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ABSTRACT 

Due to the widespread availability of the internet and the 

abundance of devices capable of capturing images, there has 

been a significant increase in the number of images shared 

online. These images are easily manipulated using advanced 

software tools like Adobe Photoshop, leading to the creation of 

fake visuals. As the sophistication of image and video editing 

tools continues to advance, distinguishing between authentic 

and altered images has become increasingly challenging. Thus, 

it is crucial to verify the authenticity of images before deriving 

any significant insights from them.  In this paper we present a 

novel method for detecting and categorizing tampered and 

genuine regions within images, without reliance on reference 

images. The proposed novel approach called ‘Fusion CMFD’ 

‘Copy Move Forgery Detection (CMFD)’, model includes 

fusion of ‘Manipulation CMFD’ model and ‘Similarity CMFD’ 

model. Features are extracted in both models using VGG16 

neural network architecture where, features from convolutional 

layers are intelligently concatenated to enhance discriminative 

power and facilitate more accurate identification of genuine 

and tampered regions within an image. ‘Similarity CMFD’ 

model employs the VGG16 architecture, utilizing self-

correlation to assess feature similarity between the input image 

and its corresponding mask. Potential features are aggregated 

using Percentile Pooling, and then a Mask Decoder is utilized 

to upscale feature maps to the original image dimensions. 

‘Manipulation CMFD’ includes feature extraction using 

VGG16 and mask decoder. The proposed innovative approach 

promises enhanced accuracy and robustness in detecting 

tampered and genuine regions within images, opening up new 

avenues in the field of image forensics and enhancing overall 

security measures in digital content authentication. 

Experiments are performed on images from the MICC-F2000 

[1] dataset. The results are compared against existing 

methodologies reported in the literature and cross verified with 

MICC-F220 dataset. Performance has been analyzed using 

parameters namely, accuracy, precision and recall. 

General Terms 

Digital Image Processing, Computer Vision, Pattern 

Recognition 

Keywords 

VGG16, CNN, Deep learning, Correlation, Image tamper 

detection 

1. INTRODUCTION 
Images present a substantial concern across industries reliant 

on digital photography for multifaceted applications. From 

suspect identification to crime scene documentation and 

biometric data, images have entrenched themselves in forensic 

and public safety domains. The advent of digital photography 

has markedly escalated their prevalence in these sectors. While 

digital image processing has facilitated more facile 

manipulation, it has also catalyzed the evolution of innovative 

forensic methodologies. The veracity of digital images is now 

under scrutiny due to the ubiquitous availability of diverse 

image alteration programs, furnishing compelling evidence in 

myriad criminal investigations and serving as documentation 

for multifarious purposes. The availability of image editing and 

processing software tools has made the process of modifying 

original images more efficient and they are accessible to 

everyone. Notably, image splicing and copy-move forgeries 

emerge as the most prevalent forms of image manipulation. 

The ‘copy-move’ technique involves extracting a segment from 

an image and replicating it somewhere in the same image. This 

process effectively duplicates specific regions within the 

image, resulting in the creation of new content. Due to the 

preservation of key image characteristics such as illumination, 

proportion, and focus, images manipulated using the copy-

move technique often exhibit minimal visible evidence of 

tampering [2]. Patterns present in textured surfaces like grass, 

foliage, gravel, or fabric serve as ideal camouflage for digital 

manipulation techniques. The irregular patterns found in these 

surfaces facilitate seamless blending with the background, 

making it challenging for the human eye to detect any 

inconsistencies. Moreover, since the copied segments originate 

from the same image, they maintain uniformity in noise, color, 

and other essential properties, ensuring compatibility with the 

overall image [13]. Content forgery also includes certain kinds 

of orientations like scaling, rotation and transformations 

resulting in image blurring, noise addition and contrast 

enhancement [26]. 

Many methods have been proposed to detect copy move 

forgery, ranging from block matching techniques like DCT 

domain analysis and keypoint-based methods like Scale 

Invariant Features Transform (SIFT), Speeded Up Robust 

Features (SURF), AKAZE [8] gradient analysis, multi-

resolution techniques, and deep learning approaches [5, 6, 7, 

24]. Integrating multiple techniques or devising hybrid 

methodologies holds the potential to bolster the accuracy and 

resilience of copy-move forgery detection systems. Many of 

the methods are effective at identifying copied regions within 

an image; they often face challenges in distinguishing between 

genuine and tampered areas within the same image [24, 3,5, 6, 

10, 21].  

In this paper, proposed method present neural network 

approach to identify tampering within an image and classify the 

genuine and tampered region within the image. The proposed 

novel methodology uses fusion of ‘Manipulation CMFD’ and 

‘Similarity CMFD’ viz., ‘Fusion CMFD’ which utilize VGG16 

for extracting the features by concatenating the convolution 

layers of VGG16. And Mask Decoder is utilized to upscale 
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feature maps to the original image dimensions, which predicts 

the tampered and genuine region within an image. 

The remaining paper is organized as follows, section 2 

describes literature survey, section 3 focuses on the proposed 

methodology, and section 4 presents experiments results. Next 

section 5 about discussion and limitations whereas, section 6 

describes the conclusion and future work. 

2. LITERATURE SURVEY 
In this section we explore several existing approaches for 

detecting copy-move forgery, which encompass pixel-based, 

patch-based, and neural network-based methods.  

 Amerini et al. [7] introduced a novel approach based on the J-

Linkage algorithm that identifies regions in an image exhibiting 

similar patterns or textures, indicating potential tampering. 

Experimental evaluations conducted on diverse dataset of 

images demonstrate the superiority of the proposed method 

over comparable state-of-the-art techniques in terms of both 

copy-move forgery detection reliability and precision in 

localizing manipulated patches. The keypoint based approach 

proposed by Ibrahim A et.al. [4] models keypoints as whole 

regions rather than single points and utilizes the intersection 

over union measure to address image continuity. False matches 

caused by image self-similarity are mitigated by combining 

cross-matching tests with a modified distance ratio test, 

enabling the detection of multiple cloning instances. A support 

vector machine is employed to learn thresholds for determining 

the occurrence of CMF. Comparative evaluations of the 

proposed method on Coverage and MICC-F220 datasets 

highlight the methodology's ability to handle geometric 

transforms and multiple cloning instances while efficiently 

managing image continuity without the need for external 

methods. Chengyou Wang et al. [11] presented an innovative 

strategy merging Accelerated-KAZE (A-KAZE) and SURF 

techniques to enhance forgery detection. Traditional keypoint-

based methods often struggle to capture adequate points in 

smoother image regions. To address this limitation, the 

approach sets low response thresholds for both A-KAZE and 

SURF feature detection stages. A correlation coefficient map 

integrating filtering and mathematical morphology operations 

delineate duplicated regions. Extensive experiments 

demonstrate the method’s efficacy in detecting duplicated areas 

and its robustness against diverse distortions and post-

processing techniques, including noise injection, rotation, 

scaling, image blurring, JPEG compression, and hybrid image 

manipulation.  

Kaur, N. et al. [23] introduced a novel framework for copy 

move forgery detection leveraging deep learning techniques. 

The prposed framework combines contrast-limited adaptive 

histogram equalization (CLAHE) with a convolutional neural 

network (CNN) to discern images as pristine or tampered. The 

integration of CLAHE enhances the visibility of latent features 

within the image, facilitating the detection of specific elements 

characteristic of CMF. Evaluation of the proposed framework 

extends to various benchmark datasets, including GRIP, 

MICC-F2000, IMD, and MICC-F220, underscoring its efficacy 

and robustness across diverse scenarios. 

K. M. Hosny et.al. [9] presented a CNN architecture tailored 

for the precise detection of copy-move image forgery. The 

proposed architecture is designed to be computationally 

lightweight, featuring an optimal number of convolutional and 

max-pooling layers. The proposed system utilizes feature 

vectors extracted from image features and leverages full 

connection layers to identify feature correspondences and 

dependencies automatically. A rapid and accurate testing 

process, taking only 0.83 seconds per test, is presented. 

Extensive empirical experiments conducted on MICC-F2000, 

MICC-F600, and MICC-F220 datasets demonstrate the 

efficacy of the proposed model in terms of both accuracy and 

efficiency, achieving 100% accuracy across all experiments. 

Detection methodology based on deep neural learning is 

capable of accurately recognizing tampered images and 

classifying them into forged or original image categories. The 

disadvantage of proposed model is it does not identify the 

forged regions within the classified tampered image. Prabakar 

[3] proposed a hybrid method to detect tampering from noisy 

images. Initially, sample images from MICCF2000 are 

extracted and resized. A filtering technique is applied to 

eliminate any noise that might have been present in the 

tampered image and finally, integrated CNN and Support 

Vector Machine (SVM) is used to construct a hybrid model to 

detect copy move forgery.   

Ye, W., Zeng et.al.[25] presented two-stage forgery detection 

approach integrating parallel fusion features and an adaptive 

threshold generation algorithm comprising coarse-grained and 

fine-grained detection phases. Initially, in the coarse-grained 

detection phase, the SLIC algorithm is employed to preprocess 

images and partition them into irregular super pixels, 

addressing issues related to local regional correlation 

attenuation resulting from uniform segmentation. 

Subsequently, in the fine-grained detection phase, parallel 

fusion features are utilized to bolster the expressive capacity of 

local regions. An adaptive threshold generation algorithm 

based on the HOG level is devised to produce suitable 

thresholds tailored to the characteristics of distinct local regions 

for the final detection of suspected tampered areas. 

Experimental validation and comparative analysis against other 

methodologies confirm the superior accuracy and robustness of 

the proposed method, demonstrating its effectiveness in 

withstanding common attacks such as noise and brightness 

alterations. Nonetheless, there remains a scope for enhancing 

the method’s resistance against fuzzy attacks, necessitating 

further investigation. Moreover, while the proposed method 

exhibits limitations in precisely pinpointing tampered regions 

compared to deep learning approaches, its integration with such 

methods could enable more accurate detection and localization.  

Khurshid Asghar et.al. [16] presented an image forgery 

detection method based on DRLBP and SVM. Features are 

extracted by dividing the chrominance components of an input 

image into overlapping blocks and calculating the DRLBP code 

for each block. These features, represented by histograms of all 

blocks from both Cb and Cr components, are then used for 

classification using SVM classifier. Extensively evaluated 

across eight benchmark datasets viz. DVMM, CASIA v1.0, 

CASIA v2.0, CoMFoD, MICC-F220, MICC-F2000, UNISA, 

FRITH, Set-A and Set-B, including cross-dataset validation, 

the proposed method consistently outperforms state-of-the-art 

approaches. Its effectiveness in modeling structural changes in 

tampered images, attributed to the DRLBP texture descriptor, 

contributes to its robustness against various post-processing 

operations, file types, and image resolutions.  

Nagaveni K et al. [15] introduced a methodology leveraging 

pre-trained models through transfer learning for the 

classification of counterfeit images. The initial step involved 

preprocessing the images using Error Level Analysis (ELA) to 

detect tampered pixels. The results revealed that deepening the 

network did not lead to performance improvement; instead, 
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performance deteriorated, primarily due to model overfitting. 

To address this issue, DenseNet and ResNet50 were utilized, as 

they incorporate feature maps from earlier layers into 

subsequent layers, mitigating overfitting. Notably, these 

models demonstrated superior performance compared to those 

employing image patches. Additionally, the complexity and 

processing time of the network were reduced, as it was trained 

using the entire image dataset without the need for patches. 

Among the six models evaluated, ResNet50 exhibited the most 

favorable performance. Rodriguez-Ortega Y. et.al. [2] 

proposed two deep learning approaches: a custom architecture 

model and a transfer learning (TL) model to detect tampering 

in images. The model is evaluated using parameters precision, 

recall, and F1 score for each approach across diverse datasets 

and their performance metrics and computational efficiency are 

analyzed. The results suggest that while the TL model based on 

VGG-16 achieves higher metrics than the custom architecture, 

it requires longer inference times.  

From literature review, we observe that many of the methods 

perform effectively in restricted constraints such as duplication 

of the object limited to one or two, dynamic range of intensity 

values in the image is limited. Further, the presence of outliers 

leads to wrong results and in certain cases computational time 

is high. The methods performance affects in case of 

orientations. Majority of the work are able to detect image 

forgeries. However, only few attempts have been found to 

classify the regions of an image as original and tampered. 

3. METHODOLOGY 
This section describes the proposed approach for mage forgery 

detection. The proposed approach is presented in two stages. 

Detecting the tampered region from an image viz. 

‘Manipulation CMFD’ and next, detecting both similar regions 

from an image viz. ‘Similarity CMFD’ (Figure 1). Then Fusion 

of both the classification method identifies tampered and 

genuine region from an image viz. ‘Fusion CMFD’. The 

contribution of the proposed method lies is in extracting the 

features using VGG16 architecture, where features are 

concatenated from the convolutional layers of VGG16 and the 

fusion of proposed classification to identify the tampered and 

genuine region within the image. The details are given below. 

 
Fig1 : Proposed Architecture for Copy Move Forgery Detection  

3.1 Dataset 
The dataset utilized in the network is MICC-F2000, consisting 

of 1300 authentic images and 700 tampered images, all having 

a resolution of 739 × 492[7,8]. This dataset is employed to 

gauge the effectiveness of the proposed method against 

geometric alterations, including translation, rotation, and 

stretching, as well as various combinations of these 

transformations. Tampered images are used for training the 

model. The method’s resilience is assessed based on the 

degrees of rotation, stretching, and translation, each posing 

distinct challenges to its performance. Since the dataset lacks 

in binary masks, binary masks for tampered images are 

generated by comparing genuine and tampered versions of the 

images from the dataset using VGG Image Annotator (VIA). 

The dataset is divided into training and validation sets with 

proportions of 70% and 30%, respectively. The image data is 

then input into the proposed model. The proposed fusion model 

comprises of two components: the first being ‘Manipulation 

CMFD,’ which involves generating binary masks using 

tampered images from the dataset. As a result, the generated 

binary masks exclusively encompass the tampered regions of 

the image, as illustrated in Figure 2. Subsequently, the second 

model, ‘Similarity CMFD,’ is tasked with identifying cloned 

regions within the image. This model utilizes the binary masks 

generated from the previous step to facilitate training, as 

depicted in Figure 3. 
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Fig 2 : row 1: Tampered images row 2 :  Mask images created using VGG image annotator for ‘Manipulation CMFD’ model 

 

Fig 3 : Row 1: Tampered images row 2 :  Mask images created using VGG image annotator for ‘Fusion CMFD’ model 

3.2 Feature Extraction 
The CNN is a deep learning algorithm, widely used in image 

recognition, object detection, and image segmentation tasks 

due to their ability to automatically learn spatial hierarchies of 

features from raw pixel data. For proposed methodology, 

VGG16 architecture is used for feature extraction. It is 

characterized by its simplicity and uniformity, consisting of a 

series of convolutional layers followed by max-pooling layers, 

with fully connected layers at the end. VGG16 consists of 13 

convolutional layers grouped into five blocks, where each 

block is followed by a max-pooling layer. The convolutional 

layers uses 3x3 filters with a stride of 1 and "same" padding, 

and it is responsible for extracting features from the input 

image. MaxPooling is a down sampling operation used to 

reduce the spatial dimensions of feature maps while retaining 

the most important information [2]. The ‘ReLU’ activation 

function used in architecture replaces negative pixel values 

with zero and leaves positive values unchanged. ‘ReLU’ helps 

alleviate the vanishing gradient problem, which can occur in 

deep neural networks during back propagation [22]. The last 

two layers of VGG16 are fully connected layers, consisting of 

4096 neurons each, followed by a final output layer with 1000 

neurons (corresponding to 1000 ImageNet classes) and a 

‘softmax’ activation function [19]. In proposed methodology 

first 4 blocks of VGG16 are used (figure 4). Here, input image 

of size (256, 256, 3) with corresponding binary masks of same 

size is input to the model. Each convolutional block consists of 

multiple convolutional layers followed by activation functions 

(ReLU) and max-pooling layers. These layers help in 

extracting hierarchical features from the input images. The 

features are extracted, in Block 1, using two convolutional 

layers (Conv2D) with 64 filters applied to the input images. The 

outputs of these layers are concatenated with the original input 

and then passed through a max-pooling layer. Similar 

operations are repeated in subsequent blocks, Block 2, Block 3, 

and Block 4 with increasing numbers of filters 128, 256 and 

512, respectively. The features extracted from the 

convolutional layers are concatenated with the features from 

the previous layers, and at third and fourth block, first and third 

convolution layers features are concatenated. This approach 

helps in preserving both low-level and high-level features 

throughout the network. 

3.3 Manipulation CMFD 
The ‘Manipulation CMFD’ model introduced is designed to 

precisely detect tampered regions within images. The model 

trained on input images paired with corresponding ‘tampered 

binary masks’, which specifically mark the areas of tampering 

within an image. The visual representation of input images and 

binary masks is illustrated in Figure 2. The process entails 

feature extraction via a VGG16 Feature Extractor, followed by 

up sampling of the feature maps to match the original image 

dimensions using a Mask Decoder. Subsequently, a Binary 

Classifier is applied to accomplish the auxiliary task of 

generating a manipulation mask as shown in Figure 1. 

(‘Manipulation CMFD’). 
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Fig 4: Proposed VGG16 Architecture for feature extraction 

3.3.1 VGG16 Feature Extraction 
In proposed approach, any CNN architecture can function 

Feature Extractor. In proposed approach, features are extracted 

VGG16 architecture as described in section 3.2. The resulting 

features at the fourth block are of size 16×16×512 tensor, 

possessing a considerably lower resolution than that required 

for the manipulation mask.  

3.3.2 Mask Decoder 
After feature extraction, a decoding process becomes 

imperative to restore the feature map to its original resolution 

i.e. ‘upsampling’. This is achieved through deconvolution, as 

illustrated in Figure 3. The 16-fold increase in spatial 

dimensions is a consequence of employing upsmapling four 

times (i.e., 24=16). Furthermore, the output filter dimension of 

6 is attributed to the final BN-Inception layer, which 

incorporates three Conv2D responses, each with 2 output filters 

and distinct kernel sizes of 5×5, 7×7, and 11×11 resulting in a 

concatenation of 3×2=6 filters [17]. After each upsampling 

operation, the number of filters is reduced gradually from 8 to 

2. The final output of the deconvolution blocks is a tensor of 

size (256, 256, 6). Classification takes place at the prediction 

layer. Finally, the pixel-level manipulation is predicted through 

a Binary Classifier, implemented as a single Conv2D layer with 

1 filter and a kernel size of (3,3) followed by sigmoid 

activation. This results in a final output tensor representing the 

predicted mask with a size of (256,256,1) 

3.4 Similarity CMFD 
The ‘Similarity CMFD’ model is developed to identify similar/ 

identical regions within images. During the training phase, the 

model receives input images along with corresponding binary 

masks, depicted in Figure 3. The model’s workflow 

encompasses feature extraction, self-correlation, percentile 

pooling, and mask decoding processes, all aimed at classifying 

similar regions within the images. 

3.4.1 VGG16 Feature Extraction  
VGG16 pre-trained model is utilized for feature extraction, 

focusing on the first four blocks as shown in figure 1. Features 

are extracted as described in section 3.2. Feature extraction 

results in a tensor of size 16×16×512, representing patch-like 

features with 512 dimensions. Given the objective of 

identifying potential copy-move regions, it becomes imperative 

to extract pertinent information for discerning matched patch-

like features. To achieve this, all-to-all feature similarity scores 

are computed using Self-Correlation, and meaningful statistics 

are gathered to identify matched patches via Percentile Pooling. 

3.4.2 Correlation and Pooling 
A self-correlation task is employed to compute feature 

similarity across the extracted features. Self-correlation 

calculates similarity scores across all feature pairs, resulting in 

a tensor of size 16×16×256. Percentile pooling is then applied 

to gather significant data, standardizing the score vector and 

removing input size dependency. Specifically, the Pearson 

correlation coefficient ρ is employed to quantify feature 

similarity between two patch-like features. The computation 

involves normalization of the features by subtracting the mean 

and dividing by the standard deviation. Consequently, Self-

Correlation outputs a tensor of dimensions 16×16×256. Next, 

to effectively identify matched features, Percentile Pooling 

sorts the score vector in descending order and selects scores at 

predefined percentile ranks. This standardization not only 

removes the dependency on input size but also facilitates 

dimension reduction by retaining only a subset of scores.  

3.4.3 Mask Decoder 
Following Percentile Pooling, the Mask Decoder gradually 

upsamples [18] the pooled feature to the original image 

dimensions because the resulting feature tensor from 

correlation is of lower resolution than the manipulation mask 

requires, while the Binary Classifier generates a copy-move 

mask to fulfill the auxiliary task. Again, both the Mask Decoder 

and Binary Classifier maintain the same architecture as those 

in the ‘Manipulation CMFD’ but possess distinctive weights. 

This process generates a tensor of shape 256×256×6, with 6 

filters representing concatenated Conv2D responses. Finally, a 

binary classifier, consisting of a single Conv2D layer followed 

by sigmoid activation predicts the pixel-level ‘Similarity 

detected mask’. The model effectively detects tampered 

regions within images through feature extraction, correlation, 

and mask decoding. It provides a robust framework for 

identifying potential copy-move regions and generating 

accurate manipulation masks combining feature extraction, 

correlation, and mask decoding, the ‘Similarity CMFD’ model 

demonstrates strong performance in image similarity detection 

tasks. 

3.5 Fusion CMFD 
In the Fusion CMFD module (Figure 1) the Mask Decoder 

features from both branches, are utilized collectively to make 

the final Copy-Move Forgery Detection (CMFD) prediction 

which classifies genuine and tampered region, respectively. 

The process involves several steps, Fusion of features from 

‘Manipulation CMFD’ and ‘Similarity CMFD’. Firstly, the 

features obtained from the Mask Decoder of the ‘Manipulation 

CMFD’ and ‘Similarity CMFD’ branches, respectively, are 

concatenated. This concatenation combines the information 

extracted from both branches into a single feature 

representation. Then, the concatenated features undergo fusion 

using specific parameter set of 3[1,3,5]. The module integrates 

information from the concatenated features to enhance the 

representation by capturing both spatial and channel-wise 

dependencies. This fusion process ensures that relevant 

C
o

n
v 

3
-1

 

C
o

n
v 

3
-2

 

C
o

n
v 

3
-3

 

M
ax

p
o

o
l 

C
o

n
v 

4
-1

 

C
o

n
v 

4
-2

 

C
o

n
v 

4
-3

 

M
ax

p
o

o
l 

C
o

n
v 

2
-1

 

C
o

n
v 

2
-2

 

M
ax

p
o

o
l 

C
o

n
v 

1
-2

 

M
ax

p
o

o
l 

C
o

n
v 

1
-1

 
BLOCK1 BLOCK2 BLOCK3 BLOCK4 

Concatenation Concatenation 
Concatenation 

Concatenation 



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.62, January 2025 

47 

information from both branches is effectively incorporated into 

the final feature representation. Finally, the fused features are 

used to predict the three-class CMFD mask. This prediction is 

accomplished using a Conv2D layer with a single filter of 

kernel size 3×3, followed by the softmax activation function. 

The softmax activation function normalizes the output 

probabilities across the three classes, namely background (blue 

color), genuine (green color), and tampered (red color), 

ensuring that the predicted mask accurately reflects the 

likelihood of each pixel belonging to each class. Even while 

training the ‘Fusion CMFD’ model follows the input images 

and binary masks are shown in figure 3. And the feature 

extraction model is given in figure 4 and section 3.2. 

4. EXPERIMENTAL SETUP 
The proposed novel approach is implemented using Python 

programming language, specifically version 3.11. for deep 

learning tasks, TensorFlow 2.0 is utilized. The system 

specifications include Windows 11, an Intel i5 12th generation 

processor, and 16GB of RAM. 

Through extensive training and testing, the model has been 

fine-tuned to accurately discern tampered regions even amidst 

complex transformations such as rotation and scaling. These 

transformations mimic real-world scenarios where adversaries 

may attempt to obfuscate tampered regions through spatial 

alterations. By effectively identifying tampered and genuine 

areas despite such transformations, the model underscores its 

robustness and adaptability in combating forgery in digital 

imagery. The experimental results presented in Figure 6 and 7 

not only validate the model’s efficacy in detecting left-aligned 

tampering and cross validation but also emphasize its 

versatility in handling multiple types of image manipulations. 

Following experimentation with various numbers of epochs, it 

is empirically observed that, proposed ‘Manipulation CMFD’, 

‘Similarity CMFD’ and ‘Fusion CMFD’ model employing 100 

epochs yields optimal results. The model's learning rate is fixed 

at 1e-2, and the loss function employed for computation is 

‘binary_crossentropy’ for ‘Manipulation CMFD’, and 

‘Similarity CMFD’ whereas, ‘categorical_crossentropy’ for 

‘Fusion CMFD’. Throughout the training process, the model 

iteratively adjusts its parameters to minimize the cross-entropy 

loss, leveraging the ‘Adam’ optimizer. 

5. RESULTS 
The experiment conducted using images from the MICC-

F2000 dataset. Figure 5 illustrates the experimental outcomes. 

The first and second rows display the original images and their 

corresponding tampered versions from the dataset, 

respectively. The third and fourth rows highlight the ground 

truth and predicted masks, respectively. In the predicted mask, 

the red-colored regions represent the tampered areas within the 

image, while the green-colored regions indicate genuine areas. 

Furthermore, the last row provides evidence that the predicted 

masks accurately identify both genuine and tampered regions 

within the image. The accuracy of this identification is 

demonstrated by overlaying the predicted masks onto the input 

images. 

 

 

Fig 5: Experimental results performed on MICC-F2000 dataset 

The proposed model is trained to detect various forms of 

forgery attacks, including rotation, scaling, and tampering 

across different regions of the image. It demonstrates efficiency 

in identifying a wide range of forgery attacks in images. The 

evaluation involved testing the model's performance against 

different scenarios, including right alignment tampering, left 
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alignment tampering, large scaling, minimum scaling, and 

combinations of rotation and scaling. Figure 5 presents sample 

images illustrating forgery with right alignment, scaling, and 

rotation. The tampered regions are situated to the right side of 

the image, as well as in the top and bottom regions. 

Figure 6 illustrates the identification of left-aligned tampered 

regions, coupled with rotation and scaling, showcasing the 

comprehensive capabilities of the proposed model in detecting 

various forms of image manipulation.  
Figure 7 is sample results of the proposed model where the 

model is trained on MICC-F2000 dataset and tested on MICC-

F220 [2]. The manipulated section of the duplicated image 

appears randomly as either a rectangle or square within the 

image, with forgery attempts typically involving rotation or 

scaling techniques. Proposed model yields better testing results 

for MICC-F220 with all possible copy move forgery attacks 

given in image dataset. 

6. DISCUSSION 
Afterwards, the novel proposed method’s performance analysis 

given in figure 8. Where (a) is training and validation accuracy 

and (b) is training and validation loss for ‘Fusion CMFD’ 

model. Whereas, (c) is training and validation accuracy and (d) 

is training and validation loss for ‘Similarity CMFD’ Model.  

The ‘Manipulation CMFD’ model is specifically trained to 

identify tampered regions within an image, while the 

‘Similarity CMFD’ model focuses on detecting cloned regions. 

The training and validation accuracy for the ‘Similarity CMFD’ 

model are notably high, reaching 99% and 98.11%, 

respectively. On the other hand, the ‘Fusion CMFD’ model not 

only detects tampered regions but also classifies them as 

genuine or tampered. Demonstrating robust performance, the 

Fusion CMFD model achieves training and validation 

accuracies of 99.28% and 98.30%, respectively, as illustrated 

in Figure 8.  

The next step involves testing the proposed ‘Fusion CMFD’ 

model. Two cases are considered for testing. Case 1 entails 

determining whether an image has been tampered with, as well 

as accurately identifying genuine and tampered regions within 

the image. For this evaluation, a total of 100 images are 

employed, comprising 80 tampered and 20 non-tampered 

images. Figure 9 depicts the confusion matrix generated during 

the testing phase to discern tampered images. This is called as 

“anomaly detection” or “one-class classification”. Remarkably, 

out of the 100 images, only one tampered image is erroneously 

classified as non-tampered, while all non-tampered images are 

correctly identified. The proposed model achieves an 

impressive accuracy of 99%, with a recall rate of 98.75% and 

precision reaching 100%. 

 

 

Fig 6: Left aligned tampering detected images from MICC-F2000 dataset (Row 1: Input Tampered image and Row 2: 

Predicted output image) 

 
Fig 7: Sample images for cross validation from MICC-F220 dataset (Row 1: Input Tampered image and Row 2: Predicted 

output image) 
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Fig 8 : Performance analysis of novel proposed approach for genuine and tampered region identification within an image 

After successfully classifying between tampered and non-

tampered regions, the next case, Case 2, involves precisely 

identifying the genuine Regions of Interest (ROIs) and 

delineating them in green, while marking tampered ROIs in red 

in the predicted binary mask. In this test scenario, the novel 

‘Fusion CMFD’ model is evaluated using a dataset comprising 

100 tampered images. Figure 10 illustrates the confusion 

matrix for discerning genuine and tampered regions within an 

image, a task commonly known as ‘binary classification’. The 

confusion matrix reveals that out of the 100 images, only 2 

exhibit discrepancies in identifying the genuine and tampered 

regions. Specifically, some genuine regions are misclassified as 

tampered, and vice versa, leading to a color swap in the 

predicted binary mask where green denotes tampered regions 

and red signifies genuine regions. Here, the labels ‘0’ and ‘1’ 

represent tampered and genuine regions within an image, 

respectively. The results of the proposed model's testing 

showcase an impressive 98% accuracy. 

 
Fig 9: Confusion Matrix for classifying whether image is 

tampered or not 

 

(a) (b) 

(c) (d) 
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Figure 10. Confusion matrix for identifying genuine and 

tampered region within an image 

For testing both the cases MICC-F2000 image dataset is used 

including various forgery attacks such as scaling and rotation. 

Afterwords the proposed method is compared with other 

existing methods The proposed method yields higher accuracy 

for the corresponding datasets. In Table 1, the proposed 

methods are compared with both single image forgery detection 

and deep learning-based forgery detection. The methods [24, 

20, 25 and 31] refer to single image forgery and remaining 

represent the neural network approach. However, these 

methods only identify cloned regions within an image as 

‘Similarity CMFD’ model.  

Table 1 : Comparative Analysis for MICC-F2000 dataset 

Author Accuracy 

Amerini [1] 94.86 

Amerini [24] 93.42 

Elaskily et. al [20] 98.40 

Ye et.al. [25] 98.5 

Ahmed Sedik et. al [28] 94 

Vaishali, Sharma et. al [29] 97.63 

Selvaraj et. al. [27] 69.75 

Nidhi Goel et. al [14] 96 

Thiiban M et.al [30] 76 

Rajeev Rajkumar [12] 99 

Elaskily et. al [31] 98.14 

Proposed Method (Fusion CMFD) 99 

In the Table 2, The other parameters as precision and recall are 

considered and compared with other state of art methods and 

proposed methods yields better result. 

Table 2 : Analysis for MICC-F2000 dataset 

7. CONCLUSION AND FUTURE WORK 
This study introduces an advanced approach to Copy-Move 

image forgery detection and image region classification, 

leveraging the powerful VGG16 architecture without the need 

for any reference image. The methodology proposed herein 

demonstrates significant potential in the realm of image 

forensics. By fusing the capabilities of ‘Manipulation CMFD’ 

and ‘Similarity CMFD’, the novel ‘Fusion CMFD’ model 

emerges, representing a robust solution to detect and classify 

tampered and genuine regions within images. The novel feature 

extraction technique, as illustrated in Figure 4, harnesses the 

deep learning capabilities of VGG16, where concatenated 

features from convolution layers and the initial four blocks of 

the network are utilized. The comprehensive methodology, 

outlined in Figure 1, underscores the systematic approach 

adopted in this study. Experimental evaluation, conducted on 

the MICC-F2000 tampered image dataset, showcases the 

superiority of the proposed method over existing techniques, 

demonstrating resilience against various Copy-Move image 

forgery detection (CMFD) attacks as scaling and rotation. 

Furthermore, the model’s robustness is validated through cross-

verification with the MICC-F220 dataset. With its 

demonstrated efficacy in handling large datasets, future 

research avenues may explore its application to diverse datasets 

and special case of copy move forgery where the uniform 

background regions without any objects has been copy pasted 

and provides robust methods in the field of forensic image 

analysis.  
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