
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

21

Blockchain-based Smart Contracts Platform for
Transparent and Efficient E-Ticketing

Cláudia Silva
School of Technology, Polytechnic

Institute of Castelo Branco,
Portugal, 6000-767 Castelo

Branco, Portugal

Mónica Costa
School of Technology, Polytechnic

Institute of Castelo Branco,
Portugal, 6000-767 Castelo

Branco, Portugal

Alexandre Fonte
School of Technology, Polytechnic

Institute of Castelo Branco,
Portugal, 6000-767 Castelo

Branco, Portugal

ABSTRACT

Smart contracts, a key innovation of blockchain technology, are

digital agreements that automatically execute predefined terms.

These contracts are secure, decentralized, transparent, and

immutable, making them suitable for a range of sectors,

including event ticket sales, where they can streamline

transactions and reduce fraud. This project explores using

smart contracts for event ticket sales and marketing, aiming to

reduce ticket speculation and paper redundancies. A prototype

system was developed with Solidity on the Ethereum

blockchain, tested locally, and integrated with a Vue.js

frontend, a MySQL database, and a simulated cryptocurrency

wallet via Ganache. The system is designed to serve

stakeholders such as ticket sellers, buyers, and event

organizers. The results demonstrate the feasibility of using

blockchain for transparent and efficient ticketing processes.

While currently limited to a local environment, it provides a

foundation for future enhancements and broader adoption. This

project highlights blockchain’s potential to transform event

ticketing, ensuring security, scalability, and user trust.

Keywords

E-ticket, Blockchain, Smart Contract, Ethereum,

Cryptocurrency.

1. INTRODUCTION

The rise of cryptocurrencies has presented challenges like

security concerns, lack of trust in peer-to-peer transactions,

currency duplication, transaction valuations, and data storage.

These issues, once managed by centralized systems, have led

to the development of blockchain—a decentralized ledger

storing transactional information via peer-to-peer network

nodes [1]. Information is securely linked in blocks using

cryptographic hashes (e.g., SHA-256 or SHA-3).

Blockchain technology's [2] evolution has brought about

significant applications such as smart contracts, a digital

agreements that automatically execute specific terms when

conditions are met, removing the need for intermediaries.

Stored on the blockchain, they ensure security and

transparency. Key features of smart contracts include

decentralization, transparency, and immutability. These traits

make smart contracts suitable for sectors like marketing or

event ticket sales, streamlining processes, reducing

intermediaries, and ensuring secure transactions.

In response to these challenges, the primary objective of this

project is to explore the use case of blockchain-based smart

contracts (SC) for event ticketing, focusing on ticket marketing

and sales to reduce speculation in ticket sales and minimize

reliance on paper-based systems. The project integrates smart

contracts to build agreements which automatically execute

specific terms when certain conditions are met, eliminating the

need for intermediaries, ensuring security and transparency.

Additionally, the decentralized nature of blockchain allows all

parties to view the terms simultaneously, while the

immutability of smart contracts ensures that once deployed,

they cannot be altered, fostering trust among stakeholders.

Given the complexity of implementing smart contracts and the

methodology for developing software components (e.g.,

ICONIX), this project investigates methodologies and

frameworks that guide the design, deployment, and debugging

of smart contracts. To facilitate user interactions, a frontend

interface was developed using JavaScript [3], TypeScript [4],

and Vue.JS [5]. A local database, built with MySQL

Workbench [6], recorded essential information required for

interactions between the blockchain and the smart contracts.

For transaction simulation, Ganache [7] was employed as a

simulated cryptocurrency wallet, enabling the execution and

local recording of blockchain transactions. The smart contracts

were coded in Solidity [8] and deployed using the Truffle suite

framework, with unit testing conducted via Visual Studio Code

[9].

The main work contributions are summarized as follows:

• Developing a Smart Contract-based Ticketing System:

A prototype was implemented using Solidity on Ethereum

to streamline ticket sales, reduce speculation, and

eliminate redundant processes;

• Integrating Blockchain with Modern Software Tools:

The system combines a Vue.js frontend, a MySQL

database, and a simulated cryptocurrency wallet

(Ganache) to demonstrate feasibility;

• Evaluation of Real-World Applications of Smart

Contracts: This project provides some insights into the

performance and limitations of SC in ticketing scenarios;

• Laying of a Foundation for Future Enhancements:

This work identifies areas for improvement, such as

scalability and live blockchain integration, to support

broader adoption and practical use.

The rest of this paper is organized as follows. Section 2

provides a review of related work. Section 3 outlines the system

architecture and introduces interface prototyping. Section 4

covers the development and implementation phase, while

Section 5 presents and discusses the results. Finally, Section 6

concludes the paper, highlighting the key findings.

2. STATE OF ART OR LITERATURE

REVIEW

This review was conducted using the PRISMA methodology

PRISMA (Preferred Reporting Items for Systematic Reviews

and Meta-Analyses), which is a standardized approach

reporting systematic reviews and meta-analyses [10].

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

22

In brief, the IEEE Xplore, Springer Link, Research Gate, ACM

DL and Science Direct databases were considered the most

suitable sources for extracting and identify relevant articles

between 2017 and 2024. Among a total of 120 articles, only 4

articles were identified and screened for inclusion in this

review. Further methodological details are going to be provided

in a separate publication by the authors.

First, the study Blockchain and smart contracts [11] primarily

focus on the general technical aspects and challenges of

blockchain and smart contracts rather than their specific

applications in e-ticketing. However, it identifies potential

avenues where blockchain technology could address key

challenges in the ticketing industry, such as fraud prevention,

transparency, and efficiency.

In Smart Contract Designs on Blockchain Applications [12],

the authors evaluate smart contract architectures for efficient

blockchain data indexing in ridesharing scenarios. They

compare Sparse and Catalog designs, concluding that while the

Catalog design is more complex, it offers significantly

improved query efficiency over Sparse.

In turn, the article A Blockchain-Based Ticket Sales Platform

[13] presents a decentralized ticket sales app using NFTs on

Ethereum and Avalanche. The platform aims to enhance

enhancing transparency, security, and cost-efficiency in

transactions. Avalanche is favoured for its lower costs and

scalability.

Finally, Assessment of E-Ticketing Technology in Concert

Websites: A Review of Benefits, Profits, and Customer

Satisfaction [14] assesses the impact of e-ticketing on concert

websites. The article highlights benefits for companies, such as

increased operational efficiency, and improved customer

satisfaction through streamlined ticket purchasing processes.

3. SYSTEM DESIGN

System design is a critical aspect of engineering and computer

science, involving the definition of its architecture,

components, modules, interfaces, and data to satisfy specified

requirements.

In subsection 3.1, the essential components of the system, are

reviewed providing a comprehensive overview of its

architecture and functionality. Afterwards, in subsection 3.2,

interface prototyping, is introduced to refine the user

experience. Various modeling tools are employed to create

prototypes that visually demonstrate the user interface and

interactions.

3.1 System Component

System components are the essential parts that make up a larger

system, such as a computer, network, or software application.

These components work together to ensure the system

functions correctly and efficiently, typically including

hardware, software, data, people, and processes.

These elements interact to collect, process, store, and distribute

information, thereby supporting decision-making and control

within an organization.

Figure 1 presents a simple explanation of the system's

behaviour. the user interacts with the web page (a front-end

component) and the front-end system interacts with the back-

end system, providing the information for the system to

function correctly.

Fig 1: Explanation of system behaviour.

3.2 Interface Prototyping

In this study, the interface prototype focuses on a customer

interface designed to facilitate the online purchase of e-tickets.

Figure 2 outlines the steps involved in each customer action

throughout the purchase process.

Fig 2: Flow customer interactions with interface.

Description: The customer visits the website or webpage of the

E-Ticketing platform and sees the welcome page. If the user

wants to continue, then will see the event page, which presents

the events taking place.

The user can stop and go to the welcome page, but if the user

selects an event, the user can process the webpage to choose a

date and time for that event.

When a date and time is picked, the user can proceed to the

order page, agree with the conditions, submit the Ethereum

account and fill in the form to pay the e-ticket.

If all is well, the system sends the data to the server and records

the information, the user just sees a thank you page and receives

an email with the electronic ticket. This aspect will be next

illustrated in Figure 3.

Fig 3: Sample of buy ticket interface.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

23

4. DEVELOPMENT AND

IMPLEMENTATION

After the modelling phase, the project moves on to the

development and implementation phase. Therefore, this section

first details the development of the proposed web application

for this project. However, before diving into coding, it is

necessary to carry out some additional planning. Afterwards, it

starts the implementation and coding rises.

4.1 Digital architecture of a smart contract

Digital architecture refers to the design, structure, and

organization of digital systems, including software, hardware,

networks, and data. It encompasses the principles, techniques,

and methodologies used to create and manage digital

environments, such as computer systems, websites,

applications, and other technology-driven platforms

In this scenario, the digital architecture of a SC (smart contract)

process can be summarized in a process of two key stages, as

illustrated in Figure 4:

• Development: This stage involves the creation, updating,

or interruption of the Smart contract in case of process

failure. In this case, the development starts with coding the

Smart contract and when finished the developer deploys

in the network.

• Process automation: This refers to the technology used

to execute recurring tasks or processes within a business

or organization without requiring human intervention.

After the deploy the system will requires time to populate

the Smart contract in the network, when finished that

process the information in about the Smart contract will

be recorded into a block. After that the block will be

replicated to the network in many machines logged and

terminated the entire process.

Fig 4: Digital architecture of SC creation process.

4.2 Tools used to development

For front-end development, several tools were utilized, such as

Visual Studio Code served as the primary editor for writing,

editing code and identify and rectify errors.

Programming languages and frameworks such as JavaScript

with TypeScript and Vue facilitated the development process.

JavaScript is utilized within the webpages, which are

developed using TypeScript. The framework Vue.js is

employed to establish an HTTP localhost server, facilitating

real-time site previews and updates.

For back-end development, various tools were employed, such

as MySQL Server functioned as the database manager, while

MySQL Workbench provided the interface.

The front-end and back-end developments are integrated within

the same project but require independent initiation. The back

end is responsible for initializing the database, which underpins

the data displayed on the website. This database stores

Ethereum public accounts submitted by customers upon form

completion and validation. Each record in the database

associates an order ID with an Ethereum ID.

4.3 Implementation

First, the development of HTML involves creating webpages,

CSS, and connections to Vue, along with the integration of add-

ons and images. Once this phase is completed, testing

operations must commence.

Next is the database development phase, which includes

creating the database using Workbench with SQL Server,

followed by testing operations. The project required a database

with test data to be evaluated step by step across the web pages.

The next phase involves integrating the HTML with the

database to enable CRUD operations, after which exhaustive

testing must be carried out. The backend folder and its code

files are designed to interface with the database software and

support frontend development.

To achieve this, Node.js [15] must be installed in the backend

folder. Node.js provides a server-side JavaScript runtime

environment, facilitating the connection between the backend

and frontend by managing their dependencies and interactions.

In the ultimate phase, the development of smart contracts

occurs, focusing on creating the contracts and managing

transitions between the client side and operations side.

Ganache is a personal blockchain used for rapid development

of Ethereum and File coin distributed applications [16]. It

functions like an EVM and provides Ethereum public and

private key accounts, along with gas and simulated Ethereum

balances. Ganache allows testing the transactions and smart

contracts in a local environment.

Unfortunately, testing must be conducted within a local

ecosystem or off-chain blockchain storage [17], as performing

these tests on a real Ethereum network or on-chain blockchain

storage [17] would be prohibitively expensive due to the high

cost of Ethereum transactions.

5. RESULTS

In this section the main project results after implementation and

testing are presented. Subsection 5.1 provides an overview of

the records stored in the local database during frontend testing.

Subsection 5.2 details the generation of blocks and blockchain

transactions observed during frontend testing. Following that,

subsection 5.3 covers the testing of the smart contract after

deployment, while subsection 5.4 describes the process of

deploying and creating the smart contract.

For simplicity and demonstration purposes, there is no login

system, the order and user will share the same number ID.

However, it’s important to note that these IDs are distinct in the

database: one represents the user ID, and the other represents

the order ID.

5.1 Local database

In the local database, the user and orders are created, like

demonstrated in Figure 5 and Figure 6.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

24

Fig 5: Illustration of user’s data from workbench.

Fig 6: Illustration of orders data from workbench.

5.2 Block and blockchain

The generation of the smart contract is potentially more

complex. For example, consider tracking block 36, which is

related to user ID 206, for a better understanding. First, a

transaction for the e-ticket is created within the block (Figures

7 and 8).

Fig 7: Illustration of a mined block in Ganache.

Fig 8: Scope and detail of block 36.

By clicking on the block, more detailed information about it is

showed. This includes data such as gas usage, block hash, and,

if a smart contract is involved and already deployed, details

about the contract.

When the block is processed locally, this process is very fast.

If the contract hasn’t been deployed yet, Ganache will only

display basic information, such as gas usage, date, and block

hash.

5.3 Testing smart contract

To do tests in the smart contracts, the Truffle framework

Error! Reference source not found. was used in the terminal

of the Visual Studio Code. The Truffle test command is used to

run automated tests for smart contracts written using Truffle. In

the present case, as shown in Figure 9, a unit test was created

to validate the core functionality of the buy function within the

SC. This function aggregates the necessary elements in the

array required to interact with the contract and confirms its

intended behaviour.

The Deployment Test is successfully deployed, as indicated by

the green checkmark beside "should deploy correctly.", the

same for Buy Function Test, was performed correctly during

the test, as seen in the green checkmark next to "should perform

the buy function correctly" with a runtime of 60 milliseconds,

because is executed locally.

Fig 9: Unit test for validation of the core functionality.

These passing results in Ganache, as in Figure 10, confirm that

the contract's key functions, including `buy`, behave as

expected under the test conditions. The quick execution times

(125ms overall, because is executed locally) indicate efficient

interactions with the blockchain simulator, supporting the

integrity and responsiveness of the contract functions.

Fig 10: Results in Ganache.

The test suite for EventContract (see Figure 11), shows that the

contract deploys correctly, but the buy function test fails due to

an invalid address error, so the deployment was not completed.

Specifically, the error message tells us that the _seller argument

was passed an empty string ("") instead of a valid Ethereum

address. In Ethereum, addresses must be in a specific format

and an empty string doesn’t meet these requirements.

The error originates in the test file Test.js, on line 20. This line

is where the buy function is called, and it appears that _seller is

either not initialized or is given an invalid value. The

underlying problem here is that the test setup doesn’t provide a

valid address for seller.

Fig 11: Illustration of a failure result.

Based in test results in Figure 12, the EventContract

successfully deploys, but the test for the buy function fails. In

successful deployment, the contract deploys without issues, as

indicated by the checkmark next to “should deploy correctly”,

but is failure in buy Function Test.

The error suggests that the contract has a restriction on who can

execute the buy function, likely enforced with a require

statement such as require. This condition checks that only a

specific address (the buyer) is allowed to call the buy function.

Cause of the Failure: The test appears to be attempting to call

buy from an address that isn’t recognized as the “buyer”

according to the contract’s logic. As a result, the transaction is

reverted with the error message “Only buyer can buy.”

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

25

Fig 12: Illustration of buyer failure.

5.4 Deploy smart contract

After testing transactions and mining blocks, the Smart

Contract (SC) needs to be deployed. In this project, deployment

is performed manually via the Visual Studio Code terminal

with Truffle library. Once deployed, Ganache will display the

following information presented in Figure 13.

Fig 13: Illustration of the SC once deployed in Ganache.

Ganache displays the smart contract's address, which need to

copy and paste into the project to interact with the mined blocks

and the deployed contract. If the contract hasn't been deployed,

it will only show “Not Deployed.”

By clicking on the contract, as shown in Figure 14, Ganache

provides detailed information such as storage, transactions, and

events.

Fig 14: Details of the SC in Ganache.

Ganache has three important keys that allow users to view

information and analyse what is happening during deployment

and afterward, they are: Storage, transactions and events.

Each smart contract has its own storage, demonstrated in Figure

15, space where it can save variables and state information:

Fig 15: Print screen inside storage.

Inside storage, it shows the information codified in smart

contract project, in first look, the information will be generic or

empty, case the contract was not interactions. After that, the

ganache records the information in the storage, demonstrated

in Figure 16.

Fig 16: Illustration of transactions and events in the SC.

If everything is correct, the Ganache will record the transaction

in the mined block. The subscription will then be realized,

visible in the Events tab within Ganache, and sent to the

blockchain, as shown in Figure 17.

Fig 17: Event details about the smart contract deployed.

5.5 Security Analysis

Due to the project’s limited scope and its local development

context, the implementation of a comprehensive security

system was deemed unnecessary. However, a thorough

examination of potential security measures was conducted and

documented.

Blockchain-based smart contract offers several security

advantages for e-ticketing platforms, like the decentralization,

in the traditional ticketing systems rely on centralized

databases, which can be a single point of failure. Blockchain’s

decentralized nature distributes data across multiple nodes,

reducing the risk of data breaches [19].

The immutability of the smart contracts blocks fraud. Once a

ticket is issued on the blockchain, it cannot be altered or

duplicated. This prevents counterfeit tickets and ensures the

authenticity of each ticket.

Blockchain allows for transparent tracking of ticket ownership

and transactions. This makes it easier to verify the legitimacy

of tickets and reduces fraud.

Smart contracts are self-executing contracts with terms directly

written into code. They automate the ticketing process,

ensuring that tickets are only transferred under predefined

conditions, such as payment confirmation.

But smart contracts have disadvantages too, like complexity,

the multi-phase system can be complicated for users, especially

those who are not tech-savvy. This complexity might deter

some users from adopting the wallet.

The risk of loss the 12-phase code (or more like Trezor [20]) is

potential and there is no recovery option, they permanently lose

access to their funds. This can be a significant risk compared to

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

26

wallets that offer recovery options. The need to input two

random phases for every transaction can be cumbersome and

time-consuming, potentially leading to a less smooth user

experience. Advanced security features often come at a higher

cost, whether it’s a hardware wallet or a premium software

service.

6. CONCLUSION
The development of smart contracts on blockchain technology

marks a significant shift in digital transactions and agreements,

enhancing transparency, security, and decentralization. This

technology effectively addresses issues such as fraud and

inefficiencies in ticketing by eliminating intermediaries. The

ambitious project described creates a blockchain-powered e-

ticketing platform using smart contracts to ensure secure,

transparent, and tamper-proof ticketing transactions.

By leveraging the decentralized nature of blockchain, this

platform aims to eliminate fraud, streamline ticket verification,

and enhance user experience for both organizers and attendees.

The smart contract architecture automates critical processes

from ticket issuance to resale, making the e-ticketing process

more efficient and trustworthy.

The project phases encompass a comprehensive review of

smart contracts, blockchain, and e-ticketing technologies,

followed by system design, and development and

implementation of the platform using technologies like

JavaScript, Solidity, Truffle, and Ganache.

In conclusion, the project highlights the transformative

potential of blockchain and smart contracts in the event

ticketing industry, while also recognizing the need for further

enhancements and real-world testing to ensure scalability and

adoption.

7. REFERENCES
[1] Singhal, Bikramaditya, Et Al. "How Blockchain Works."

Beginning Blockchain: A Beginner's Guide To Building

Blockchain Solutions (2018): 31-148.

[2] Di Pierro, Massimo. "What Is The Blockchain?"

Computing In Science & Engineering 19.5 (2017): 92-95.

[3] JavaScript Docs: https://developer.mozilla.org/en-

US/docs/Web/JavaScript, accessed in November 2024.

[4] TypeScript homepage: https://www.typescriptlang.org/,

accessed November 2024.

[5] VueJS homepage: https://vuejs.org/, accessed in

November 2024.

[6] MySQL Workbench homepage:

https://www.mysql.com/products/workbench/, Acceded

in November 2024.

[7] Ganache homepage:

https://archive.trufflesuite.com/ganache/, accessed in

November 2024.

[8] Solidity homepage: https://soliditylang.org/, accessed in

November 2024.

[9] Visual Studio Code homepage:

https://code.visualstudio.com/, accessed November 2024.

[10] Bmj, “Prisma 2020 Explanation And Elaboration:

Updated Guidance And Exemplars For Reporting

Systematic Reviews Bmj,” 2021. Available:

Https://Www.Bmj.Com/Content/372/Bmj.N160,

Accessed in november 2023.

[11] Manar Abdelhamid and Ghada Hassan. 2019. Blockchain

and Smart Contracts. In Proceedings of the 8th

International Conference on Software and Information

Engineering (ICSIE '19). Association for Computing

Machinery, New York, NY, USA, 91–95.

https://doi.org/10.1145/3328833.3328857.

[12] A. Abuhashim and C. C. Tan, "Smart Contract Designs on

Blockchain Applications," 2020 IEEE Symposium on

Computers and Communications (ISCC), Rennes, France,

2020, pp. 1-4, doi: 10.1109/ISCC50000.2020.9219622.

[13] P. Sombat and P. Ratanaworachan, "A Blockchain-Based

Ticket Sales Platform," 2023 27th International Computer

Science and Engineering Conference (ICSEC), Samui

Island, Thailand, 2023, pp. 226-230, doi:

10.1109/ICSEC59635.2023.10329682.

[14] Noerlina, A. Khairunnisa and Meiryani, "Assessment of

E-Ticketing Technology in Concert Website: A Review of

Benefits, Profits, and Customer Satisfaction," 2023

International Conference on Information Management

and Technology (ICIMTech), Malang, Indonesia, 2023,

pp. 1-5, doi: 10.1109/ICIMTech59029.2023.10277708.

[15] NodeJs homepage: https://nodejs.org/en, accessed in

November 2024.

[16] Ganache Docs:

Https://Archive.Trufflesuite.Com/Docs/Ganache/,

accessed in May 2024.

[17] Reijers, Wessel. Et Al. “Now the code runs itself: On-

chain and off-chain governance of blockchain

technologies”. Topoi 40 (2021): 821-831, accessed in

June 2024.

[18] Truffle Documentation:

https://Archive.Trufflesuite.Com/Docs/Truffle/, accessed

in August 2024.

[19] Open Access Publisher Empowering Researchers,

Https://Journals.Plos.Org/Plosone/Article?Id=10.1371/Jo

urnal.Pone.0284166, Accessed in August 2024.

[20] Crypto Security Trezor: https://Trezor.Io/, accessed in

August 2024.

IJCATM : www.ijcaonline.org

