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ABSTRACT 
It is essential for radiologists to identify Alzheimer's disease 

early to ensure accurate diagnosis and access to treatment. 

Medical imaging, such as Magnetic Resonance Imaging 

(MRI), are becoming increasingly difficult to diagnose. This 

study sought to develop a hybrid framework to use MRI scans 

to detect Alzheimer's disease. The suggested approach entails 

applying adaptive median filtering as a pre-processing step to 

MRI scans, extracting features based on hybrid wavelet 

partial Hadamard transform (hybrid WPHT) and discrete 

local binary pattern (DLBP). The next step in the feature 

selection process is to reduce the dimensionality of the 

features using the adaptive Harris-Hawk optimization 

(AHHO) approach. This greatly enhances the performance of 

the classifier by further refining its parameters using the 

Improved Weight-Based Beetle Swarm algorithm (IW-BS) 

and the Optimized Support Vector Machine (OSVM) 

classification. The MRI image classifies as Mild, Very Mild, 

or Normal. The results of the study demonstrate that this 

proposed methodology is more accurate, precision, and 

recall, specificity, F-score, running time, under the curve 

(AUC), and receiver operating characteristics (ROC) 

Keywords 
Magnetic Resonance Imaging, Optimal Support Vector 

Machine, Hyper-Parameter Tuning, Feature Extraction, 

Kernel Parameter, Hybrid Wavelet. 

1. INTRODUCTION 
As the world's population ages, the incidence of Alzheimer's 

disease (AD) has reached an epidemic level, presenting 

several challenges to healthcare systems around the world. 

Alzheimer's disease is a progressive form of 

neurodegeneration, which is characterized by cognitive 

impairment, memory decline, and a variety of behavioural 

and functional dysfunctions [1]. The effective treatment of 

AD, the execution of interventions, and the assessment of 

prospective therapeutic regimens all depend on an accurate 

and prompt diagnosis. Because magnetic resonance imaging 

(MRI) is non-invasive, highly spatialized, and able to provide 

information on both structural and functional abnormalities 

in the brain associated with AD, it has become an 

increasingly significant diagnostic tool in the endeavour to 

diagnose AD early [2]. The complex pathophysiological 

mechanisms that lead to the development of Alzheimer's 

disease (AD), including the buildup of plaques and tangles of 

tau proteins, result in neurodegeneration and the degeneration 

of the brain. These alterations can be observed through a 

variety of imaging techniques, and MRI provides a 

comprehensive overview of the structural changes in the 

brain over time. MRI-based imaging techniques have become 

increasingly important in Alzheimer's disease research and 

providing insight into the progression of the disease and 

enabling the development of new diagnostic techniques and 

therapeutic objectives [3]. 

Recent advances in the detection of Alzheimer's disease using 

MRI, as well as the techniques and approaches developed to 

improve sensitivity and specificity, are explored. Current 

challenges and limitations of MRI AD detection are 

discussed, along with strategies for achieving early detection. 

Insights into how machine learning and AI can enhance 

diagnostic accuracy are also provided [4]. Additionally, the 

importance of a multi-disciplinary approach, bringing 

together clinicians, neuroscientists, radiologists, and 

computer scientists, is emphasized to fully leverage the 

potential of MRI for early Alzheimer's diagnosis. By 

examining the state-of-the-art in MRI AD detection and 

looking ahead to future developments, this work aims to 

contribute to the fight against Alzheimer's and improve 

quality of life [5]. 

 Recent developments in medical science have revealed that 

Alzheimer's disease is the most widespread disease in the 

world. Early detection and treatment of this condition can be 

lifesaving. To address this, increased research initiatives have 

been conducted to identify high-quality patterns in large 

amounts of data.  

The proposed algorithm includes the use of MRI scan images 

to detect Alzheimer's disease, as well as the implemented 

algorithm in four phases Adaptive Median Filtering-Based 

Pre-processing (AMFP) is the first step in the preprocessing 

of MRI scanned images. Discrete local binary pattern 

(DLBP) and a hybrid wavelet partial Hadamard transform 

(Hybrid WPHT) are then used to extract features from the 

preprocessed image. Next, the Harris-Hawk adaptive 

optimization (AHHO) approach is used to reduce feature 

dimensionality. Lastly, the Improved Weight-Based Bug 

Swarm (IW-BS) algorithm is used to adjust the parameters of 

the SVM approach to improve classification performance. 

The structure of this paper is as follows: Section 2 review 

recent related publications, the proposed method is 

elaborated upon in Section 3, the results and discussions are 

described in Section 4, and the research is summarized in 

Section 5.  

 



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.61, January 2025 

 

18 

The advancement of neuroimaging technology, which has 

enabled healthcare providers and researchers to acquire many 

neuroimaging datasets, is one of the emerging technologies 

that are beneficial to healthcare providers. Several 

sophisticated algorithms have been developed to identify AD. 

This document lists the several algorithms that have been 

created to identify Alzheimer's disease, classifying them into 

two groups: deep learning-based methods and classical 

machine learning-based methods. 

The use of machine learning algorithms has been 

incorporated into the innovations, resulting in a marked 

acceleration in the diagnosis and management of 

Alzheimer's. The researchers have employed established 

pattern analysis techniques. To develop prediction models for 

the early diagnosis of Alzheimer's disease, logistic regression 

(LR), support vector machines (SVM), and linear 

discrimination analysis (LDA) are used [6]. The primary 

impediment to utilizing these outdated categorization 

techniques is the duration required to complete these stages, 

as they necessitate expertise and a multitude of stages of 

refinement [7]. 

Beheshti et al. [8] this study utilized structural magnetic 

resonance imaging (MRI) scans from Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database for 130 individuals 

with Alzheimer's disease and 130 individuals with non-

Alzheimer's disease. Each participant was given 

neuropsychological tests to acquire clinical indicators, such 

as results from the Clinical Dementia Ratio and the Mini-

Mental State Examination. Additionally, the study employed 

a feature ranking based on the reduction of classification error 

and Voxel-based feature extraction technique. The proposed 

model was found to be accurate with a 92.48% accuracy rate. 

In a separate study, Zhang et al. [9] This study conducted a 

comprehensive analysis of longitudinal MRI scans from 

ADNI database, which included data from 207 healthy 

subjects and 154 patients with Alzheimer's disease. The data-

driven approach to landmark discovery was employed to 

identify landmarks, and a landmark based feature extraction 

framework was proposed to extract statistical, that used a 

bag-of-words technique to extract statistical high-level 

spatial and contextual longitudinal information. Based on the 

results of the study, the SVM classifier was employed, 

achieving an impressive 88.30% accuracy rate. In a study 

conducted by Zeng et al., [10] using the ADNI database of 

MRI scans from 82 patients with normal control (NC) and 92 

Alzheimer's Disease (Alzheimer's), Voxel features were 

extracted using an automated anatomical labeling template, a 

hybrid model was proposed by employed the switching 

delayed particle swarm's optimization technique and 

principal component analysis to optimize the kernel 

parameter and the penalty factor of SVM classifier. 

According to the outcome, the proposed classifier with 

accuracy level of 71.23%. In a recent study conducted by Koh 

et al. [11] using MRI brain scans from Harvard Brain Atlas 

and UMAC databases, 55 Alzheimer's patients and 110 

healthy subjects were scanned. Subsequently, features were 

extracted using the Bidirectional Empirical Mode 

Decomposition technique. The results indicated that RF 

classifiers and a single-degree polynomial kernel (SVM) 

reached 93.9% accuracy. The primary obstacle to the 

implementation of standard machine learning lies in the 

requirement to extract features from a wide range of 

neuroimaging images and feed them into classification 

algorithms. 

Deep learning (DL) is a rapidly developing area of machine 

learning that utilizes raw neuroimaging information to 

generate characteristics through "on-the-go" learning, and is 

becoming a major topic of research in large-scale, highly 

dimensional neuroimaging analysis [12]. 

In Liu et al., [13] a deep learning model for Alzheimer's 

disease diagnosis was developed through research. 

Fluorodeoxyglucose-positron emission tomography (DFDG-

PET) neuroimaging served as the foundation for this concept. 

2D slices were created from 3D FDG-PET pictures. The 

slices were then sorted into nine categories according to how 

similar their structural features were. Features were extracted 

using deep learning approaches, such as a 2-stacked 

bidirectional-gated recurrent unit cascaded to extract inter-

slice features and a 2D CNN model trained for intra-slice 

extraction. The final classification output was fed into two 

fully connected layers and a SoftMax layer. The results of the 

study test on 100 healthy participants and 93 patients with 

AD from the ADNI database. It showed that the proposed 

model was accurate to 91.2%. 

P. Vemuri, [14] used 3D-MRI images from ADNI database, 

which included 139 healthy subjects and 198 patients with 

AD. The tissue image was composed of three types. Cerebral 

spinal fluid (CSF), white matter (WM), and gray matter 

(GM). These tissues were subjected to parallel 3D Multi-

Scale-CNNs, which enabled the extraction of multispectral 

features. Furthermore, two separate fusion layers were 

performed on different scales of the tissue region and 

adjacent tissue regions. 

The results of the study by Basia et al. [15], 124 individuals 

with Alzheimer's disease and 50 normal participants' MRI 

scans were acquired using the Milan database. It was 

discovered that the suggested model, which consists of 

twelve convolutional layers with LR output layer and fully 

connected layer with ReLU activation function and repeated 

blocks, was extremely accurate (98 percent) for both data 

sets. 

Pan et al. [16] used 3D- MRI scan image of 162 healthy 

subjects and 137 AD subjects from ADNI database to 

construct a model. The model was designed to extract 

features from a collection of coronally, sagittalally, and 

transversally scanned 2D-MRI slices. Subsequently, the 

extracted features were combined with multiple 2 D-CNN 

models to construct a specialized ensemble model that 

yielded the classification result. The model has demonstrated 

successful performance with an 84% based on 10-fold Cross-

validation of the data set. 

In addition to Feng et al. [17] used ADNI database 3D MRI 

images for 159 healthy individuals and 153 Alzheimer's 

disease patients. Three models were presented, namely 2D-

CNN, 3D-CNN, 3D-CNN-SVM to extract features from 

scans, and SVM to perform classification tasks based on the 

extracted features, and the most successful model according 

to their experimental findings 99.10% accuracy, 99.40% 

specificity, and 98.80% sensitivity. 

Li et al. [18] conducted a study in which 174 healthy subjects 

and 116 patients having Alzheimer's disease were enrolled in 

the study. The participants were scanned with 4D-MRI scans 

from the ADNI database. The proposed model was 

constructed using a combination of two different approaches: 

3D-CNN used to extract features from scans, and Long-Term 

Memory-Based (LSTM) classification of derived features. 

3D CNN could capture spatial information, while LSTM 
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enabled the capture of time-varying features. According to 

the experiments conducted, the model achieved a high level 

of performance, with 95.37% accuracy. 

In a recent study conducted by Liu et al., [18] used OASIS 

database from 30 AD patients and 332 healthy subjects. 

Resampling techniques were applied to the dataset, resulting 

in a last version with 450 Alzheimer's patient scans and 532 

average healthy subjects. Additionally, the model was tested 

with a few ADNI database. The proposed model, which 

differs from the default CNN by dividing the convolution 

layer into filtering layers and feature extractors, is a depth-

wise separable CNN.  

In addition to GoogNet and AlexNet[1], the fundamental 

CNN paradigm was also employed through transfer learning. 

The results of the tests indicated that transfer learning yielded 

to accuracy level for GoogleNet, at 93.02%. Previous studies 

have demonstrated that deep learning methods, which do not 

necessitate a feature extraction phase, are more precise and 

effective than traditional machine learning techniques. 

Furthermore, the accuracy and efficiency of the results are 

enhanced due to the high number of images used in 

Alzheimer's neuroimaging kinds. Nevertheless, there is still 

potential for further refining deep learning methods for the 

management of neuroimaging datasets, particularly datasets 

with multiple frames per patient, each with a distinct set of 

properties; all frames are coupled and display significant 

changes [19–21]. 

2. MATERIAL AND METHODS 
To reduce the dimensionality of feature selection, this paper 

aims to develop a framework for the diagnosis of AD using 

MRI images processed through Adaptive Median Filtering-

Based Hybrid Wavelet Partial Hadamard Transform (Hybrid-

WPHT) combined with Discrete Local Binary Pattern 

(DLBP), an Adaptive Harris Hawk Optimization Strategy 

sub-process. This study employed OSVM for classification 

and an enhanced Weight-Based Beetle Swarm (IW-BS) 

Algorithm for parameter tweaking. The suggested framework 

for detecting Alzheimer's disease is shown in Figure 1. 

 

 
Fig. 1. The proposed technique Alzheimer's disease 

detection. 

2.1. Pre-processing 
In order to detect and eliminate noisy pixels in MRI images, 

an adaptive median filter (AMF) is employed [22,23]. 

When positioned over an MRI, the pixels in the p × p window 

are arranged in ascending order. The minimum and maximum 

pixel values are determined in p×p window. Next, determine 

if any value is the same as the center pixel, then the center 

pixel is considered a noisy pixel. The window should cover 

the middle pixel, and it should be centered by selecting an 

odd number for p. 

In the p × p window, the number of neighboring pixels is also 

shown by the symbol m. The filtered value is given by the 

following equation. 

𝐹𝑉𝑎𝑙𝑢𝑒 = 𝑀 [𝑃𝑗
(𝑚−1)

  ;   𝑗𝜖 𝑃]                              (1) 

Where p × p sub-window, m stands for the total number of 

surrounding pixels and j for the number of pixels that 

surround the center pixel. The pixels in the p × p sub window 

and their surrounding pixels are listed in the following 

equations. 

𝑃𝑗
(𝑚)

=  {
𝑛𝑗

(𝑚−1)
  | 𝑖𝑓 ℎ𝑗

(𝑚−1)
== 1,

𝑝𝑗
(𝑚−1)

  𝑒𝑙𝑠𝑒                         
}                              (2) 

ℎ𝑗
(𝑚)

=  {ℎ𝑗
(𝑚−1)

  | 𝑖𝑓 𝑝𝑗
(𝑚)

= 𝑝𝑗
(𝑚−1)

,

0                      𝑒𝑙𝑠𝑒                  
}                            (3) 

 

The remaining pixels are then organized in ascending order 

after the minimum and maximum values in the p × p window 

are removed. In the Alzheimer's MRI image, the noisy pixel 

value is utilized instead of the center pixel value.[24]. 

2.2. Feature Extraction 
After image pre-processing, the features are extracted from 

the MRI images Using DLBP model and Hybrid-WPHT. 

2.2.1. Discrete Local Binary Pattern model 
For some photos that employ the grey level for every pixel, 

the LBP function offers the descriptor [25,26]. In the default 

implementation, a pixel is considered to have eight neighbors, 

resulting in the square of 3 × 3 pixels. LBP function is as 

follows: 

𝐿𝐵𝑃(𝑥𝑐 , 𝑦𝑐) =  ∑ 2𝑝 ∗ 𝑞(𝑖𝑞 − 𝑖𝑐)𝑝𝜖𝑃                             (4) 

Where P is the framework that describes the dominating 

pixels nearby pixels ic and ip are the center pixels and their pth 

neighbor's respective grey levels, and q (z) is the quantization 

function [25]. 

The latest version of the LBP is focused on finding an optimal 

threshold that will distribute all the pixels within a patch. 

Once these thresholds are achieved, the following minimum 

remaining error is calculated. 

 

𝜀(𝑡) =  
1

𝑁
 { ∑ (𝐼(𝑟𝑖) −  𝜇°𝑖|𝐼(𝑟𝑖)≤𝑡

)2 +  ∑ (𝐼(𝑟𝑖) − 𝜇1𝑖|𝐼(𝑟𝑖)≤𝑡
)2                            

(5) 

With:  

𝜇0 =
1

𝑁0
∑ 𝐼(𝑟𝑖)𝑎𝑛𝑑 𝑁0 =  ∑ 𝑞(𝑡 − 𝐼(𝑟𝑖))          (6)

𝑖𝑖𝛪𝐼(𝑟𝑖)≤𝑟

 

 

𝜇0 =
1

𝑁1
∑ 𝐼(𝑟𝑖)𝑎𝑛𝑑 𝑁1 =  ∑ 𝑞(𝐼(𝑟𝑖) − 𝑡)          (7)

𝑖𝑖𝛪𝐼(𝑟𝑖)≤𝑟
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The intra-class variance 2 w was previously designed as the 

remaining error (z). Following the determination of the 

threshold, it can be predicted that the weight of all pixels 

spliced together on the preceding histogram will be: 

𝜔 =  √𝜎𝐵
2(𝛾∗)

𝜎2+𝐶
                            (8) 

Where C denotes a constant that is used to handle specific 

instances where 2 is close to zero and can cause the vote 

weights to vary, and 2 can be found at 0.012. With (radius, 

neighbors) = (1, 8), (2, 8), this feature is gone (3, 8). 

2.2.2. Partial Hadamard transform based on 

wavelets 
DWT and PHT (a Partial Hadamard transform) were used to 

produce feature extraction results that were more effective 

[25,26]. These derived features have three main applications: 

translation, rotation, and scaling. The partial Hadamard 

transformation was used to recover the parameters of the 

multidirectional low frequency sub bands after the segments 

had been processed using a 2-level DWT. This illustrates how 

low-pass and high-pass filters can be applied progressively to 

a segmented image using DWT to retrieve its attributes. The 

following equations illustrate the procedure for obtaining a 

feature using a wavelet based partial Hadamard transform. 

 

𝑔(𝑦) = ∑ 𝑏𝑗0(𝑙)𝜑𝑓𝑗(𝑦) + ∑ ∑ 𝐶𝑗(𝑙)𝜔𝑗,𝑙(𝑦)       (9)𝑙
∞
𝑗==𝑗0𝑙                              

Where Cj and bj0 stand for the approximate expanded 

coefficient for the coarser signal and the wavelet coefficients. 

The fundamental functions j0,l(y) and j,l(y), respectively, are 

produced by the translation and dyadic dilation process. 

𝛹𝑗0,1(𝑦) = 2
𝑗
2𝑓𝑗(2𝑗𝑦 − 𝑙)                      (10) 

𝛹𝑗,1(𝑦) = 2
𝑗
2ℎ𝑗(2𝑗𝑦 − 𝑙)                      (11) 

 

As a result, the translation and dilation parameters and the 

high pass and low-pass filter coefficients are represented for 

the liver tumor picture as l. Both fi and hi are used to refer to 

it. The partial Hadamard transform is explained using the 

following steps. A row vector of length n is represented by 

the notation B = [b1, b2,........bn]. Equation 2 shows how to 

conduct the partial Hadamard transform once q has been 

produced using the random vector B. (12), 

𝑦ℎ =  𝑞𝑥𝑦𝐷                                          (12) 

By meeting the requirements for a Hadamard transform, the 

complex value vector yh is created. A Hadamard matrix's 

transformations are irreversible, and its row-reduced sub 

matrix, qx, is always column-rank deficient. The DWT Partial 

Hadamard Transform provides a function with a value range 

of +1 to -1. The partial Hadamard transformation is less 

computationally difficult and can be carried out utilizing 

numerous Hadamard transform constructions; equation (12) 

did not include a multiplication operation. The feature vectors 

for every segment are calculated using the Partial Hybrid 

Hadamard transform. To identify the related segments, the 

attributes of each segment must be compared after recovery. 

2.3. Feature selection 
In reaction to the Harris Hawk's hunting technique, which is 

often referred to as "the seven kills" or "the "unexpected" 

pounce," the Adaptive Harris Hawk Optimization (AHHO) 

meta-heuristic algorithm was created.[6,27]. There are two 

crucial steps in the HHO modeling process (exploitation and 

exploration). The first theory states that Harris hawks would 

take up residence anywhere that was within close range of 

group homes. Prey will function as features, and hawks as 

searchers. [29]. Depending on the fitness function, the best 

features are chosen to use the AHHO method. The formula 

for computing a fitness function is: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝛼 ∗ 𝞷 + (𝟏 − 𝜶) ∗
𝞘𝑴𝒆𝞘

𝞘𝑴𝒅𝞘
     (𝟏𝟑) 

 

The error value presented in a classification is written as 

follows: Me is the total number of features extracted from the 

feature extraction stage, Md is the total number of features in 

the dataset that was provided and indicates the parameter 

impacting the outcome of a classification step. The way in 

which equation (14) represents this condition is explained 

below. 

{
𝑌𝑟𝑎𝑛(𝑠) − 𝑟1|𝑌𝑟𝑎𝑛(𝑠) − 2𝑟2𝑌(𝑠)|,         𝑞 ≥ 0.5

(𝑌𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑠) − 𝑌𝑛) − 𝑟3(𝐿𝑉 + 𝑟4(𝑈𝑉)), 𝑞 ≥ 0.5
      (14) 

 

The search agent's location vector, Y (s+1), is represented by 

Y (s), the most recent position vector of the search agent, Yran 

(s), a randomly chosen search agent from the current 

population, and r1, r2, r3, r4, and p are random numbers of 

(0,1). The position of the features is indicated by Yfeatures (s), 

where UB is the bottom variable and LV is the upper variable. 

The average location of the search agent population currently 

is Yn. 

It is suggested that the search agent returns to the place of a 

feature or Yfeatures if it crosses the permitted boundaries, which 

is the optimal course of action as follows: 

𝑌(𝑠 + 1) {

𝑌(𝑠 + 1),    𝑌𝑚𝑖𝑛 ≤ 𝑌(𝑠 + 1) ≤ 𝑌𝑚𝑎𝑥

𝑌𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑠),    𝑌(𝑠 + 1) < 𝑌min             

𝑌𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑠),    𝑌(𝑠 + 1) > 𝑌max                

(15) 

An AHHO-based feature selection approach optimizes the 

selection of the features, thereby reducing the computational 

complexity of the classification process. 

 

2.4. Detecting Alzheimer's illness with 

optimum SVM 
The best SVM [30] successfully detects and categorizes 

Alzheimer's disease from other diseases in MRI scan pictures. 

The global optimized and maximum generalized capabilities 

of SVM are a significant advantage. SVM has the advantage 

of being globally optimized and having the highest possible 

generalized capabilities. In addition, compared to existing 

techniques, it solves the over fitting issues and provides 

sparse solutions. The standard linear classifier problems, 

namely 1, 2e, are distinguished from the trained data set, (xi, 

yi); I = 1, 2, 3,..., m. Here, m is the number of observations 

made available, xi Rn denotes feature vectors, and yi (- 1, +1) 

denotes label vectors. The binary classifier problem is 

described as an optimal problem as follows: 

𝑀𝑖𝑛:
1

2
||𝑤||2

2 + 𝐶 ∑ 𝜉𝑖           (16)

𝑚

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜: 
 𝑦𝑖(𝑤 × 𝑥𝑖) + 𝑏 ≥ 1 − 𝞷𝒊, 𝞷𝒊 ≥ 𝟎, 𝒊 = 𝟏, . . 𝒎     (𝟏𝟕) 

 

If I is the variable that describes the penalizing relaxation, C 

stands for the regularization parameters, and equation (18) is: 

𝑤 × (𝜑(𝑥𝑖)) + 𝑏 ≥ +1 𝑖𝑓 𝑦𝑖 = +1        (18) 

𝑤 × (𝜑(𝑥𝑖)) + 𝑏 ≥ −1 𝑖𝑓 𝑦𝑖 = −1        (19) 
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The non-linear classification could be signified in the input 

space as: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑗∗ × 𝑦𝑖 × 𝐾(𝑥𝑖 ,

𝑚

𝑖=1

𝑦𝑖) + 𝑏∗)     (20) 

 

where f (x) is the decision function and the bias b* has been 

determined using the Karush-Kuhn-Tucker (KKT) condition. 

The inner product is transported to this feature space by the 

kernel function, represented by K (xi, yi). The following 

radial basis function (RBF) is used in this case: 

𝐾(, 𝑦) = exp(−𝛾||𝑥 − 𝑦||2)    (21) 

wherein the indicated kernel parameters were found. For 

increased efficiency, a few SVM parameters require that the 

regularized parameter C and the kernel parameter be included 

in the elect property. 

When the value of parameter C is excessively high during 

both the training and testing phases, the accuracy of the 

classification is exceptionally high during the training phase 

but severely low during the testing phase. The classification 

has an inadequate accuracy rate when the value of C is too 

low, making the model useless. The value of the parameter 

has a significantly higher effect on the classification result 

compared to the value of the C parameter, as its value 

influences the partitioning of the feature space. 

Consequently, the over-fitting or under-fitting of the 

parameter is due to the immense value of the parameter and 

the small value of the parameter, respectively. The BSA 

technique can be used to improve the correct selection of 

parameters values. The maximum classification accuracy can 

be achieved by the classifier if the error rate of the classifier 

is kept at a minimum. The SVM model for classifying the 

data is provided in Figure 2. 

 

 

Fig. 2. Alzheimer's disease detection proposed SVM 

hyperplane. 

2.4.1. Optimizing parameters with an enhanced 

weight-based beetle swarm algorithm 
The Insect Swarm System is an innovative intelligent 

algorithm based on the concepts of beetle foraging, which has 

been successfully adapted to the SVM method [31]. The 

Beetle Swarm (BS) algorithm is based on the beetle's search 

engine and prey parameters [30], which are suitable for SVM 

classification. The formula for computing the fitness function 

is as follows: 

Fitness function = maximization (accuracy)                     (22) 

During the SVM parameter search, the antenna's orientation 

is transformed into a random vector, where rand is a random 

function, and l is the size of the optimization problem. 

𝐶
→ =

𝑟𝑎𝑛𝑑 (𝑙,1)

‖𝑟𝑎𝑛𝑑 (𝑙,1)‖
                                                                     (23) 

The left and right antennae's spatial coordinates are 

determined as: 

{
𝑦𝑠𝑖 =  𝑦𝑖

𝑦𝑘𝑖 =  𝑦𝑖 + 𝑏
∗→

𝑐/2
+

𝑏
∗→

𝑐

2
     (𝑖 = 1,2𝑙𝑑𝑜𝑡𝑠𝑛)  (24) 

where b indicates the distance between the two antennae, yi 

indicates the centroid coordinate between the two antennae at 

the ith iteration, and ysi and yki indicate the position 

coordinates of a left and a right antenna, respectively, at the 

ith iteration. Utilizing the objective function, determine the 

values for the left and right antennas, then use the following 

formula to update the search agent's position. 

Calculating antenna values of the left and right using the goal 

function and updating the search agent's position using the 

formula provided below. 

𝑦𝑖+1 = 𝑦𝑖 − 𝛿𝑖∗

𝑐
→ ∗ 𝑠𝑖𝑔𝑛(𝑓(𝑦𝑠𝑡) − 𝑓(𝑦𝑘𝑖))    (25) 

where sign() is a sign function, and I is a step factor at the ith 

iteration. The step factor is one important component that 

influences the BAS algorithm's search capabilities. By doing 

this, the algorithm is released from having to choose local 

best solutions and can explore the whole search space. A step 

factor's value progressively decreases with an increase in 

iterations, improving the algorithm's ability to exploit local 

conditions. The inertia weight value is used in this work to 

improve bug swarm optimization. Lower weight can increase 

the search agent's capability for local searching in later 

phases, while higher values can speed up the search agent for 

new locations. Here are the updated equations: 

 

𝑤 = 𝑤𝑚𝑖𝑛 + 
(𝑤𝑚𝑎𝑥 −  𝑤𝑚𝑖𝑛)(𝑖𝑚𝑎𝑥 − 𝑖)

𝑖𝑚𝑎𝑥
      (26) 

𝑦𝑖+1 + 𝑤𝑦𝑖  −  𝛿𝑖∗

𝑐
→ ∗ 𝑠𝑖𝑔𝑛(𝑓(𝑦𝑠𝑖) − 𝑓(𝑦𝑘𝑖))      (27) 

Where imax number of iterations is the maximum, wmax is the 

maximum and wmin is the minimum criteria for the inertia 

weight. Each classifier for each dataset is trained with a 70% 

training data, and the performance of the classifier is 

evaluated by correctly classifying a 30% sample of test 

samples. Metrics including accuracy, specificity, recall, 

precision, F-score, running time, AUC, and ROC are used to 

gauge performance. 

Accuracy: This is the percentage of correctly predicted data 

from the network divided by the total amount of data. 

𝐴𝑐 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑝+𝑓𝑛+𝑡𝑛
      (28)    

 

(False Negative: True Negative; True Positive: False 

Positive; True Negative: False Positive). 

Specificity: The quantity of data appropriately regarded as 

negative out of all negative data is given in the equation 

below (29), 

𝑆𝑝𝑒 =
𝑡𝑛

𝑓𝑡 + 𝑡𝑛
    (29) 

 

Recall: is defined as the proportion of positive data that were 

correctly identified divided by the total amount of such data. 

The following formula is as follows: 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑛

𝑓𝑛 + 𝑡𝑝
    (30) 

Precision: measures a model's capacity for tp detection and is 

calculated under the equation (31). 

𝑃𝑟𝑒𝑐 =
𝑡𝑝

𝑓𝑝 + 𝑡𝑝
    (31) 

 

F-Score: The F1 score is a measure of a model's overall 

accuracy that strikes a favorable balance between recall and 

precision. It is determined using equation (32), 

𝑓𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐  × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐𝑎𝑙𝑙
    (32) 

 

Running time: is a measure of the time required to execute 

a computer program. One way to think of a computation is as 

a series of rule applications, where the number of applications 

is inversely related to the calculation time. 

AUC: A parameter is used to analyze network performance 

and classify data into the appropriate categories. A value of 1 

indicates complete categorization, while a value of 0 

indicates a definitive classification failure. The ROC 

parameter was also used to investigate the AUC. 

ROC: This is a graph that shows how classification models 

perform across all levels of categorization. Absolute Positive 

Rate and Inaccuracy Positive Rate are its two constituent 

parameters. 

3. RESULTS AND DISCUSSION 
The experimental outcomes of the suggested WPHT-OSVM 

Alzheimer's disease detection approach are reviewed in this 

section. Other modern approaches are also examined to see 

how effective the suggested approach is. MATLAB is used 

to implement the suggested method, and memory recall, 

specificity F-score, precision, run-time, precision, area under 

the curve (AUC), and receiver operating characteristic are 

used to assess the method's effectiveness (ROC). 

3.1. Datasets 
Two datasets, Benchmark Alzheimer's database [32] and 

ADNI [33], are used to diagnose Alzheimer's disease. 

Benchmark Alzheimer's database consists of 300 MRI Scan, 

which are three class labels: normal, mild demented and very 

mild demented. Each class contains 100 photographs.  

Table 1: Performance comparison of the proposed technique and other algorithms across multiple evaluation 

metrics, including precision, accuracy, recall, specificity, F-score, AUC, and running time (in seconds), on two 

datasets. 

algorithm precision Accuracy Recall specificity 
F-

Score 
AUC 

running 

 time (sec) 

proposed technique 

 on dataset 1 
99.24 99.35 99.28 99.47 99.27 98.57 1.26 

proposed technique 

 on dataset 2 
99.33 99.55 99.33 99.66 99.33 99.8 1.01 

ANN 94.95 97.13 95.66 96.24 96.3 83.4 9.42 

CNN 96.85 97.85 95.19 96.56 95.59 83.99 8.15 

ResNet50 97.61 96.22 96.64 96.49 96.51 80.8 7.53 

AlexNet 97.36 95.38 97.28 95.73 95.52 9.57 5.61 

VGG16 95.23 97.95 96.42 97.01 97.18 87.87 3.18 

 

 

ADNI consists of 1018 Institute Alzheimer's MRI scans, 

together with Proteomics and Genetic Experiment data. All 

eligible radiographs are classified as either normal or 

demented in this paper. 

This study utilized two datasets—Benchmark Alzheimer’s 

database and ADNI—each containing varying degrees of 

Alzheimer's severity. The proposed method consistently 

outperformed existing techniques in terms of accuracy, recall, 

specificity, and runtime efficiency. However, the inclusion of 

additional datasets with varying imaging modalities, 

resolutions, and patient demographics could further validate 

the approach. 

As a future direction, the evaluation will be expanded to 

include datasets with diverse characteristics and the method 

will be tested under different imaging scenarios, such as 

varying levels of noise and distortions. This would not only 

enhance the generalizability of the findings but also ensure 

the method’s applicability in real-world clinical settings. 

3.2. Performance analysis 
The performance evaluation's findings show that, in terms of 

accuracy, recall, F-score, specificity, running time, AUC, and 

ROC, the suggested method outperforms the competition 

when compared to current approaches.  

To analyze the given table scientifically, it is necessary to 

focus on the performance metrics across different algorithms, 

including the proposed technique, and consider their 

strengths and weaknesses in various aspects. A breakdown of 

the key metrics is provided below: 

1. Precision: 

Precision measures the proportion of positive results that 

were correctly identified (True Positives / (True Positives + 

False Positives)). 

Proposed technique on Dataset 2 shows the highest 

precision at 99.33%, followed closely by Proposed 

technique on Dataset 1 at 99.24%. This suggests that the 

proposed technique is highly accurate in identifying positive 

instances. 
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The ANN and CNN models, while good, show lower 

precision compared to the proposed technique (94.95% and 

96.85%, respectively). 

2. Accuracy: 

Accuracy represents the proportion of total correct 

predictions (True Positives + True Negatives) out of all 

predictions. 

The Proposed technique on Dataset 2 achieves the highest 

accuracy at 99.55%, followed by Proposed technique on 

Dataset 1 at 99.35%. This indicates that the proposed 

technique performs extremely well in overall classification. 

Other algorithms like ANN (97.13%), CNN (97.85%), and 

ResNet50 (96.22%) have lower accuracy, but they still 

perform quite well. 

 

3. Recall: 

Recall (also known as Sensitivity or True Positive Rate) 

measures the proportion of actual positive instances that are 

correctly identified. 

Proposed technique on Dataset 1 has 99.28% recall, with 

Proposed technique on Dataset 2 achieving 99.33%, which 

is slightly better. This shows that the proposed technique 

excels at identifying most positive instances. 

The ANN model shows 95.66% recall, indicating that some 

positive instances are missed. The CNN and ResNet50 

models also show lower recall than the proposed technique, 

although they still perform adequately. 

 

4. Specificity: 

Specificity (also known as True Negative Rate) is the 

proportion of actual negative instances that are correctly 

identified. 

The Proposed technique on Dataset 2 has the highest 

specificity at 99.66%, followed closely by the Proposed 

technique on Dataset 1 at 99.47%. 

ANN (96.24%), CNN (96.56%), and VGG16 (97.01%) are 

somewhat lower in specificity, suggesting that they 

misclassify more negative instances compared to the 

proposed technique. 

 

5. F-Score: 

The F-score (or F1-score) is the harmonic mean of precision 

and recall, providing a balanced measure of performance for 

both metrics. 

Both proposed techniques (Dataset 1 and 2) lead in F-score 

with 99.27% and 99.33%, respectively, indicating excellent 

performance in balancing precision and recall. 

ANN (96.3%), CNN (95.59%), and ResNet50 (96.51%) 

have a noticeably lower F-score, implying some trade-off 

between precision and recall. 

 

 

6. AUC (Area Under the Curve): 

AUC measures the ability of the model to distinguish 

between positive and negative classes. A higher AUC 

indicates better overall performance. 

Proposed technique on Dataset 2 achieves the highest AUC 

at 99.8%, followed by Proposed technique on Dataset 1 at 

98.57%, indicating that the proposed method has an excellent 

ability to discriminate between classes. 

The ANN (83.4%), CNN (83.99%), and ResNet50 (80.8%) 

models perform considerably worse in terms of AUC. 

 

7. Running Time (Seconds): 

Running time measures the computational efficiency of the 

algorithm. The Proposed technique on Dataset 2 has the 

shortest runtime at 1.01 seconds, followed by Proposed 

technique on Dataset 1 at 1.26 seconds, making it highly 

efficient. 

ANN (9.42 seconds), CNN (8.15 seconds), and ResNet50 

(7.53 seconds) have much longer running times, suggesting 

they are less efficient compared to the proposed technique. 

AlexNet (5.61 seconds) and VGG16 (3.18 seconds) show 

intermediate performance in terms of efficiency, but still, the 

proposed technique is significantly faster. 

 

The proposed technique shows superior performance across 

all metrics (precision, accuracy, recall, specificity, F-score, 

AUC), making it highly effective in terms of both 

performance and efficiency. It also has the shortest running 

time, which is a significant advantage in practical 

applications. While ANN, CNN, ResNet50, AlexNet, and 

VGG16 perform well in several metrics, they generally lag 

the proposed technique in terms of precision, recall, AUC, 

and running time. Models like ANN and CNN show lower 

AUC and specificity, while ResNet50 and AlexNet show 

lower recall and F-scores. 

 

The accuracy of the suggested method is contrasted with the 

proven methods shown in Figure 3. The existing approaches, 

including optimal ANN, CNN, ResNet50, AlexNet, and 

VGG16, are evaluated with Dataset 1. Figure 4 compares the 

accuracy of the suggested technique applied to datasets 1 and 

2 to that of other machine and deep learning techniques, 

achieving an accuracy of 99.35 percent on dataset 1 and 99.55 

percent on dataset 2, respectively. 

 
Fig. 3. Accuracy performance analysis utilizing various 

methodologies. 
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Figure 4 displays the findings of the precision performance 

research utilising both suggested and current approaches. 

With accuracy equal to 99.24 percent and 99.33 percent on 

datasets 1 and 2, respectively, Figure 5 compares the 

suggested technique applied to these datasets with other 

machine and deep learning techniques and achieves a greater 

precision. 

 

 
Fig. 4. Precision performance analysis using various 

methods . 

The proposed method has demonstrated a positive recall 

performance compared to the existing approaches, as 

demonstrated in Figure 5. With accuracy equal to 99.28 

percent and 99.33 percent on datasets 1 and 2, respectively, 

Figure 6 compares the suggested technique applied to these 

datasets to other machine and deep learning techniques and 

achieves a greater recall. 

 

 
Fig. 5. Recall performance analysis utilizing various 

methods. 

 

The specificity analysis of the suggested approach is 

contrasted with the existing methodologies in Figure 6. 

Figure 6 shows the comparison of the proposed technique 

applied upon datasets 1 and 2 have and achieve a higher 

specificity compared to other machine and deep learning 

techniques with accuracy equal to 99.47% and 99.66% on 

datasets 1 and 2, respectively. 

 

 
Fig. 6. Specificity performance analysis employing 

various methodologies. 

 

In Figure 7, the proposed method's F-Score analysis is 

contrasted with the ones now in use. With an accuracy of 

99.27 percent and 99.33 percent on datasets 1 and 2, 

respectively, the proposed technique on these datasets 

achieves a higher F-score in comparison to previous machine 

and deep learning techniques. 

 

 

Fig. 7. F-score performance analysis utilizing various 

methods. 

 

Figure 8 compares the running times of the present 

methodologies and a proposed approach.  Figure 8 shows the 

comparison of the proposed technique applied upon datasets 

1 and 2 have and achieve a higher accuracy compared to other 

machine and deep learning techniques with accuracy equal to 

1.26 and 1.01on dataset 1 and 2, respectively. The proposed 

datasets 1 and 2 for the run-time performance are too low 
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compared to the existing techniques since the suggested study 

combines SVM with beetle Swarm optimization, which has a 

lower run-time performance, a faster global optimal solution, 

and reduced design complexity. 

 
Fig. 8. Analyzing running time performance with 

various methods. 

Figure 9 shows an AUC curve's performance analysis. Figure 

9 shows the comparison of the proposed technique applied 

upon datasets 1 and 2 have and achieve a higher accuracy 

compared to other machine and deep learning techniques with 

accuracy equal to 1.26 and 1.01on dataset 1 and 2, 

respectively.  

 

 
Fig. 9. Performance examination of AUC. 

4. DISCUSSION 
This work suggests an ideal Support Vector Machine (SVM) 

for Alzheimer's disease detection as well as a more effective 

weight-based optimization technique for beetle swarms. 

Zhang et al. [34] classify Alzheimer's disease diagnoses using 

an ensemble learning approach. and the accuracy is 98%. 

This approach is straightforward to comprehend and 

produces a higher accuracy than Zhang et al. algorithm [34]. 

However, the limitations of ensemble learning are more 

difficult to comprehend. The accuracy of Alzheimer's module 

classification with transfer learning in Raza et al. [35] is 

94.21% and negative transfer is one of the major drawbacks 

of transfer learning. However, the proposed approach does 

not have these drawbacks and is more accurate than Raza et 

al. algorithm [35]. Furthermore, the SVM accuracy is 94% 

when using a deep learning-based model detection approach 

in Naji et al. algorithm [36]. 

An accuracy of 97.91 percent was achieved in the 

classification of medical images of Alzheimer's illness using 

the SVM based on Convolution neural network.  However, 

the SVM has a number of drawbacks, including a longer 

training time, a higher number of features, and an excessive 

amount of noise. To overcome these limitations, researchers 

employed the optimization approach and an SVM classifier 

to categorize the Alzheimer's disease cell. The SVM classifier 

accuracy using CPSO (Chaos particle swarm optimization) in 

[37] was 97.4%, which identified the region and categorized 

the specific region using CPSO. 

For the Kao et al. [38] algorithm, hybrid approaches based on 

Particle Swarm Optimization (PSO) and Genetic Algorithms 

(GA) based on Support Vector Machines (SVM) obtained 

97.69 percent accuracy for Alzheimer's disease 

classification.. However, the drawbacks of PSO versus GA 

include a low convergence rate and a low convergence rate in 

computing complexity, among other factors. As SVM was 

combined with the beetle Swarm Optimization algorithm for 

the detection of Alzheimer's, the proposed method achieved 

an accuracy of over 98% in comparison to [35], [37], and 

[38]. The beetle Swarm has a simpler architecture, a more 

efficient global optimisation solution, and a shorter run time, 

allowing it to surpass the limitations of the SVM Classifier.  

 

5. CONCLUSION 
This study proposed the WPHT-OSVM framework for the 

precise detection of Alzheimer's disease using MRI images. 

The proposed method integrates advanced preprocessing, 

feature extraction, and classification techniques, achieving 

significant improvements in accuracy, precision, recall, and 

runtime compared to existing approaches. Performance 

evaluations demonstrated accuracy rates of 99.35% and 

99.55% on two benchmark datasets, along with enhanced 

specificity and reduced computational complexity. These 

results indicate the effectiveness of the method for early and 

accurate detection of Alzheimer’s disease, providing a 

reliable diagnostic tool for healthcare professionals. 

Future Scope 

While the current study demonstrates promising outcomes, 

there is significant potential for further improvement. Future 

work will focus on validating the method on additional 

datasets featuring different imaging modalities (e.g., CT 

scans or PET scans), as well as larger and more diverse 

populations to ensure broader applicability. Additionally, 

integrating real-time clinical data and exploring its impact on 

performance will be considered. Extending the framework to 

include deep learning-based feature extraction and hybrid 

optimization algorithms could further enhance diagnostic 

precision. Moreover, the development of user-friendly, 

automated diagnostic systems based on this approach could 

facilitate deployment in clinical environments, particularly in 

resource-constrained settings. Finally, incorporating multi-

modal data, such as genetic and proteomic information, could 

refine diagnostic accuracy and contribute to comprehensive 

patient profiling for personalized treatment planning. 
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