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ABSTRACT 
The next generation of wireless network communication 

requires high data rates and low latency, posing significant 

challenges in resource allocation. In next-generation networks, 

resource allocation remains a major issue, with recent 

approaches focusing on both dynamic and static allocation 

strategies. The proposed approach utilizes deep learning 

models, particularly Long Short-Term Memory (LSTM) 

networks, to optimize power and spectrum allocation in real-

time. By leveraging deep learning's ability to handle complex, 

high-dimensional data, the algorithm adapts to varying channel 

conditions and user requirements while minimizing energy 

consumption. A key feature of the proposed model is its 

capability to dynamically allocate resources based on Channel 

State Information (CSI) and Quality of Service (QoS) 

constraints, ensuring the efficient utilization of available 

bandwidth. 
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1. INTRODUCTION 
Next-generation networks are playing vital role in modern life. 

The requirements of user needs and quality of services fulfil by 

employing non-orthogonal multiple access (NOMA)[1,2,3].  

Employing NOMA scheme has improved spectral efficiency 

and performance of systems. the application of NOMA 

categorized into two groups such as power domain and code 

domain[4,5]. In NOMA systems, transmission power is 

allocated across the power domain depending on the distance 

between base stations (BSs) and users (Us), with some users 

receiving higher power and others lower power[6]. By enabling 

users with strong channel conditions to share subcarriers with 

users experiencing weaker channel conditions, NOMA 

enhances bandwidth utilization to its maximum potential[7,8]. 

Efficient power and spectrum allocation in the NOMA scheme 

enhances the system capacity of the communication model[9]. 

This efficiency relies on the optimal allocation of resources, 

achieved through swarm-based optimization algorithms and 

deep learning techniques. Deep learning algorithms play a 

significant role in the power domain, improving data 

transmission rates. They offer various optimization approaches, 

such as LSTM, CNN, and cascaded deep learning 

models[10,11]. In the downlink NOMA structure, the receiver 

device processes a multiplexed signal transmitted to multiple 

user terminals within the NOMA cell. Coordinated detection 

becomes crucial to mitigate interference generated by other 

user devices. In power-domain NOMA (PD-NOMA), 

multiuser detection is often managed using successive 

interference cancellation (SIC). During the SIC process, 

symbols from different users are decoded sequentially based on 

their Channel State Information (CSI) and the power allocation 

assigned to each user. To address the limitations of traditional 

methods, deep learning (DL) has made significant 

contributions to wireless communications, including 

applications in channel estimation (CE), signal detection (SD), 

constellation design, and modulation recognition. Additionally, 

DL techniques have been explored in 6G systems. For example, 

the authors in [12] proposed a novel codebook-based 

architecture for RIS-assisted communications, effectively 

overcoming challenges related to high implementation 

complexity and substantial pilot overhead. This paper proposes 

an efficient resource allocation strategy in the NOMA scheme 

for optimized power distribution. The proposed algorithm 

enhances the long-term memory capabilities of the Long Short-

Term Memory (LSTM) model. The improvement is attributed 

to the mutual selection process between users and base stations. 

The rest of the article is organized as follows: Section II 

discusses the related work on the NOMA scheme, Section III 

presents the proposed methodology for the NOMA scheme, 

Section IV provides the experimental analysis, and Section V 

concludes the study. 

2. RELATED WORK  
Energy and spectrum are critical resources in emerging 

communication systems. The performance of these systems 

heavily relies on effective resource optimization. Recently, 

several researchers have employed deep learning and swarm 

intelligence-based algorithms for resource allocation within the 

NOMA modulation framework, enhancing the efficiency of 

resource management in emerging communication networks.In 

[1], an efficient neural network approach for user clustering in 

mmWave-NOMA is proposed, enabling offline neural network 

training for live clustering decisions in networks. However, it 

lacks flexibility in addressing SIC decoding capabilities for 

individual users and incurs high computational complexity in 

live decision-making. In [2], a low-complexity receiver design 

for joint activity and data detection is introduced, utilizing 

machine learning for low-complexity detection in GF-NOMA, 

with decision tree boundaries tailored to devices and 

modulation types. Generalization challenges involve power 

level management and channel dynamics. In [3], a DRL-based 

resource allocation scheme for D2D communications in 

cellular networks is presented. The scheme improves energy 

efficiency, fairness, and coordination among D2D users by 

analyzing outage probabilities of D2D and cellular links, 

though it does not handle overlapping D2D clusters or optimal 

solutions for complex multi-link detection. In [4], a DL-based 

channel estimation method for RIS-NOMA systems is 
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proposed, tackling channel estimation challenges in passive 

RIS-NOMA systems within 6G networks. However, estimation 

times may exceed channel coherence time. In [5], a simplified 

DQN structure for NOMA channel parameter prediction is 

introduced, combining RL algorithms with LSTM models. 

However, Q-learning complexity escalates in multi-user 

environments with large state spaces. In [6], the HyDNN 

framework for uplink NOMA-OFDM CE and SD systems is 

developed, combining a 1D-CNN feature extractor and 

BiLSTM layer for signal inference. The MMSE-SIC approach 

is suboptimal due to ICI and ISI issues, and performance varies 

with CP and pilot configurations. In [7], reinforcement learning 

algorithms for channel prediction and power allocation are 

explored, leveraging machine learning for power allocation and 

CSI estimation, though limitations are not specified. In [8], a 

novel interference coefficient estimation algorithm for NOMA 

VLC systems is introduced, featuring an optical NOMA 

communication system with a new SIC receiver. Challenges 

include error propagation, nonlinear distortion, and feedback 

complexity. In [9], DL-based SIC complexity for mMIMO-

WNOMA systems with LS and MMSE estimators is analyzed. 

The study compares traditional FFT-based NOMA with a 

proposed Deep-mMIMO-WNOMA network, finding that 

imperfect CSI affects SIC and compromises data recovery. In 

[10], NOMA is presented as a key access method for future 

mobile generations, with ensemble methods' computational 

demands posing a barrier to real-time applications. In [11], 

neural networks for CE and IC in FBMC and OFDM systems 

are proposed, enhancing channel estimation accuracy and 

reducing computational complexity, though significant RNN 

training and data volume are required. In [12], channel capacity 

enhancement via frequency-domain signal vector derivation 

and particle filter equalization algorithms is investigated. 

Constraints include EH limitations and power restrictions. In 

[13], DNNs are utilized to enhance NOMA performance in 

uplink communications, improving synergy among NOMA, 

MUD, and DNNs. Traditional MUD methods may not fully 

exploit NOMA's benefits, especially in beamforming vector 

allocation. In [14], a MA-DRL-based SGF-NOMA algorithm 

is proposed, addressing SIC imperfections and distributed 

power control but facing challenges with RL training 

complexity and overestimation issues in DQN. In [15], the 

OBAUS scheme for secrecy performance in cooperative 

NOMA is introduced, exploring DNN-based optimization for 

real-time prediction and impact of network parameters. In [16], 

a two-step DQN training model addresses the PA problem in 

multi-user communication. Despite outperforming model-

driven algorithms, interference and performance instability 

remain challenges with large-scale fading effects. In [17], a 

multi-user communication model with Q-learning-based user 

pairing and power allocation in CRN-NOMA is proposed, 

though complexity arises from multiple constraints in downlink 

optimization. In [18], MAB and DDQN algorithms for UAV 

energy-efficient communications tackle path design and power 

distribution, though the computational burden of exhaustive 

NOMA pairing and lack of energy-efficient focus are noted. In 

[19], a cooperative THz mMIMO-NOMA base station 

optimization method is proposed, using a multi-layer antenna 

and fuzzy c-means clustering for user grouping. However, 

dynamic environment adaptation and power constraints pose 

challenges. In [20], an ACO-based edge learning scheme in 

NOMA networks is proposed, optimizing learning error and 

power allocation, with wireless channels impeding ultra-fast 

edge learning. In [21], a metaheuristic approach to optimize 

power allocation is presented, but OMA's adaptability and 

resource flexibility remain limited. In [22], an AoI 

minimization approach for WPCRN with power optimization 

is developed, addressing practical constraints like spectrum 

sensing and SIC imperfection. In [23], a hybrid NOMA-TDMA 

system for sum-throughput maximization in WPINs is 

presented, with energy limitations posing a challenge for IoT 

battery life. In [24], a user association algorithm for NOMA-

enabled vehicular HetNet optimizes bandwidth allocation, 

though interference limits spectrum utilization. In [25], a 

hierarchical game for multi-carrier system efficiency uses a 

clustering algorithm for power allocation in hybrid NOMA, 

facing challenges with co-channel interference and 

computational complexity in mMTC networks.  

3. PROPOSED METHODOLOGY 
The CDNN is implemented at the Base Station (BS), where, 

following training, it allocates varying power levels to 

individual users. Although the CDNN framework does not 

directly model physical users, it leverages extracted features 

from channel links and users as training examples. This 

approach ensures that information regarding all users and 

channel conditions is encompassed within the training data. To 

further enhance system performance, we introduce effective 

learning methodologies tailored to train the CDNN. Moreover, 

building upon the deep learning-based framework, we propose 

advanced algorithms aimed at optimizing both sum data rate 

and energy efficiency within the MIMO-NOMA system. These 

algorithms represent a significant advancement in leveraging 

deep learning techniques for enhancing the performance of 

wireless communication systems. 

Algorithm 1 CDNN based training algorithm for MIMO-

NOMA. 

Input: Environment simulator, channel vectors hm, and 

precoding matrix P.Output: CDNN. 

enhance system performance, we introduce effective learning 

methodologies tailored to train the CDNN. Moreover, building 

upon the deep learning-based framework, we propose advanced 

algorithms aimed at optimizing both sum data rate and energy 

efficiency within the MIMO-NOMA system. These algorithms 

represent a significant advancement in leveraging deep 

learning techniques for enhancing the performance of wireless 

communication systems. 

Algorithm 1 CDNN based training algorithm for MIMO-

NOMA. 

Input: Environment simulator, channel vectors hm, and 

precoding matrix P.Output: CDNN. 

1:Start running environment simulator to generate the wireless 

channel, which is corrupted by AWGN and other distortion. 

2: Generate a set of training samples. These samples comprise 

channel vectors hm and precoding matrix P . 

3: Develop the proposed CDNN framework. Then, initialize the 

learning rate, and the loss rate. The weights of the network are 

initialized by the well-known Xavier method. Furthermore, we 

set the batch size. Additionally, we set the error threshold as σ 

= 10−7. 

4: Initialize parameters: P = 0 and βm ∈ {0, 1}, ∀i, j. 

5: while error ≥ σ: Train the CDNN based on the given 

training samples to approximate problem (11) according to the 

proposed learning mechanism by the SGD. 

6: Update the network parameters of the CDNN  
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7: Update the weight w and the output of each layer of the 

CDNN. 

8: end while 

9: return: CDNN. 

Algorithm 2 CDNN based testing algorithm for MIMO-

NOMA. 

input: Environment simulator, CDNN. 

Output: Precoding matrix P, power allocation coefficients βm. 

1: Load the well-trained CDNN framework. 

2: Start running environment simulator to generate wireless 

channel, and add specific distortion or noise to the channel. 

3: Process the CDNN. 

4: Update the output of each layer of the CDNN. 

5: Compute the precoder pm in the m-th cluster, as well as 

power allocation coefficients βm ∈ [0, 1]. 

6: Obtain P¯ based on the precoder p¯m, ∀m. 

7: Calculate power allocation factor according to 𝛽𝑚 =
|𝑃𝑚|

𝑃
 

and then use similar way to compute βm,k. 

8: end while 

9: return: Precoding matrix P and power allocation coefficients 

βm, k. 

4. EXPERIMENTAL ANALYSIS 
To validate the proposed deep learning algorithm for resource 

optimization in the NOMA scheme, MATLAB tools (version 

2018R(a)) were used. The performance of the model was 

analysed using parameters such as BER, outage probability, 

data rates, and sum rates. The proposed algorithm was 

evaluated with two groups of users, designated as User-1 and 

User-2. The employed deep learning algorithm is Long Short-

Term Memory (LSTM). 

Table 1 Simulation Parameters of NOMA scheme for 

allocation of Resources[20,21,22] 

Parameters Value 

Carrier frequency 2 GHz 

Base station (BS) power 46 dBm 

System bandwidth (BW) 5–10 MHz 

Number of users per cell (N) 10–20 

Bandwidth per user 5.4 MHz 

Number of data subcarriers 1200 

Number of pilot subcarriers 

(xi ) 

4 

Number of guard-band 

subcarriers 

76 

Channel matrices (Hi ) Rayleigh or Rician 

fading 

AWGN (w) −10 to 30 dBm 

Power allocation coefficients 

(p) 

2/3 and 1/3 

3/4 and ¼ 

4/5 and 1/5 

 

We observe that the value of the proposed is better than the 

other two methods. The value of the proposed, which is better, 

is 0. 022 at SNR (dB) -8, and the value of NOMA, which is 

better, is 0. 021 at SNR (dB) -8. We saw that the value of 

LSTM, which is better than the other two methods, is as 

follows: which is 0,019 at SNR (dB) -8. 

 

Figure: 3 Comparative analysis of outage probability (P o) 

and SNR (dB). 
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We observe that the value of the proposed is better than the 

value of NOMA, which is as follows: The value of the proposed 

is better, which is 0. 46 at SNR (dB) -14, and the value of 

NOMA, which is 0. 38 at SNR (dB) -14. Which is less than 

proposed. 

 

Figure: 4 Comparative analysis of using user-1-proposed, 

user-1-NOMA, and user-2 proposed, user-2-NOMA, of 

techniques with rate (Mbps) and SNR (dB). 

We observe that the value of user 1 proposed and user 2 

proposed is better than user 1 NOMA and user 2 NOMA 

method. The value of user 1 proposed is 3.8 at SNR (dB) 19 

and the value of user 2 proposed is 3.8 at SNR (dB) 19. Same 

User 1 NOMA value SNR (dB) is 1.3 at 19 and User 2 NOMA 

value SNR (dB) is 0.8 at 19 which is less. 

 

We observe that the value of the proposed is better than the 

value of NOMA, which is as follows: The value of the proposed 

is better, which is 5 at SNR (dB) 20, and the value of NOMA, 

which is 2.2 at SNR (dB) 20, which is less than proposed. 

5. CONCLUSION & FUTURE WORK 
This paper introduces a novel deep learning-based algorithm 

designed for optimizing resource allocation in the NOMA 

scheme. The proposed approach focuses on improving 

efficiency in terms of energy utilization and reducing outage 

probability, which are critical performance metrics in modern 

wireless communication systems. The algorithm employs a 

mutual cascading Deep Neural Network (CDNN) framework, 

which integrates multiple deep learning models in a sequential 

manner to enhance feature extraction and decision-making 

processes. By leveraging this cascading architecture, the 

algorithm achieves a robust balance between computational 

complexity and accuracy, making it well-suited for dynamic 

and resource-intensive environments such as NOMA. 

Compared to existing algorithms, including Long Short-Term 

Memory (LSTM) networks and other deep learning models, the 

proposed CDNN-based approach demonstrates superior 

efficiency and performance. The mutual cascading framework 

not only enhances the adaptability of the model to varying user 

and channel conditions but also ensures better optimization of 

power and bandwidth allocation. Experimental results 

highlight the significant advantages of the proposed algorithm, 

including lower energy consumption, reduced outage 

probability, and improved overall system performance. These 

findings underline the potential of CDNN as a transformative 

approach for resource allocation in NOMA systems. 
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