. However a drawback of the metric is that low value may not
always translate to better code design if critical interdependencies
are necessary for the codebase.
A low value of TCF(close to 0), indicates minimal coupling, that
thread handling is isolated to specific classes, suggesting better
modularity and encapsulation. High values suggest heavy coupling
across classes, increasing the likelihood of potential deadlocks.

5.2 Lines of Code Per Critical Section (LOC-CS)
it provides insights into the complexity of critical sections in a pro-
gram and therefore identifies areas prone to high synchronization
overhead. However, some of the areas overlooked by this metric
is that it overlooks the complexity inside the critical sections tak-
ing size as the only factor affecting the complexity. Therefore if the
program logic in the critical section is too complex a low LOCS-CS
may not guarantee better code design.
A value close to 1, suggests a small critical section, reducing thread
contention and synchronization overhead. Higher values usually in-
dicate larger sections, which can lead to complex inter-thread de-
pendencies and make the code harder to understand and maintain.

5.3 Synchronous Call Frequency (SCF)
The metric identifies potential bottlenecks due to synchronous
calls, indicating where asynchronous alternatives might improve
performance. It helps assess potential blocking behaviour in the
code, which is crucial for optimizing response times. On the other
hand, a lower SCF can’t be always tied to better code design as
some applications need synchronous calls for application correct-
ness.
Low SCF(close to 0) suggests minimal blocking, indicating that the
threads can operate more independently. High SCF indicates more

blocking in the code which can also lead to potential deadlocks if
there is coupling to other classes with high SCF as well.

5.4 Concurrency Complexity Metric (CCM)
The metric directly correlates with the complexity of concurrent
interactions, highlighting areas where many threads interact with
critical sections taking into account not just the size of the critical
section but the number of threads that participate in interaction with
the critical section. The only drawback of the metric is that it does
not account for the nature of the thread interactions just the volume.
A low CCM(close to 0) indicates more simple and maintainable
code with fewer complex interactions among threads. A high CCM,
suggests more complexity which can reduce the maintainability
and the readability of the multithreaded program.

5.5 Thread Contention Probability (TCP)
the metric predicts how likely threads are to contend for resources,
allowing developers to identify potential bottlenecks by looking at
the code. However, since it is a static metric this only measures the
probability while actual contention may vary depending on runtime
conditions.
Low TCP(close to 0) indicates a low likelihood of contention, sug-
gesting that threads can operate with minimal interference.

5.6 Parallelism Overhead (PO)
It directly quantifies the cost of synchronization logic itself, indi-
cating the amount of program time that was not useful as it was
spent in synchronization. It is useful for developers to identify the
inefficiencies in parallelism.
Low value of PO indicates minimal overhead, with more time spent
on actual work than synchronization whereas a high value basically
reduces the effective parallelism.

5.7 Thread Starvation Rate (TSR)
It measures how effectively resources are allocated among threads,
highlighting if some of the threads are starved and thus is useful for
identifying resource management issues. However since is a very
time-dependent metric, it can be observed that the values can be
significantly impacted by the hardware and even in different execu-
tions on the same hardware.
A low value of TSR(close to 0), suggests efficient resource alloca-
tion with minimal starvation time for threads.

5.8 Lock Competitiveness Index (LCI)
It quantifies how frequently the threads try to acquire locks over
a critical section and fail as it is massive performance bottleneck.
One of the noticeable drawbacks of this metric is that it does not
account for the importance of each individual lock and treats them
all equally. Also, asymptotically it can be observed intuitively that
for highly concurrent applications a high LCI is unavoidable.
A low LCI value suggests minimal lock contention and therefore
represents the ideal case where most threads are able to acquire
locks in few attempts. High LCI is an indirect indication of poten-
tial deadlocks and poor performance.

5.9 Load Imbalance (LI)
the metric offers a direct measure of the workload distribution
among threads, essential for ensuring the efficient use of resources.
Helps in optimizing task allocation to minimize idle time for each

5



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.64, January 2025

thread and maximize the CPU utilization. A drawback is that it does
not account for the difference in task complexity for each thread as
that is hard to quantify.
Low values, close to 0 indicate balanced workload distribution,
maximizing resources. a high value indicates some threads are
overworked while some are underutilized.

5.10 Thread Resource Utilization Coefficient (TRUC)
it measures the efficiency with which threads utilize acquired re-
sources, providing insights into potential resource wastage. It is
thus useful to identify areas where resources are held longer than
needed. High TRUC although mostly indicates the above, may not
always be bad if resources are utilized effectively.
TRUC close to 1 indicates optimal resource usage with minimal
waste. Values less than 0.5, suggest inefficient resource utilization,
where resources are held without productive work.

6. CONCLUSION
In conclusion, this paper introduces a novel set of metrics designed
specifically aimed at evaluating and optimizing multi-threaded pro-
grams. Traditional metrics often fail to capture the nuanced inter-
actions between threads, resources and synchronization overheads
that are unique to concurrent systems.
The analysis demonstrates that these metrics provide actionable in-
sights into critical aspects of multithreading, including resource al-
location efficiency, synchronization overhead, load balancing, and
potential for thread starvation and deadlock. These metrics also re-
veal opportunities for optimization that would otherwise be chal-
lenging to identify with existing metrics.
Further research could involve validating these metrics across di-
verse multithreaded environments (e.g., high-performance comput-
ing, distributed databases, real-time applications) and exploring au-
tomation in collecting and analyzing these metrics using advanced
profiling tools. These metrics can also be incorporated into de-
velopment tools, making them accessible to developers aiming to
create efficient, scalable multithreaded applications. These metrics
help developers fine-tune multithreaded software, making it faster,
more scalable, and more reliable.

7. REFERENCES

[1] Ponnala, Ramesh & Reddy, Dr. (2019). Object Oriented Dy-
namic Metrics in Software Development: A Literature Re-
view.

[2] R. Harrison, S. J. Counsell and R. V. Nithi, ”An evalua-
tion of the MOOD set of object-oriented software metrics,”
in IEEE Transactions on Software Engineering, vol. 24, no.
6, pp. 491–496, June 1998, doi: 10.1109/32.689404. key-
words: Mood;Software metrics;Encapsulation;Software mea-
surement;Computer Society;Application software;Software
quality;Emotion recognition;Software systems;Project man-
agement.

[3] Suresh, Yeresime & Pati, Jayadeep & Rath, Santanu.
(2012). Effectiveness of Software Metrics for Object-
oriented System. Procedia Technology, 6, 420–427.
https://doi.org/10.1016/j.protcy.2012.10.050

[4] VanderWiel, S. P., Nathanson, D., & Lilja, D. J. (1996). Com-
plexity and performance in parallel programming languages.
University of Minnesota High-Performance Parallel Comput-
ing Research Group Technical Report HPPC-96-02.

[5] L. Tahvildari and A. Singh, ”Categorization of object-
oriented software metrics,” 2000 Canadian Confer-
ence on Electrical and Computer Engineering. Con-
ference Proceedings. Navigating to a New Era (Cat.
No.00TH8492), Halifax, NS, Canada, 2000, pp. 235–
239 vol.1, doi: 10.1109/CCECE.2000.849705. key-
words: Software metrics;Software measurement;Size
measurement;Object oriented modeling;Software de-
sign;Documentation;Programming;Software engineer-
ing;Area measurement;Program processors

[6] Lorenz, M. & Kidd, J. (1994). Object-oriented software met-
rics: a practical guide. Prentice-Hall, Inc., USA.

[7] Lanza, M., & Marinescu, R. (2007). Object-Oriented Metrics
in Practice: Using Software Metrics to Characterize, Evalu-
ate, and Improve the Design of Object-Oriented Systems. Ger-
many: Physica-Verlag.

[8] Yeresime Suresh, Jayadeep Pati, Santanu Ku Rath, Effective-
ness of Software Metrics for Object-oriented System, Proce-
dia Technology, Volume 6, 2012, Pages 420–427, ISSN 2212-
0173, https://doi.org/10.1016/j.protcy.2012.10.050

[9] Wei Li, Sallie Henry, Object-oriented metrics that pre-
dict maintainability, Journal of Systems and Software, Vol-
ume 23, Issue 2, 1993, Pages 111–122, ISSN 0164-1212,
https://doi.org/10.1016/0164-1212(93)90077-B

[10] Rajender Singh Chhillar and Sonal Gahlot. 2017. An
Evolution of Software Metrics: A Review. In Proceed-
ings of the International Conference on Advances in
Image Processing (ICAIP ’17), Association for Com-
puting Machinery, New York, NY, USA, 139–143.
https://doi.org/10.1145/3133264.3133297

[11] Mei-Huei Tang, Ming-Hung Kao and Mei-Hwa Chen,
”An empirical study on object-oriented metrics,” Proceed-
ings Sixth International Software Metrics Symposium (Cat.
No.PR00403), Boca Raton, FL, USA, 1999, pp. 242–249, doi:
10.1109/METRIC.1999.809745.

[12] El-Emam, K. (2002). ”Object-oriented metrics: A review
of theory and practice.” Advances in Software Engineering:
Comprehension, Evaluation, and Evolution, 23–50.

[13] Li, Wei, and Sallie Henry. (1993). ”Maintenance metrics for
the object oriented paradigm.” [1993] Proceedings First In-
ternational Software Metrics Symposium. IEEE.

[14] Chidamber, Shyam R., and Chris F. Kemerer. (1991). ”To-
wards a metrics suite for object oriented design.” Conference
proceedings on Object-oriented programming systems, lan-
guages, and applications.

6


	Introduction
	Literature Review
	Proposed New Metrics for Program Evaluation
	Static Metrics/Code Quality Metrics
	Thread Coupling Factor
	Lines of Code per Critical Section
	Synchronous Call Frequency
	Concurrency Complexity Metric
	Thread Contention Probability

	Dynamic/Performance metrics
	Parallelism Overhead
	Thread Starvation Rate
	Lock Competitiveness Index
	Load Imbalance
	Thread Resource Utilization Coefficient


	Verification
	Analysis
	Thread Coupling Factor (TCF)
	Lines of Code Per Critical Section (LOC-CS)
	Synchronous Call Frequency (SCF)
	Concurrency Complexity Metric (CCM)
	Thread Contention Probability (TCP)
	Parallelism Overhead (PO)
	Thread Starvation Rate (TSR)
	Lock Competitiveness Index (LCI)
	Load Imbalance (LI)
	Thread Resource Utilization Coefficient (TRUC)

	Conclusion
	References

