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ABSTRACT
In recent years, there has been significant growth in the vision and
language community, especially with the advent of large models.
Visual Question Answering (VQA) is a task in computer vision
and natural language processing that is both unique as well as dif-
ficult in its framing because it demands a holistic understanding of
images and language for accurate responses and requires the model
to integrate multiple modalities of data. The conventional VQA ap-
proach processes the entire image to answer a posed question, often
missing nuanced contextual information. This research work aims
to improve VQA systems by incorporating external knowledge
into the system and analyzing the performance. This study utilizes
MMLFT (MultiModal Late Fusion Transformer), used with three
pre-trained models for textual embeddings: BERT, RoBERTa, and
ALBERT, and three pre-trained models for image encoding: ViT,
DeiT, and BEiT. Experiments are conducted across various possible
combinations of these text and image encoders to assess the impact
of incorporating external knowledge into the system. Captions from
a pre-trained image captioning model, BLIP, are utilized as a form
of external knowledge to the model, and the investigation focuses
on whether this addition enhances the model’s evaluation metrics.
Although much work has been done in improving VQA models
by adding external knowledge to them, this study is believed to be
the first to approach the topic from a data-specific point of view,
closely analyzing the data entries and attempting to justify why the
results improve or not. A simple but novel way to cheaply gen-
erate inferences about an image is also presented, showcasing its
potential to assist with future VQA tasks. The conclusion drawn
is that adding external information contributes to better results,
but the mode of knowledge addition needs to be well-constructed.
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1. INTRODUCTION
There has been a huge growth in the vision and language commu-
nity recently, especially with the advent of large models. The task of
Visual Question Answering (VQA) [1] is a task in computer vision
and natural language processing that requires the model to care-
fully understand both the image as well as the question and how
they both interact. It is important to note that building such vision-
language models goes beyond specialized algorithms like object
detection or image segmentation and it also requires the model to
integrate multiple modalities of data.
This research work aims to improve VQA systems by trying to in-
corporate external knowledge and use it to better solve the problem
at hand. The general idea is to learn some context about the image
and use this context with some knowledge from outside sources to
better inform the Vision-Language model about what to do. This
is also useful for building common sense reasoning within these
systems - a cognitive task effortless for humans but challenging for
machines. This would help in not only improving the current base-
line from popular benchmark models but also help in finding ways
that are different from merely increasing the number of parame-
ters in the existing model. This would be crucial when considering
computation time, storage costs, and the harms to the environment
that the large number of parameters create. In fact, many applied
research works have also shown consideration for saving carbon
emissions in their methodologies recently. By means of utilizing
external knowledge, i.e., knowledge not coming from the models,
we can hope to better solve the problems by not increasing the num-
ber of parameters in the models and saving money as well as time
- obviously, given that knowledge injection is less computation-
ally expensive but at least we can claim that this would mean that
instead of training the model multiple times on any new informa-
tion that is available, we can probably find an alternative method to
leverage it (via injecting external knowledge).
Apart from these reasons, in recent times, both Natural Language
Processing and Computer Vision have shown an increase in de-
mand, especially because of the successful applications that they
have found in day-to-day human lives. Moreover, the amount of
textual and visual information available online has become a lot
more accessible. These factors further motivate us to work on the
problem - precisely, the accessibility of resources as well as the
expansiveness of possibilities in the same.
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There are a bunch of possible applications for VQA systems, rang-
ing from the healthcare industry assisting doctors by generating de-
tailed responses focused on specific regions or anomalies within
medical images and enhancing diagnostic processes, to increasing
accessibility by assisting people with visual impairment by provid-
ing them answers to the questions that they ask about the visual
object (or real-time video). There are various other commercial ap-
plications like autonomous vehicles, social media content modera-
tion, robots helping in households, virtual assistants, and so on.
Historically speaking, Visual Question Answering arose from im-
age captioning [1] which was a task aimed at examining the capa-
bilities of machines to understand images by combining computer
vision and natural language processing. However, VQA tasks are
significantly more complex than basic image captioning, as more
often than not, it requires some understanding or reasoning that is
not present in the image otherwise. This reasoning is easy for hu-
mans to understand, but significantly difficult for machines to build.
In this context, VQA tasks are truly AI-complete tasks - tasks that
might be called “real intelligence” by some because they deal with
multimodal data that goes beyond a single domain or field. This is
one of our primary reasons for working on this problem.
Prior works have approached this problem with an emphasis on dif-
ferent ways to add the information, but have not provided a good
justification for why their method fails in particular instances. How-
ever, we take a data-first approach, trying to explain the reasoning
of why the model might interpret or misinterpret the scenario, given
the original information or the added information, which is in the
form of image captions [10] that we provide to it. Moreover, we
present a novel method to generate inferences for an image-text
pair which is inspired by work done by [14] but suggests an alter-
native and simpler route that is cheap and easy to implement.
The task of VQA is in itself quite challenging. However, access
to limited GPU and other hardware resources made it even more
challenging for us to perform experiments and compare them to
standard baselines. Thus, we generate our own baseline by running
all the experiments with only 5 epochs so we can compare them
across different evaluation scenarios. We hope that this work will
motivate future research in this direction and benefit the vision-
language community.

2. RELATED WORK
Vogel and Schiele [16] used local image regions and combined
them into a global representation to generate semantic classes. Ho-
dosh et al. [7] proposed a framework to generate sentence-based
image captions and rank them. Similarly, [6], [9], studied the prob-
lem as a task to retrieve information by associating the image and
its description in equivalent latent space. Malinowski et al. [12]
introduced a way that mixes the Bayesian method with segmenta-
tion and semantic parsing to create training set samples using the
nearest neighbor search. Geman et al. [5] proposed a method of
generating binary questions automatically and using them.
All the above methods are limited by specific query types. How-
ever, with the advent of deep learning, architectures using CNN
and LSTM, either directly or indirectly, have been popular. H. Gao
et al. [4] and M. Malinowski et al. [13] encoded question sentence
using CNN and LSTM, Malinowski et al. [13] combined CNN and
LSTM into an end-to-end learning, whereas, Gao et al. extracted
question representation using one LSTM and stored the linguistic
context using another.
In multiple papers [11] [3], they suggest utilizing knowledge graphs
to create a context for the image and pass it as a fact to the model
while predicting information. However, this method is not very

Fig. 1: Fusion Model Mappings

scalable as knowledge graphs are hard to generate and store. In [8],
they suggest utilizing COMET to find inferences for an image and
use them along with the question for better efficiency. However, the
way they suggest choosing the best inference is quite complex. In
this study, we observed that we could make the process simpler by
utilizing just a simple BERT classifier to decide the type of infor-
mation needed which is not something that has been done before to
the best of our knowledge but more about this is discussed later in
Section IV.

3. DATASET
We used a smaller version of DAQUAR dataset, proposed in [12]
where we use 3825 training examples and 834 evaluation examples
for our example. The dataset was created to have images that have
high demands on “understanding” the visual input and those that
check for a whole chain of perception, language understanding, and
deduction. The dataset has one unique correct answer for each of
the image-question pairs as well. The choice of this dataset was
guided by the fact that the images are of reasonable quality - not
too bad to hinder the progress and not too high quality to limit our
ability to use multiple of them. Since we created our own baselines
by running the model on a fixed number of epochs for both cases -
with and without a caption, we did not have to worry much about
comparing the results with different papers.

4. METHODOLOGY
In this section, we discuss our approach which is rooted in three
major steps - building our baseline model, adding captions, and
evaluating performances, and finally, our novel approach to gener-
ate inferences which is inspired by [8].

4.1 Baseline model
As mentioned beforehand, we use multimodal fusion models which
are highly useful in capturing information from different modalities
(image and text here) but also preserving any cross-modal interac-
tions. The process can be summarized in three basic steps:

4.1.1 Image and Text Featurization. Image and text featurization
involves converting raw input data—such as images and text—into
structured and meaningful representations that can be effectively
processed by machine learning models. For images, this process
involves extracting visual features that capture important patterns,
textures, and structures. There are various methods for generating
image embeddings, ranging from traditional techniques like SIFT
descriptors and Histogram of Oriented Gradients (HOG) to modern
approaches using Convolutional Neural Networks (CNNs). In this
study, pre-trained transformer-based image models, namely ViT
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Fig. 2: MMLFT Architecture, with the injection of captions as additional knowledge

(Vision Transformer), DeiT (Data-efficient Image Transformer),
and BEiT (Bidirectional Encoder representation from Image Trans-
formers), are utilized for image encoding. These models have been
trained on large-scale datasets and are designed to capture global
and local contextual features, leveraging their self-attention mech-
anisms to produce robust and expressive embeddings.
For text, featurization involves representing textual data in nu-
merical form while retaining the semantic and syntactic meaning
of the input. Traditional approaches, such as word embeddings
(Word2Vec, GloVe) or sequential models like Long Short-Term
Memory Networks (LSTMs), have been widely used. However, for
this study, transformer-based pre-trained language models, namely
BERT (Bidirectional Encoder Representations from Transformers),
RoBERTa (A Robustly Optimized BERT Pretraining Approach),
and ALBERT (A Lite BERT), are employed. These models are pre-
trained on extensive corpora and can leverage external knowledge
to produce rich and contextual embeddings for textual data.
The use of these pre-trained models for both image and text pro-
cessing is motivated by several factors. First, these models have
been trained on diverse and extensive datasets, enabling them to in-
corporate external knowledge beyond the dataset used in this study.
This external knowledge provides a broader understanding of real-
world concepts and relationships, which is beneficial for tasks like
Visual Question Answering (VQA) that require reasoning across
modalities. Second, using pre-trained models reduces the compu-
tational overhead associated with training large-scale models from
scratch, making the process more efficient and resource-friendly.
The adoption of a late fusion strategy further supports the decision
to utilize pre-trained embeddings. In late fusion, features from dif-
ferent modalities are processed independently and combined at a
later stage, allowing for the integration of highly specialized em-
beddings. Pre-trained models are particularly well-suited for this
strategy, as they provide rich and task-agnostic feature representa-
tions that can be effectively combined to achieve superior perfor-
mance. This approach ensures that the featurization process cap-
tures the essential attributes of both images and text, enabling the
model to perform well in downstream tasks.
We create 9 baseline models - each combination of image and text
encoder to ensure that our results are generalized. Fig. 1 defines

each possible combination and gives a unique name that we will
use to refer to that combination in the paper moving forward.

4.1.2 Fusion of Features. The fusion of features is a critical step
in Visual Question Answering (VQA) systems, as the task inher-
ently requires a model to integrate information from two distinct
modalities: textual data from the question and visual data from
the image. The output of this fusion process directly influences the
model’s ability to understand the semantic relationship between the
question and the image content, which is vital for generating accu-
rate and contextually appropriate answers.
In this study, the fusion process involves combining the two feature
vectors generated during the image and text featurization stages
into a single, joint representation. Each feature vector represents
rich embeddings derived from the respective modality. The image
embeddings encapsulate the visual semantics and structural details
of the image, while the text embeddings capture the linguistic and
semantic nuances of the question. Effectively merging these modal-
ities ensures that the model can reason across them to infer the cor-
rect answer.
The fusion process begins by concatenating the two feature vectors
along their respective dimensions. Concatenation is a reasonably
straightforward yet effective approach to preserve all information
from both modalities, enabling the model to leverage the richness of
the pre-trained embeddings without discarding any critical details.
This concatenated vector serves as the initial step in constructing a
unified representation.
To refine this representation and facilitate meaningful interactions
between the modalities, the concatenated vector is passed through
a linear layer. The linear layer applies a learned weight transfor-
mation to the joint representation, projecting it into a new embed-
ding space where the relationship between the text and image fea-
tures can be more effectively modeled. This transformation allows
the model to identify and emphasize relevant cross-modal patterns
while filtering out less pertinent information. Additionally, the lin-
ear layer reduces dimensionality, optimizing the joint representa-
tion for subsequent processing and improving computational effi-
ciency.
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4.1.3 Answer Generation. Since the dataset consists exclusively
of single-word answers or short phrases, the task does not require
generating free-form responses. Instead, the problem can be effec-
tively formulated as a classification task. In this setup, the model
predicts the correct answer from a fixed set of possible outputs,
corresponding to the vocabulary space of the dataset.
To achieve this, a fully connected layer is used as the final layer
of the model. The size of this output layer is set to match the size
of the vocabulary, where each node represents a potential answer.
The model processes the joint representation generated during the
feature fusion stage and outputs a probability distribution over the
vocabulary space. This distribution indicates the likelihood of each
possible answer.
The cross-entropy loss function is employed as the objective func-
tion to train the model. Cross-entropy loss is well-suited for clas-
sification tasks as it quantifies the difference between the predicted
probability distribution and the true target label. By minimizing this
loss, the model learns to accurately associate the input features with
the correct answers, ensuring effective performance on the Visual
Question Answering task. The loss equation is given by:

−
M∑
c=1

yo,c log(po,c) (1)

- M represents the number of classes or categories.
- yo,c denotes the ground truth label or target probability associated
with the correct class c for a specific observation o.
- po,c signifies the predicted probability of class c for the observa-
tion o as inferred by the model.
This equation calculates the cross-entropy loss between the pre-
dicted probabilities po,c and the ground truth labels yo,c for a given
observation in a classification task.

4.2 Adding captions via BLIP Image Captioning
To enhance the Visual Question Answering (VQA) system, cap-
tions are generated for each image using the pre-trained Bottom-Up
and Top-Down with Lightweight Image Processing (BLIP) model
[10]. Additionally, Optical Character Recognition (OCR) is applied
to extract textual information embedded in the images, such as la-
bels, signs, or numbers. The nine combinations of text and image
models described earlier are then re-evaluated with these captions
incorporated as additional input. The architecture employed for this
approach is depicted in Fig. 2. The process of adding captions is
summarized as follows:

4.2.1 Overview of BLIP. The BLIP model generates detailed im-
age captions by employing a combination of bottom-up and top-
down attention mechanisms. The bottom-up attention focuses on
specific regions of interest within the image, extracting localized
features that capture fine-grained details. Concurrently, the top-
down attention synthesizes these features into coherent captions
by leveraging global contextual information, ensuring that the de-
scription is both accurate and meaningful. BLIP is also capable of
performing OCR to extract any text present within the image, pro-
viding an additional layer of information that is particularly useful
for VQA tasks where textual content plays a role.

4.2.2 Concatenating captions and questions using structured for-
matting. To incorporate the generated captions into the VQA
pipeline, the caption is concatenated with the corresponding ques-
tion. The caption is placed before the question, separated by a sin-
gle space, to maintain a structured input format. This modification
allows the model to access a descriptive summary of the image

alongside the question, enhancing its ability to reason about the
content. By integrating the caption, the model gains additional con-
textual knowledge that can clarify ambiguities in the question and
provide relevant details about the image, leading to improved per-
formance on the VQA task.

4.3 Novel approach of inference generation
Apart from generating captions and adding that to our images, we
also present a simple, cheap, and novel technique that is inspired
from [14]. The architecture can be found in Fig. 3. We use a 4 step
process that is summarized in the five bullets below:

4.3.1 Question to Declaration Conversion. The first step in the
process involves transforming the given question into a declarative
form, which provides a more structured and coherent input for sub-
sequent reasoning tasks. For example, as illustrated in the figure,
the question ”What is a likely liquid to find in these glasses?” is
reformulated as the declarative statement ”A likely liquid to find in
these glasses is likely a”. The use of declarative statements will be
justified later in the discussion on COMET.
To achieve this transformation, GPT-3.5 is utilized, along with care-
fully designed prompt tuning. The prompts are crafted to explicitly
instruct the model to generate declarative statements while retain-
ing the semantic meaning of the original question. After conduct-
ing multiple trials with various prompt designs, it was observed that
the most effective results were obtained using simple prompts that
directly instructed the model to perform the conversion without ad-
ditional complexity or instructions. This straightforward approach
yielded high-quality declarative statements consistently.

4.3.2 Object Detection Using YOLO v7. After converting the
question into a declarative statement, the next step involves extract-
ing objects from the image using the You Only Look Once (YOLO
v7) object detection model [17]. YOLO v7 is a highly efficient and
accurate object detection framework that identifies and localizes
objects within an image in real time. The detected objects are then
concatenated with the declarative statement generated earlier, en-
riching the input with relevant visual information from the image.
The intuition behind this approach is that generating commonsense
inferences about the image requires not only the question’s textual
context but also specific information about the image content. As
can be seen in the example, the object that we get is ”wine glass”
- which is obviously quite helpful in helping the model understand
that the liquid is more likely to be wine (since it is in a wine glass).
By integrating object detection outputs with the declarative state-
ment, the system benefits from an additional layer of contextual
knowledge. The detected objects act as visual anchors, helping the
model make more accurate inferences. This integration ensures that
the reasoning process incorporates both textual and visual cues,
leading to more informed and precise outputs.

4.3.3 Overview of Common Sense Transformer. COMET [2],
short for the Common Sense Transformer, is a sophisticated
language model specifically designed to integrate commonsense
knowledge into tasks requiring natural language understanding and
generation. By leveraging external knowledge bases such as Con-
ceptNet [15] and ATOMIC [8], COMET enhances an AI system’s
capacity to reason, infer, and generate responses that are contextu-
ally relevant and enriched with implicit commonsense reasoning.
This makes it particularly effective for applications such as ques-
tion answering, dialogue systems, and other tasks where deeper
contextual understanding is required.
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Fig. 3: Architecture for Inference Generation

The architecture of COMET allows it to go beyond the explicit
textual information present in the input by drawing on the rich,
structured knowledge stored in these external databases. For in-
stance, ConceptNet provides a graph-based representation of com-
monsense relationships between concepts, while ATOMIC [8] in-
cludes more specific event-based knowledge about causes, effects,
and preconditions. COMET utilizes this information to bridge the
gap between what is explicitly stated and the implicit commonsense
knowledge necessary for human-like reasoning.
Since COMET is trained on declarative sentences, we converted
our questions to declaratives above.

4.3.4 BERT for Question Classification. A significant deviation
from the methodology in [14] lies in the handling of inferences.
Unlike [14], which involves searching for and ranking potential in-
ferences, this approach avoids such a strategy due to its lack of scal-
ability as the size of the knowledge graph grows. Instead, the pro-
posed method employs BERT to classify the question into one of
the predefined relation categories outlined in ATOMIC [8]. These
relations, such as UsedFor, Causes, or Effects, are limited in num-
ber compared to the vast set of all possible inferences, making the
classification process computationally efficient.
The process involves feeding the declarative form of the question
into a fine-tuned BERT model trained on ATOMIC relation cate-
gories. The model predicts the most relevant relation category for
the input, such as UsedFor. By focusing on this specific relation,
the scope of inferences is significantly reduced, allowing the sys-
tem to retrieve and evaluate only the relevant inferences associated
with the predicted relation. Among these, the most suitable infer-
ence is selected based on predefined criteria. This approach ensures
efficiency and scalability while maintaining high-quality results.

4.3.5 Utilizing COMET to get relevant inferences. Having ac-
quired the declarative form of the question from GPT-3.5, the rele-
vant concept relation/map from BERT (”UsedFor” in this case), and
the object tags from YOLOv7, we combine these elements to craft a
statement that approximates natural language, albeit not perfect. A
dictionary is introduced to map relation categories to corresponding
natural language phrases, enabling the construction of a statement
that approximates natural language. By employing this dictionary,

along with the aforementioned components, we generate a state-
ment with sufficient natural language nuances. This statement is
then fed into the COMET model, resulting in five inferences. From
these, the best inference is selected based on its contextual align-
ment with the input. In the example case, the selected inference is
”drink wine”, which aligns well with the context of the question
and the visual content. These inferences are another instance of ex-
ternal knowledge and should serve as valuable inputs for enhancing
the Visual Question Answering (VQA) task.

Fig. 4: Accuracy and F1 Score values for different combinations of
fusion models
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5. RESULTS
We provide the results of all the experiments that we discussed
throughout the paper here:

(1) First of all, we observed that using captions reduced the width
of our box plot for accuracy, recall, and f1 score, and also
shifted it slightly above the older results across all 9 fusion
models as can be seen in Fig. 7 and Fig. 8. This suggests that
adding captions ensures that evaluations are closer to aver-
age, i.e., not very spread apart, and also improves the evalu-
ation metrics in most cases. The precision was seen to be more
spread though which we can attribute to the specific charac-
teristics of our data - at least we cannot see a link between
adding captions and more spread precision which might be a
good problem to consider.

(2) We also plot bar plots in Fig. 9 and Fig. 10 for each of the 4
evaluation metrics, namely accuracy, recall, precision, and f1
score so that the change in the metric can be easily observed.
The exact values for accuracy and f1 score are in Fig. 4. As
shared earlier in the paper, the mapping from plot labels to the
combination of text and image encoders can be found in Fig.
1.

(3) We already described the results of our inference generation
technique while explaining it in the methodology section.

(4) We also provide samples of some random images that did not
work well without a caption, but do work well when used with
a caption which can be found in Table 1 with the corresponding
questions in Fig. 6. Let’s consider one such example as men-
tioned below where the model was asked, ”what is beneath the
picture?” and it initially predicted the answer to be ”table”,
but after providing the caption (”there is a living room with a
couch, coffee table, and a clock what is beneath the picture”)
to the model, its prediction was accurately ”sofa”.

Fig. 5: Random Image Sampled form our Dataset

(5) We noted that the addition of captions resulted in minimal im-
provement. In some cases, there was a slight increase in accu-
racy, but, for the most part, it was negligible. This can be at-
tributed to the constraint of running only 5 epochs due to time
and resource limitations.

(6) Furthermore, we found that precision does not exhibit signifi-
cant improvement in most cases. It appears that when the ques-
tion directly pertains to the image content, the similarity be-
tween the image caption and the image itself becomes so pro-
nounced that the addition of caption as external knowledge be-
comes somewhat redundant. In some cases, the captions were
totally indifferent to what the question was - the question asked
about the color but the image description did not refer to it at
all.

6. CONCLUSION
In summary, our late fusion model showed some improvement by
adding image captions, though it’s crucial to keep expectations real-
istic. The changes in accuracy, recall, and f1 score were noticeable
but not game-changing. We should interpret these results with cau-
tion, considering the brief 5-epoch evaluation due to time and re-
source constraints. The reduction in variability across fusion mod-
els suggests a positive impact from image captions, but it doesn’t
signal a major performance boost. It’s essential to acknowledge
these incremental gains, understanding that more substantial im-
provements may emerge with longer training periods and increased
resources in future studies.
Also, the fact that the descriptions did not correspond well to the
question that was being asked suggests that the knowledge injected
needs to be well structured. Our inference generation technique of-
fers potential for the future.

Without Caption: [’pillow’]
With Caption: [’lamp’] Correct Ans

Without Caption: [’towel’]
With Caption: [’garbage bin’] Correct Ans

Without Caption: [’table’]
With Caption: [’chair’] Correct Ans

Without Caption: [’table’]
With Caption: [’bed’] Correct Ans

Without Caption: [’table’]
With Caption: [’sofa’] Correct Ans

Without Caption: [’cabinet’]
With Caption: [’bed’] Correct Ans

Without Caption: [’chair’]
With Caption: [’refrigerator’] Correct Ans

Without Caption: [’chair’]
With Caption: [’cabinet’] Correct Ans

Without Caption: [’lamp’]
With Caption: [’bed’] Correct Ans

Table 1. : Samples that showed improvement after adding captions

Fig. 6: Questions

7. DISCUSSION OF FUTURE WORK AND
LIMITATIONS/CHALLENGES

Looking ahead, several areas for improvement and expansion have
been identified to enhance the performance and applicability of the
proposed model.
One key direction involves refining how insights are gathered from
COMET, the commonsense knowledge source utilized in this work.
While the current approach leverages COMET to generate infer-
ences, there is potential to explore more sophisticated methods of
integrating these inferences as external knowledge. Specifically, in-
corporating the generated inferences as an additional input stream
to the model could enrich its understanding and reasoning capabil-
ities. This would allow the system to draw on external knowledge
in a more structured and impactful manner, improving its perfor-
mance on Visual Question Answering (VQA) tasks.
Another significant avenue for future work involves extending the
training process by providing the model with additional computa-
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(a) Box Plot for Accuracy

(b) Box Plot for Recall

Fig. 7: Box Plots for Accuracy and Recall

(a) Box Plot for Precision

(b) Box Plot for F1

Fig. 8: Box Plots for Precision and F1

tional time and resources. The current implementation operates un-
der certain constraints that limit the duration and intensity of train-
ing. By relaxing these constraints, it would be possible to allow
the model to explore its parameter space more thoroughly, leading
to improved generalization and robustness. Such adjustments could
result in better performance, especially on complex VQA tasks re-
quiring deep reasoning.
The task of classifying relation categories using a BERT classifier
also presents notable challenges. The limited availability of labeled
data for training the BERT model on ATOMIC relation categories
restricts its effectiveness. The scarcity of resources for this specific
classification task highlights a gap in the current research land-

(a) Bar Plot for Accuracy

(b) Bar Plot for Recall

Fig. 9: Bar Plots for Accuracy and Recall

(a) Bar Plot for Precision

(b) Bar Plot for F1

Fig. 10: Bar Plots for Precision and F1

scape. Despite these challenges, this work aims to pave the way
for further exploration in this direction. Addressing these limita-
tions could involve developing more extensive and diverse datasets
or employing semi-supervised or unsupervised learning techniques
to enhance the classifier’s performance.
In summary, future efforts will focus on improving the integration
of COMET-generated inferences, extending training capabilities,
and addressing challenges in relation classification. These en-
hancements hold the potential to make the model more accurate,
robust, and scalable, thereby contributing to advancements in the
field of Visual Question Answering and related domains.
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