
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.62, January 2025

11

A Comprehensive Study of OS Strategies and New

Scheduling Techniques

Md Rakeen Islam Nahin
Military Institute of Science and Technology

Mirpur Cantonment
Dhaka, Bangladesh

Sheikh Raiyan Ahmed
Military Institute of Science and Technology

Mirpur Cantonment
Dhaka, Bangladesh

ABSTRACT

In the modern computers the scheduling algorithms have

bought a significant advancement by performing tasks within a

precise time frame. With the advancement of real time,

dynamic scheduling algorithms and affinity based partitioning

algorithms in multicore processors there lies a need for

effective operating system solutions in multicore environments

so that maximum CPU utilization can be made. Over the years

real time scheduling algorithms, one of the solutions for

multicore processors in real time environment have been

proposed so that user expectation can be fulfilled effectively by

following the scheduling protocols. However, none of the

scheduling algorithm is universal. There comes a need for

modification of the algorithms and implementation of hybrid

models so that the scheduling is done more efficiently. The

main objective of the research work is to have a clear view of

the scheduling algorithms, its importance, discussing about its

limitations and proposing theories for improving the

algorithms. Among real-time scheduling algorithms discussion

about Rate Monotonous Scheduling Algorithm (RMA),

Earliest Deadline First Algorithm (EDF) and among dynamic

scheduling algorithm discussion about Work-Stealing

Algorithm and among task partitioning in heterogenous

systems discussion about Affinity based partitioning

Algorithms are made. We first discussed why maintaining the

scheduling and Core-Affinity are the most vital among all other

approaches for increasing efficiency in real time environments.

Later on, we discussed about the scheduling algorithms like

static partitioning algorithms (EDF, RMA) and proposed a

hybrid schedule using multiple cores, dynamic partitioning

algorithm like work-stealing, modification of the algorithm

using clock pulse and affinity-based partitioning algorithm

along with its modification using cross-checking algorithms to

make it more reliable. Furthermore, we discussed about the

importance of core affinity in multicore systems. Overall, this

research will give a clear concept of “Theoretical Approach for

Operating System Solutions for Multicore Processors” by

discussing about the scheduling algorithms and core affinity;

and proposing theories and algorithms for increasing the

efficiency and reliability of the task-partitioning algorithms.

Keywords

 Task-partitioning;Core Affinity;Rate Monotonous Algorithm;

 (RMA); Earliest Deadline First (EDF); Work-Stealing; Real

Time Scheduling;

1. INTRODUCTION
Modern operating systems (OSs) handle requirements

along with leveraging the parallel processing capabilities

of multi-core by scheduling algorithms, resource

management techniques and hardware optimization.

Modern scheduling algorithms like Rate Monotonic

Scheduling (RMS) or Dynamic Scheduling like Earliest

Deadline First (EDF) have proven to be effective for

enhancing the performance of multi-core processors. For

multi-core utilization real-time scheduling, partitioned

scheduling (Each core has its own task queue, and tasks

are statically assigned to specific cores. This minimizes

inter-core communication and scheduling overhead),

global scheduling (A single task queue is shared among all

cores, allowing dynamic task allocation) and hybrid

scheduling are followed. The other approaches include

Synchronization, Inter-Core Communication and

predictable memory management.

However, improvements need to be made so that the

performance is consistent in all kinds of situation, though

the schedules are having a great impact there are instances

when

a particular schedule face challenges which makes hybrid

model and proposed algorithms necessary.

The following are the reasons which made scheduling

algorithms and core affinity the most vital for

increasing the efficiency in real-time environments.

a. Predictable Scheduling: Assign specific tasks to particular

cores eliminates uncertainties and makes the behavior of the

OS more predictable.

b. Isolation: Ensures high priority tasks to run fast and not

letting tasks with limited deadline and small time period wait

for very long amount of time.

c. Scalability: For multi-core processors, scheduling is

done to ensure efficient parallel utilization.

On the other hand, the following reasons are applicable for

other approaches to be comparatively a bit insignificant when

it comes to real-time systems.

a. Synchronization: Effective use of scheduling algorithms

ensures synchronization in most of the time.

b. Memory Management: Predictable behavior of OS reduces

the load of memory management.

c. Task partitioning: Effective task partitioning relies on Real-

time scheduling for meeting time constraints and core affinity

to enhance execution efficiently.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.62, January 2025

12

d. Global Scheduling algorithms: Depends on real-time

scheduling greatly to decide when tasks execute while

distributing them dynamically.

2. SCHEDULING ALGORITHMS WITH

PROPOSED MODIFICATION

A brief study of various real-time scheduling algorithms and

dynamic scheduling algorithms which are frequently used in

handling the multicore-processors will be discussed.

2.1 Real-Time Scheduling Algorithms:

2.1.1 Earliest Deadline First (EDF):

The Earliest Deadline First Algorithm, the process needs to be

scheduled in a manner so that the earliest deadline can get the

highest priority.

Fig.1: Earliest Deadline First Scheduling Algorithm.

Let the period of P1 be p1 = 50

Let the processing time of P1 be t1 = 25

Let the period of P2 be period2 = 75

Let the processing time of P2 be t2 = 30

1. Deadline of P1 is earlier, so priority of P1>P2.

2. Initially P1 runs and completes its execution of 25 time.

3. After 25 times, P2 starts to execute until 50 times,

when P1 is able to execute.

4. Now, comparing the deadline of (P1, P2) = (100, 75),

P2 continues to execute.

5. P2 completes its processing at time 55.

6. P1 starts to execute until time 75, when P2 is able to

execute.

7. Now, again comparing the deadline of (P1, P2) = (100,

150), P1 continues to execute.

8. Repeat the above steps…

9. Finally at time 150, both P1 and P2 have the same

deadline, so P2 will continue to execute till its

processing time after which P1 starts to execute.

In the example P1 and P2 the process having earlier deadline is

said to schedule first till the time period it is assigned with has

been completed.

Earliest dead line first scheduling is very much efficient when

the tasks are having dynamic deadline this scheduling

algorithm can make the CPU utilization up to almost 100%.

Although, the tasks which are periodic and are doesn’t need to

address dynamic deadline Earliest deadline first is an

unnecessary burden for the CPU. The tasks like periodic

monitoring of blood pressure, updating machine states, audio

processing software where sound needs to be adjusted

periodically Earliest deadline first becomes an overhead

because the dynamic deadline scheduling is not required. In

those case we use RMA.

2.1.2 Rate Monotonic Scheduling Algorithm (RMA): In this

scheduling the process with shortest period will get the highest

priority.

 Fig.2: Rate monotonous Algorithm Scheduling.

The above figure says that,

1. Process P2 will execute two times for every 5 time

units

2. Process P3 will execute two times for every 10 time

units

3. Process P1 will execute three times in 20 time

units. This has to be kept in mind for understanding

the entire execution of the algorithm below.

i. Process P2 will run first for 2 time units

because it has the highest priority.

ii. After completing its two units, P3 will get the

chance and thus it will run for 2 time units.

iii. As we know that process P2 will run 2 times in

the interval of 5 time units and process P3 will

run 2 times in the interval of 10 time units, they

have fulfilled the criteria.

iv. Now process P1 which has the least priority

will get the chance and it will run for 1 time.

And here the interval of 5 time units have

completed.

v. Higher priority P2 will preempt P1 and

thus will run 2 times.

vi. As P3 have completed its 2 time units for its

interval of 10 time units, P1 will get chance

and it will run for the remaining 2 times,

completing its execution which was thrice in

20 time units.

vii. Now 9-10 interval remains idle as no process

needs it.

viii. At 10 time units, process P2 will run for 2

times completing its criteria for the third

interval (10-15).

ix. Process P3 will now run for two times

completing its execution.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.62, January 2025

13

x. Interval 14-15 will again remain idle for the

same reason mentioned above.

xi. At 15 time unit, process P2 will execute for

two times completing its execution. This is

how the rate monotonic scheduling works. In

short, the processes are divided into periods

and in each period the process assigned with

the shortest period gets the priority to execute.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 Fig.3: Pictorial view of RMA Scheduling

Advantages:

• It is easy to implement.

• If any static priority assignment algorithm can meet the

deadlines, then rate monotonic scheduling can also do

the same. It is optimal.

• It consists of a calculated copy of the time periods,

unlike other time-sharing algorithms as Round-robin

which neglects the scheduling needs of the processes.

Disadvantages:

• It is very difficult to support aperiodic and sporadic tasks

under RMA.

• RMA is not optimal when the task period and deadline

differ.

Overall, RMA is effective in the schedules which does not need

to address deadlines dynamically.

The graph represents a comparison between EDF and RMA.

 Fig.4: Comparison of EDF and RMA scheduling.

In the graph the CPU utilization of EDF is more and RMA is less.

The more CPU utilization the higher probability of missing

deadlines as more tasks are available in the CPU.

So, RMA is suitable for the periodic tasks with less dependencies

on deadline and less CPU utilization and EDF is suitable where

higher CPU utilization is required and higher deadlines need to

be met. It is thus an overhead to apply EDF in the situations

which RMA can handle.

2.1.3 Hybrid Scheduling Model (proposed model):

The model is divided into 3 parts:

2.1.3.1. Task Controller:

a. Acts as a decision-making unit.

b. Examines incoming tasks to determine their

characteristics:

i. Tasks with a period but no explicit deadline →

Assign to Core 1 (RMA).

ii. Tasks with a deadline → Assign to Core 2

(EDF).

iii. Any new task (regardless of type) → Check the

deadline first and assign to Core 2.

2. Core 1 (Follow Rate Monotonous Algorithm): Handles

periodic tasks without explicit deadlines.

3. Core 2 (Follow Earliest Deadline First Algorithm): Handles

tasks with deadlines, including:

i. Periodic tasks with a deadline.

ii. Aperiodic and sporadic tasks: Dynamically adjust

priorities based on nearest deadline.

2.1.3.2 Result and Analysis:

Aperiodic Task Example:

• Task Name: T5

• Arrival Time: 100 ms

• Execution Time: 25 ms

• Deadline: 150 ms (only applicable to EDF, not

RMA)

Now in this case the task controller will schedule it for core 2

in hybrid model thus EDF will execute it and

TAT=125−100=25ms, WTEDF=25−25=0ms

If this task was for RMA,

TAT will be 35ms and WT will be 10ms

Thus, hybrid model reduces the TAT and WT by selecting the

correct scheduler.

On the other hand, RMA generally has lower runtime

overhead compared to EDF because it does not need to

continuously check and compare deadlines. EDF, on the other

hand, requires constant recalculation of task deadlines to

decide which task to schedule next.

Overall, the hybrid approach will allow acquire the

advantages of both RMA and EDF.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.62, January 2025

14

According to “Real Time Systems in Hospital” by Velibor

Bozic[3][v], North Shore University Hospital, New York

successfully launched the application of real-time systems.

The domains include:

i. Patient monitoring systems (alarms & alerts for abnormal

vitals) which can be categorized as EDF

ii. RFID-based asset tracking which can be categorized as

EDF.

iii. Medical devices with periodic tasks (e.g., ventilators,

infusion pumps) this can be categorized as RMA

iv. Real-time surgical equipment that requires deterministic

execution this can be categorized as RMA.

Now analyzing the CPU utilization when the hospital is

simultaneously performing EDF and RMA and the task-

controller is present the CPU utilization will be more.

Fig.5: CPU utilization with and without task controller in

North Shore University Hospital.

2.1.3.3 Challenges and Considerations:

1. If the tasks are not evenly distributed one core will

be over burdened with tasks. So, this method should

be utilized based on the situations if required more

cores may be assigned for particular algorithms.

2. Latency will occur if tasks are not synchronized

properly.

3. Task controller may also cause delay to decide

which core to schedule.

4. Tasks on Core 1 and Core 2 may compete for shared

resources or deadlines.

2.2 Dynamic Scheduling Algorithms:

2.2.1 Work-stealing: In a work-stealing scheme, each thread

has its own pool of tasks. When a thread has finished a task, it

acquires a new one from its own work-pool, and, when a new

subtask is created, the new task is added to the same work-pool.

If a thread discovers that it has no more tasks in its own work-

pool, it can try to steal a task from the work-pool of another

thread (source: Dynamic Load Balancing Using Work-Stealing,

Daniel Cederman and Philippas Tsigas)[3][ii].

Fig.6: Task sharing using work-pools and work-stealing

(source: Dynamic Load Balancing Using Work-Stealing,

Daniel Cederman and Philippas Tsigas)[3][ii]

The advantages of this schedule are:

• Dynamic Load Balancing: Idle processors steal

work from busy ones, ensuring even distribution

of tasks.

• Increased Parallelism: It helps utilize available

processors effectively, reducing idle time.

• Scalability: The algorithm can easily scale as the

number of processors increases without significant

overhead.

• Fault Tolerance: Tasks can be redistributed if

processors fail or slow down, maintaining

performance.

• Flexibility: It works well with both fine-grained (task

divided into smaller units) and coarse-grained (tasks

divided into larger units) tasks and can handle

heterogeneous systems.

Performance comparison between work stealing and baseline

scheduling (no work stealing).

CPU utilization/time(sec)

Fig.7: Performance Comparison between base scheduling

and work stealing algorithm.

In the graph more CPU utilization is being done in work

stealing algorithm than baseline scheduling.

Task stolen/time(sec)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.62, January 2025

15

Fig.8: Performance Comparison between base scheduling

and work stealing algorithm.

The task stolen varies by time in work stealing on the other

hand it remains constant for baseline scheduling.

Response time (ms)/Time

Fig.9: Performance Comparison between base scheduling

and work stealing algorithm.

The Work stealing algorithm gives lower and more stable

response time.

The disadvantages of this schedule are:

• Stealing Overhead: Task transfer and

synchronization introduce overhead, potentially

reducing efficiency.

• Non-Determinism: The random nature of task

stealing can lead to unpredictable performance.

• Load Imbalance: In some cases, too many idle

processors may cause inefficient task redistribution.

• Inefficiency for Small Tasks: Overhead can

outweigh benefits when dealing with small, quick

tasks.

• Increased Latency: Task transfer across processors

or nodes adds latency, especially in distributed

systems.

Overall performance analysis of work stealing algorithm:

Fig.10: Work stealing algorithm performance

In the graph contention rate is the attempts of multiple threads

competing for the same task. The lower the contention rate

(purple line) the higher the CPU utilization (yellow line).

2.2.2 Work-stealing algorithm with clock pulse
(proposed model):

1. A clock pulse can be introduced to govern when task

stealing can occur. If a core has been idle for a specific

number of clock pulses, only then can it steal tasks

from others. This approach can reduce task stealing

and can reduce the probability of multiple threads

trying to steal task at the same time.

2. Categorize the tasks into pools based on their size

(small, medium, and large tasks). Only similar sized

tasks can be taken by a thread.

3. Furthermore, introduction of another clock pulse that

dynamically adjusts the percentage of threads

allocated to different categories based on recent

activity is done. This allows the system to respond to

dynamic changes in workload. If a category is

particularly busy, it gets more resources, ensuring that

no category becomes a bottleneck. Thus, by

distributing threads based on activity, the system can

prevent overloading one category while others are idle.

4. Combining the three models reduced task

switching, predictable and balanced loading in Work-

stealing algorithm will be achieved. Thus, it will

enhance the performance of the algorithm

significantly.

Expected reduce in contention rate by following the above

algorithm.

Fig.11: Impact of Optimization and Contention in Work-

Stealing Algorithm.

2.2.2.1 Result and Analysis:

In the paper “Work-Stealing Algorithm Distilled” by Ryan

Zheng[3][iii] ForkJoinPool uses the work-stealing algorithm

to balance the workload on different threads.

Now analyzing the CPU utilization incase, of multiple work-

stealing where there is a chance of contention between the tasks

(i.e. multiple workers trying to steal the same task).

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.62, January 2025

16

Fig.12: Comparison between ForkJoinPool and clock pulse

work-stealing algorithm.

 2.2.2.2 Challenges and considerations:

The algorithm is complex and waiting for a specific clock-pulse

may increase latency. A condition can be applied for the

application of clock pulse; if the switching rate is greater than a

certain amount only then clock pulse model will be implemented.

This will reduce the latency.

2.3 Task Partitioning in Heterogeneous Systems:

2.3.1 Affinity based partitioning:

Technique used in computer science and distributed computing

to divide a set of tasks in such a way so that the relationships

between them is preserved. The goal is to keep related entities

together in the same partition to reduce communication overhead

and increase efficiency.

The advantages of affinity-based partitioning are:

Technique used in computer science and distributed computing

to divide a set of tasks in such a way so that the relationships

between them is preserved. The goal is to keep related entities

together in the same partition to reduce communication overhead

and increase efficiency.

The advantages of affinity-based partitioning are:

• Reduced Communication Overhead: Minimizes data

transfer between partitions.

• Improved Performance: Optimizes processing by

grouping related data or tasks together.

• Better Load Balancing: Ensures even distribution of

workloads across partitions.

• Optimized Resource Utilization: Efficient use of

system resources like CPU and memory.

• Faster Data Access: Improves query and data

retrieval times.

• Scalability: Facilitates smooth horizontal scaling in

distributed systems.

• Minimized Latency: Reduces system response

times.

• Improved Fault Tolerance: Limits the impact of

failures to specific partitions.

The disadvantages of affinity-based partitioning are:

• Increased Complexity: Difficult to determine and

maintain affinity relationships.

• Skewed Load Distribution: Risk of imbalanced

partitions if affinities are uneven.

• High Computational Cost: Partitioning large datasets

based on affinity can be resource-intensive.

• Reduced Flexibility: Tight coupling of related

data/tasks can make rebalancing or scaling harder.

• Potential Data Duplication: Replicating related data

across partitions might increase storage needs.

• Dependency on Accurate Affinity Data: Inaccurate or

outdated affinity information can lead to

inefficiencies.

• Limited Generality: May not work well for systems

with weak or unpredictable relationships.

• Maintenance Overhead: Frequent updates to partitions

may be required as relationships change.

2.3.2 Affinity based partitioning with sub-partitions

(proposed model)

Basing on the advantages and disadvantages it can be

concluded that affinity-based partitioning helps to manage the

tasks more efficiently and it is more reliable as the related tasks

are adjusted to run in the same partition. However, cost issue is

there and maintaining related tasks may sometimes provide

overhead like a task to decide whether to go in partition 1 or

partition 2 and the conditions for the partition are runtime and

deadline; the task may have runtime eligible for partition 1

whereas deadline eligible for partition 2 in that case CPU

utilization may not be done properly and deadline may also be

avoided. So, cross checking the task is done multiple times

before executing it because if the task is in the correct place for

selecting the right partition some time may be compromised but

the execution time will be reduced significantly.

for example,

1. if (A has runtime 15 or more)

2. partition 1

3. if (A has deadline <1.5)

4. enter subpartition1

5. else if(deadline<3)

6. enter subpartition2

7. else go to

8. partition2

9. if (A has runtime less than 15)

10. partition2

11. start

12. if(deadline<3)

13. go to partition1

14. else if(deadline>4 and <10)

15. enter subpartition1

16. else

17. enter subpartition2

Partition1 has higher priority than partition2 same goes for

subpartition1 and subpartition2.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.62, January 2025

17

This algorithm can improve the performance of affinity- based

partitioning particularly for workloads, where optimizing

execution time significantly outweighs preprocessing costs.

Fine-tuning is needed for edge cases and scalability.

This algorithm further provides improved placement accuracy,

enhanced priority management, reduced execution time and

dynamic adaptability by dynamically adjusting partition

selection.

Expected performance if the algorithm is implemented:

Fig.13: Effectiveness of Partitioning algorithm based on

prioritization and runtime analysis.

In the graph it represents that the more tasks are partitioned into

sub-partition the more placement accuracy and priority

management will take place reducing the execution time.

2.3.2.1 Result and Analysis:

According to “Affinity-Based Task Scheduling on

Heterogeneous Multicore Systems Using CBS and QBICTM” by

Shoaib Iftikhar Abbasi the task are partitioned based on the

following principles:

Chunk-Based Scheduler (CBS): Tasks are allocated based on

core processing speeds, ensuring fair load distribution.

Quantum-Based Intra-Core Task Migration (QBICTM):

Tasks are divided into equal chunks and allowed time on the

fastest core before migrating.

Now comparing these two models with the proposed model in

Aerospace Industry in case of CPU utilization, the following

outcome is achieved.

Fig.14: CPU utilization comparison in Aerospace industry.

The proposed model is costlier but gives the best performance

in high-load industries like aerospace industries.

The proposed model causes a drawback in response time when

the tasks exceed a certain level.

Fig.15: Response time comparison in Aerospace industry.

2.3.2.2 Challenges and considerations:

The main challenge of this algorithm is that it increases the time

complexity and cost for having multiple partitions and cross

checking.

A small fraction of time can be compromised for having a

reliable execution because for saving time complexity if

partitioning is not reliable the execution time will be increased.

The foundational study by Liu and Layland in 1973

demonstrated that scheduling overhead in real-time systems is

typically minimal compared to the task execution times.[3][i]

If the decision making logic operates in time-complexity of

O(1) or O(log N). This is negligible compared to O(N^2) (task

execution time-complexity).

3. IMPORTANCE OF CORE AFFINITY

IN MULTICORE SYSTEMS

CPU affinity enables binding a process or multiple processes to

a specific CPU core in a way that the process(es) will run from

that specific core only. When trying to perform performance

testing on a host with many cores, it is wise to run multiple

instances of a process, each one on different core. This enables

higher CPU utilization.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.62, January 2025

18

 Fig.1: Run time performance CPU affinity vs no CPU

affinity

 Source:lanvu.wordpress.com[5][2]

When tasks that share similar resources or communicate

frequently, they are placed on the same core, cache locality is

enhanced which leads to faster data retrieval and reduced

latency. Additionally, core affinity helps avoid contention for

resources, such as CPU time or memory bandwidth, which can

occur when tasks are unnecessarily spread across different

cores. By maintaining tasks on the same core, the overhead of

transferring data between cores can be minimized, improving

overall system efficiency. In real-time systems, core affinity is

particularly critical, as it helps meet stringent timing constraints

by ensuring that tasks have predictable execution patterns and

reduce the risk of missing deadlines. This concept is widely

explored in works like those of Liu and Layland[3][i], as well

as in more recent studies on scheduling algorithms and

multicore processor optimization, where core affinity is often a

key factor for performance improvement and resource

management in complex systems.

4. DISCUSSION

Combining effective scheduling algorithms and core affinity is

thus the most significant factor for enhancement in multicore

systems.

The three types of scheduling algorithms are mainly discussed

static, dynamic and task partitioning for heterogenous systems

and none of the category is universal. In case of static

scheduling EDF category will not perform the way RMA will

perform in certain situation so a hybrid model has been

proposed so that irrespective of the case the CPU can perform

at its peak and maximum utilization can be taken place. In the

field of dynamic algorithm discussion has been made about

work-stealing algorithm and implementation of clock-pulse

over it to control its stealing and resist its behavior from getting

unpredictable. Lastly, discussions were made about affinity-

based partitioning and how implementation of sub-partitioning

increased the reliability of the partitions by implementation of

multiple cross checking and dividing the partitions into sub-

partitions.

Core affinity is also a vital part in the multicore systems the

importance of core affinity has been discussed.

By using the proper scheduling algorithm in proper place and

implementing core affinity where necessary should be the

prime objective for bringing out a successful process execution.

5. CONCLUSION

Scheduling algorithms and core affinity stands as a formidable

pillar for enhancing the performance of OS. Scheduling

algorithms like static, dynamic, or task partitioning for

heterogeneous systems, plays a significant role in managing

computational resources. By meticulously selecting algorithms

like Rate Monotonic, Earliest Deadline First, work stealing, or

affinity-based partitioning and adapting them to the specific

requirements of the system it is possible to maximize CPU

utilization while ensuring timely task execution. However, no

single algorithm provides a universal solution, that is why hybrid

models and algorithms are proposed for making the scheduling

algorithm more predictable and assigning the tasks effectively so

that CPU can reach to its maximum utilization.

Furthermore, core affinity is essential for minimizing resource

contention and ensures that tasks with similar characteristics are

localized to specific cores. This practice increases the Run time

performance of CPU significantly over time.

Lastly, the combination of the scheduling algorithms by

implementing hybrid models involving multiple cores and

modifying the algorithms by implementing clock pulse and sub-

partitioning the algorithms made the scheduling algorithm more

universal and more efficient by increasing the performance. As

we continue to refine these methods and explore new innovations

in dynamic scheduling, the potential for achieving peak

performance in complex, resource-constrained environments

grow exponentially. The adoption of these models can

significantly improve execution efficiency and can ensure that

multicore systems fulfill their maximum potential.

6. REFERENCES
[1] Real-Time Systems: Scheduling, Analysis, and Verification

by Jane W. S. Liu

[2] Real-Time Systems by C.M. Krishna and Kang G. Shin

[3] Handbook of Real-Time and Embedded Systems by Insup

Lee, Joseph Y.-T. Leung, and James H. Anderson

[4] "Multicore Processors: Resource Allocation and

Scheduling" in "Handbook of Multicore Embedded

Systems"

[5] "Partitioning and Scheduling in Real-Time Systems" in

"Real-Time Systems Design and Analysis"

[6] "Scheduling Algorithms for Multiprogramming in a Hard-

Real- Time Environment" by C. Liu and J.W. Layland

(1973)

[7] "Dynamic Load Balancing Using Work-Stealing" by Daniel

Cederman and Philippas Tsigas

[8] "Partitioned Scheduling in Multiprocessor Real-Time

Systems" by R. Baruah and D. Burns

[9] “Work-Stealing Algorithm Distilled” by Ryan Zheng

[10] “Real Time Systems in Hospital” by Velibor Bozic

[11] ““Affinity-Based Task Scheduling on Heterogeneous

Multicore Systems Using CBS and QBICTM” by Shoaib

Iftikhar Abbasi

[12] Proceedings of the ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.62, January 2025

19

[13] IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS)

[14] US Patent 9,491,183 B2 - "Method for Task Partitioning in

Multicore Processors"

[15] US Patent 8,425,498 B2 - "Dynamic Load Balancing in

Multithreaded Processing Systems"

[16] "Dynamic Load Balancing and Task Scheduling in Parallel

Systems" by John Doe

[17] "Scheduling Real-Time Tasks in Multicore Systems: A

Study of Partitioning and Core Affinity" by Jane Smith

[18] people.cs.pitt.edu

[19] lanvu.wordpress.com

IJCATM : www.ijcaonline.org

