
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

27

Hybrid ANN and Fireworks Algorithm for Real-Time

Software Reliability Prediction

Ivy Botchway
University of Mines and

Technology
Tarkwa, Ghana

Felix Larbi Aryeh
University of Mines and

Technology
Tarkwa, Ghana

Boniface Kayode Alese
Federal University of Technology

Akure, FUTA, Nigeria

ABSTRACT

Reliability is a critical factor for assessing software quality, as

it measures the software's ability to perform its intended

functions without failure. In recent years, research has focused

on developing more robust models for predicting software

reliability. This study explores a hybrid approach for software

reliability prediction by integrating Artificial Neural Networks

(ANN) with the Fireworks Algorithm (FWA) and ensemble

learning techniques. By leveraging FWA’s optimization

capabilities, the ANN’s weights and biases are fine-tuned, and

predictions are further refined using ensemble models

consisting of Random Forest and Decision Tree algorithms.

Using a real-time dataset of execution time and detected faults,

the hybrid model was trained and evaluated, achieving high

prediction accuracy, with the ensemble model yielding an R² of

0.972 and FWA optimization achieving an MSE of 0.0369 after

50 generations. The results demonstrate that combining ANN,

FWA, and ensemble learning can significantly improve

prediction accuracy and model reliability. Future work aims to

expand this approach by incorporating additional models,

exploring dynamic FWA tuning, and adapting the method

across various software environments.

General Terms

Fireworks Algorithm, Artificial Neural Network, Ensemble

Learning Technique, Random Forest, Decision Tree.

Keywords

Software reliability, Prediction model, Gaussian Mutation,
Real-Time Systems, Machine learning model.

1. INTRODUCTION
The increasing reliance on software for various human

activities has led to rapid growth in software development.

Governments and businesses adopt software due to its

efficiency and effectiveness, helping boost revenue. However,

researchers note that increased software usage correlates with a

higher likelihood of failures [2]. Given software's pivotal role

in providing a competitive edge, the need for reliable software

becomes critical in building trust between organizations and

their customers [4]. Reliability, as defined by the American

National Standards Institute (ANSI), is the ability of software

to function effectively within a specific environment and

timeframe without encountering breakdowns [19]. It includes

attributes such as freedom from failure, long lifespan, and ease

of repair, making it a crucial aspect of software quality [15][5].

Recently, Artificial Neural Networks (ANN) have gained

prominence in predicting software reliability. ANNs are

machine learning models inspired by the neural structure of the

human brain, consisting of interconnected artificial neurons.

These networks model complex relationships between inputs

and outputs and are trained using historical data. The learning

process continues until an optimal solution is achieved, making

ANNs particularly effective for prediction tasks.

To further enhance the prediction performance, this study

incorporates Ensemble Learning, a technique that combines

multiple predictive models such as Decision Tree, K-Nearest

Neighbor (KNN), Recurrent Neural Network (RNN), Random

Forest, Support Vector Machines (SVM), and Convolutional

Neural Network (CNN) to achieve better accuracy and

robustness [17]. This study uses Random Forest and Decision

Tree, both effective for dataset classification. Random Forest

improves accuracy by generating child nodes randomly and

selecting the most frequent classification results [14]. Decision

Tree, a popular supervised learning method, is an iterative top-

down approach with root, decision, and leaf nodes, where the

root node represents the dataset’s most predictive attribute [6].

By utilizing Ensemble Learning, the proposed approach

reduces variance, mitigates overfitting, and strengthens the

reliability predictions.

In addition, the Fireworks Algorithm (FWA), a recent

optimization technique based on swarm intelligence, plays a

critical role in optimizing the ANN models. The research

focuses on real-time systems as such systems highlight the

critical need for software reliability in time-sensitive

applications such as aerospace, medical devices, or

autonomous vehicles. Predicting reliability for these systems

involves dynamic and complex failure modes, providing an

interesting challenge for optimization algorithms like FWA.

FWA simulates the behavior of fireworks exploding in the

night sky, where the sky represents the solution space, and the

explosion represents the search for optimal solutions [3]. FWA

generates and evaluates random fireworks according to an

objective function [20]. Fireworks with better fitness values

create more sparks with smaller explosion amplitudes,

improving the chances of finding the best solution. The

Gaussian mutation operation introduces diversity to the

population after each explosion, and the next generation of

fireworks is selected based on performance. This iterative

process continues until the optimum solution is found.

This research proposes a novel methodology combining ANN,

FWA, and Ensemble Learning for software reliability

prediction. By leveraging the strengths of FWA in optimizing

ANN weights and biases, and enhancing performance through

ensemble techniques, the model aims to improve prediction

accuracy. The paper is structured as follows: Section II reviews

related work. Section III details the methodology for reliability

prediction, Section IV shows the implementation, Section V

discusses the experimental results, and Section VI concludes

the study and outlines future research directions.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

28

2. RELATED WORKS
Over the years, numerous software reliability growth models

have been proposed by researchers to improve the development

of reliable and high-quality software. In 1991, a study [11]

utilized a feedforward neural network to predict software

reliability growth. The researchers used real datasets from three

different software projects to compare the model’s

performance with existing reliability models. The findings

indicated that neural networks consistently performed well in

prediction tasks, with further validation through statistical

methods. The authors also suggested exploring the use of

recurrent neural networks in future research.

In 2006, another study [18] focused on software reliability

prediction using neural networks. The researchers trained their

model on real-world software failure data from the John Musa

Bell laboratory, employing a backpropagation algorithm to

develop a weighted combinational model. The analysis

demonstrated that the model could learn from software failure

history and adapt its weights when encountering new failures.

A 2012 study [3] proposed a neural network-based model for

software reliability prediction using a feedforward approach.

The input parameters were derived from software execution

time and encoded using exponential and logarithmic functions.

The model was tested on eighteen software failure datasets, and

the results demonstrated its efficiency and predictive accuracy.

In the same year, researchers [2] introduced a hybrid model

combining a neural network with a simulated annealing

algorithm for reliability prediction. Their results showed that

this hybrid approach was highly accurate in predicting software

failures.

In 2019, researchers [1] once again utilized a feedforward

neural network model to predict software reliability growth,

this time using datasets from various real-world software

projects. The model successfully predicted the future

cumulative faults of the software.

Research has also been done on the use of ensemble learning

for software reliability prediction. In 2009, research [18] was

conducted to develop a non-parametric software reliability

prediction system using neural network ensembles to address

the limitations of traditional parametric models, such as

nonhomogeneous Poisson process (NHPP) models. The

researchers explored how system architecture affects

performance and compared the ensemble approach to single

neural networks and NHPP models. The results indicated that

combining multiple neural networks significantly improves

predictability, offering a promising alternative to conventional

methods.

A 2024 study also [8] investigates software reliability

prediction through ensemble learning enhanced by random

hyperparameter optimization. It introduces a regression model

that utilizes various base learners, such as Ridge and Support

Vector Regressor, with Ridge serving as the combiner. The

study evaluates the model's performance against benchmark

datasets, showcasing its superior accuracy over existing models

by effectively tuning hyperparameters and minimizing bias and

variance. This approach aims to advance the predictability of

software reliability compared to traditional methods.

Another study [9] in 2024 investigates software reliability

prediction using ensemble learning techniques such as bagging,

boosting, and stacking. The model combines multiple machine

learning algorithms to predict software failures based on the

Mean Time Between Failures (MTBF) using Musa's dataset

and classifies software defects using NASA's dataset. The

study showcases the model's superior performance, achieving

94% prediction accuracy and 97% classification accuracy,

highlighting the effectiveness of ensemble methods in

improving the reliability of software prediction compared to

traditional approaches.

These studies collectively highlight that neural networks have

become a promising alternative for software reliability

prediction and modeling. Building on this, the current research

adopts the Fireworks Algorithm (FWA), an optimization

technique introduced in 2010 and applied across various fields
for optimizing the weights and biases of an Artificial Neural

Network (ANN), leveraging ensemble learning techniques to

further enhance software reliability prediction. This

combination significantly boosts prediction accuracy.

3. RESEARCH METHODOLOGY

3.1 Fireworks Algorithm
The Fireworks Algorithm (FWA) starts by generating initial

samples and selects the next generation of explosions. The

initial explosion occurs at a specified location, n, and sparks are

generated and evaluated based on their final positions. The

algorithm iterates until the optimal solution is found. If the

optimal location is not identified, new positions are selected

from the current sparks to generate the next set of explosions.
A flowchart of the operation of FWA is shown in Figure 1.

Fig. 1: Operation of Firework Algorithm

Each firework explosion produces a unique shape based on its

design. Hence, they possess unique explosive characteristics

depending on the set-off location. These characteristics include

a narrow explosion with few sparks and a wide explosion with

more sparks. According to [18], fireworks exhibit two

dominant behaviors: a well-designed firework produces a wide

explosion with densely centered sparks, while a poorly

designed one generates a narrow explosion with scattered

sparks as shown in Figure 2.

Start

Select the initial location, n

Set n fireworks at n positions

Record initial and final position of

generated sparks

Evaluate the attained positions

Is the optimal

position found?

End

Yes

No

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

29

Fig. 2: Behaviors of Fireworks

In the context of search algorithms, a "good" firework, as

illustrated in Figure 2a, suggests proximity to an optimal

solution due to the large number of sparks that can be used in

the search process. On the other hand, a "poor" firework, as

shown in Figure 2b, indicates that the search is further from the

optimal solution, with fewer and more dispersed sparks to

guide the search.

The research employed the following Fireworks Algorithm

(FWA) strategies to optimize the weights and biases.

3.1.1 Explosion Sparks Strategy
This strategy forms the core of the algorithm, generating sparks

around an exploding firework. It consists of three main

components: explosive strength, explosive amplitude, and

explosive displacement.

Explosive Strength: This technique assigns a

number of sparks to the firework, which is crucial for

evaluating its amplitude and optimal value. The sparks

generated by a firework, xi, are given by Equation (1):

max

max1

()
*

(())

i

i n

ii

y f x
s m

y f x

=

 − +
 =
 − +

 (1)

 Where:

 si = sparks generated by firework,

 m = a constant for the total number of generated sparks,

 ymax = worst fitness value in the current generation,

 f(xi) = fitness value for an individual firework, xi.

 Ꜫ = small value to prevent division by zero.

Explosive Amplitude: In optimization, the best fitness values

are typically found near the optimal solution. The explosive

amplitude adjusts the explosion’s width based on the current

fitness value, converging towards the optimal solution. It is

calculated using Equation (2):

min

min1

()
*

(())

^

A i

i n

ii

f x y
A

f x y

=

 − +
 =
 − +

 (2)

 Where:

 Ai = amplitude of each firework,

 Â = constant for maximum explosion amplitude,

 ymin = best fitness value,

 f(xi) = fitness value for an individual xi,

 Ꜫ = value to prevent zero-division errors.

Explosive Displacement: This phase generates

random values within the explosive amplitude range, ensuring

diverse exploration of the solution space.

3.1.2 Gaussian Mutation Sparks Strategy
The Gaussian mutation strategy increases population diversity

by generating additional sparks using the Gaussian distribution.

This introduces variation into the population, helping to avoid

local optima.

3.1.3 Mapping Strategy
The mapping strategy ensures that sparks generated near the

boundaries of the solution space do not do not build up outside

it. If a spark is outside the solution space, it is mapped back

within the boundaries using modular arithmetic. The boundary

constraints are defined by Equation (3):

 (3)

Where:

 xi = position of sparks outside the solution space,

 xmin = minimum boundary of the spark’s position,

 xmax = maximum boundary of the spark’s position,

 % = modular arithmetic operation.

3.1.4 Selection
Sparks for the next generation are selected from the explosive

spark strategy and the Gaussian spark strategy using a distance-

based selection method. The best spark is chosen first, followed

by the selection of remaining sparks based on their Euclidean

distance from each other, as calculated by Equation (4):

1
() (,)

K
i i jj

R x d x x
=

= (4)

Where:

 xi and xj = distance between one spark from the other,

 K = set of all sparks generated by both the explosive and

Gaussian strategies.

This selection process ensures a diverse set of sparks for the

next iteration, optimizing the search for the global solution.

3.2 Ensemble Learning
The ensemble learning paradigm, which integrates multiple

base learners, is a robust approach for enhancing prediction

accuracy. This section offers an overview of three widely

utilized ensemble methods applied in this research.

3.2.1 Artificial Neural Networks
The structure of an Artificial Neural Network (ANN) is multi-

layered, with the middle layer composed of several simple non-

linear functions that mimic the behavior of biological neurons.

ANNs can be visualized as a weighted directed graph, where

the artificial neurons serve as nodes, and the directed edges

between them represent the weights. Each neuron in an ANN,

as depicted in Figure 3, receives a set of inputs, x1, x2, ..., xn,

multiplies them by their corresponding weights, and produces

an output, O, as shown in Equation (5):

()1
.

n
i ii

O f w x= =
 (5)

min max min%()i ix x x x x= + −

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

30

Where:

 wi= weight,

 i and n = integers,

 f = activation function.

Fig. 3: Artificial Neuron

The weights in the network determine the strength of the

connections between neurons, and the activation function is

responsible for producing the final output. The neurons are

arranged in layers, with the perceptron being a single-layered

neuron. The number of neurons in the input layer corresponds

directly to the number of input attributes, while the number of

neurons in the output layer corresponds to the desired output

values.

The weights between neurons in ANN are calculated using

Equation (6):

wi = (xi *hi) + hi *Oi) (6)

Where:

 wi= weight,

 xi = input,

 hi = hidden layer output,

 Oi = final output.

This structure allows the network to process complex patterns

and make predictions by adjusting weights through training.

3.2.2 Decision Tree
Decision trees are widely used for decision-making and

problem-solving, with criteria acting as interconnected nodes

to form a tree-like structure [10]. It is organized hierarchically,

comprising a parent node and two child nodes [12]. Each

branch represents an attribute that must be satisfied to progress

to the next branch, ultimately leading to the leaf node. Each

parent node includes a split condition that identifies a predictor

and a cutoff value, aiming to minimize impurities in the child

nodes. The reduction in impurities resulting from this split is

known as information gain, which is evaluated using various

criteria. The tree-building process continues until a leaf node is

reached, which signifies the predicted class of the response

variable [7].

3.2.3 Random Forest
Random Forest (RF) is an algorithm that employs a recursive

binary split method to navigate through a tree structure for

classification and regression tasks [16]. This algorithm offers

several benefits, such as achieving relatively low error rates,

excellent classification performance, and the ability to

efficiently handle large training datasets while effectively

estimating missing data. The RF method enhances accuracy by

randomly generating child nodes for each node. It constructs a

decision tree with root nodes, internal nodes, and leaf nodes,

selecting attributes and data randomly according to established

guidelines. The root node sits at the top of the tree, while

internal nodes are branching points with at least two outputs

and one input. The leaf node, or terminal node, is the final node

with only one input and no outputs. The decision tree process

starts by calculating the entropy value to assess the impurity

level of the attributes and determine information gain [13].

4. EXPERIMENTAL DATA SETUP

4.1 Dataset
Analyzing software reliability growth models requires multiple

datasets, but collecting them can be difficult due to the

confidentiality surrounding software failure dataset. In this

research, we utilized a real-time dataset from a software project
represented as D in Equation (7), which reflects the

accumulated execution time and the corresponding number of

faults.

D = {(Ni + ti), i = 1, 2 …n} (7)

Where:

 Ni = accumulated number of software failures,

 ti = the execution time.

The dataset encapsulates the failure history of the software and

was tested over thirty weeks, with a cumulative debugging time

of 65.77 hours and 472 failures. The network was trained using

execution time as input and fault count as output. After training,

the network predicted the total number of faults based on the

final execution time during testing. This dataset is detailed in

Table 1.

Table 1. Dataset Used for Experiment

Weeks Execution Time of

CPU (hours)

Number of

detected Faults

1 4.67 35

2 6.02 76

3 9.56 89

4 11.25 106

5 13.79 117

6 16.23 125

7 18.67 179

8 21.08 192

9 22.26 203

10 25.40 248

11 27.49 283

12 29.43 291

13 31.51 325

14 34.41 337

15 37.96 343

16 39.34 349

17 41.70 358

18 41.96 372

19 44.89 379

20 45.76 385

21 46.72 397

22 48.99 401

23 54.78 413

24 56.93 419

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

31

25 57.84 420

26 58.57 429

27 60.05 442

28 60.91 449

29 63.78 458

30 65.77 472

4.2 Normalization, Pre-processing and

Splitting of Dataset
The data used for prediction was first cleaned and organized

into separate datasets, with 70% allocated for training and 30%

for testing. The dataset was then normalized using the min-max

normalization technique, as shown in Equation (8), to scale it

between 0 and 1:

-

-

min
norm

max min

X X
X =

X X
 (8)

Where:

 Xnorm = Normalized value,

 X = Original data value,

 Xmin = Minimum value,

 Xmax = Maximum value.

The model's input consists of the software's execution time,

while the output is the predicted number of failures. The

normalized dataset is detailed in Table 2.

Table 2. Normalized Dataset

Weeks Normalized

Execution Time

Normalized

Detected Faults

1 0.000000 0.000000

2 0.022095 0.093822

3 0.080033 0.123570

4 0.107692 0.162471

5 0.149264 0.187643

6 0.189198 0.205950

7 0.229133 0.329519

8 0.268576 0.359268

9 0.287889 0.384439

10 0.339280 0.487414

11 0.373486 0.567506

12 0.405237 0.585812

13 0.439280 0.663616

14 0.486743 0.691076

15 0.544845 0.704805

16 0.567430 0.718535

17 0.606056 0.739130

18 0.610311 0.771167

19 0.658265 0.787185

20 0.672504 0.800915

21 0.688216 0.828375

22 0.725368 0.837529

23 0.820131 0.864989

24 0.855319 0.878719

25 0.870213 0.881007

26 0.882160 0.901602

27 0.906383 0.931350

28 0.920458 0.947368

29 0.967430 0.967963

30 1.000000 1.000000

4.3 Implementation
The Artificial Neural Network (ANN) was configured with an

input neuron derived from the normalized dataset and an output

neuron for binary classification (0 or 1). The hidden layers used

the Rectified Linear Unit (ReLU) activation function to scale

outputs, while the output layer applied a linear function suitable

for regression tasks. The optimal number of hidden neurons

was determined experimentally, and the biases were set to

match the sum of hidden neurons and the output neuron. The

Decision Tree regressor model divided the data into branches

using decision rules, recursively partitioning the feature space

to predict the target variable. A random seed of 50 was

specified for consistent results. In the Random Forest regressor

model, the number of trees was set to 100, with a random seed

of 50 for reproducibility. Ensemble predictions from these

models were used as input for the Fireworks Algorithm (FWA),

which refined the model parameters. The maximum training

cycle was configured to randomly generate fireworks for the

first FWA generation, and the optimal location was calculated

to determine the amplitude and number of sparks. Gaussian

sparks were generated and evaluated, selecting the best ones for

the next generation until optimal weights and biases were

achieved. The algorithm for training FWA is shown in Table 3.

Table 3. Algorithm for Training FWA

Begin

Randomly produce first generation of fireworks

For i=1 to maximum generation of fireworks do

Calculate error;

End for

Set optimal location

For j=1 to maximum training cycle do

 For i=1 to maximum generation of fireworks

 Evaluate amplitude;

 Evaluate number of sparks;

 End for

Produce sparks using Gaussian distribution;

Evaluate sparks;

Select sparks for next explosion;

Produce new generation of fireworks;

End for

Return values;

End

5. RESULTS
The experimental results are illustrated in Figures 4 to 7 to

evaluate the performance of different predictive models based

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

32

on normalized detected faults plotted against normalized

execution time. The models assessed include Random Forest

Regression, Decision Tree Regression, and Artificial Neural

Networks (ANN), alongside an ensemble approach refined by

Fireworks Algorithm (FWA). The results demonstrate strong

predictive capabilities, as evidenced by the close alignment of

the red (predicted) and blue (actual) points in the graphs. This

alignment suggests that the models’ predictions are generally

accurate. However, a few gaps between actual and predicted

faults reveal some minor deviations, indicating slight

discrepancies in the model predictions.

Fig 4: Random Forest Regression

The random forest regression model achieved a Mean Absolute

Error (MAE) of 0.023, and a Mean Squared Error (MSE) of

0.0009575. The low MAE and MSE values reflect the model's

accuracy in predicting fault counts, with the MAE showing

that, on average, the predictions deviate by only 0.023 from the

actual values. Meanwhile, the low MSE value indicates

minimal squared differences between predicted and actual

values, emphasizing the model's precision in capturing fault

patterns. Together, these metrics confirm the Random Forest

model's effectiveness in accurately predicting software faults

based on normalized execution time, making it one of the most

reliable models in this study.

Fig 5: Decision Tree Regression

The decision tree regression model yielded a Mean Absolute

Error (MAE) of 0.0355 and a Mean Squared Error (MSE) of

0.001838, indicating good predictive accuracy. The MAE

suggests that predictions typically deviate from actual values

by about 0.036 normalized units. Although the MSE is slightly

higher than that of the Random Forest model, it remains low

overall, highlighting the model's reliability in predicting

software faults. While Decision Trees are known for their

simplicity, this model's performance demonstrates its

capability to handle the complexity of software fault prediction

effectively.

Fig 6: Artificial Neural Network

The artificial neural network (ANN) model achieved a Mean

Absolute Error (MAE) of 0.0269 and a Mean Squared Error

(MSE) of 0.001492, indicating strong predictive accuracy. The

MAE value shows that, on average, predictions differ from

actual values by only about 0.027 normalized fault units. The

low MSE further confirms the model's ability to minimize

significant errors in its predictions, reflecting the model's

consistency. These metrics collectively suggest that the ANN

model is effective in accurately forecasting software reliability,

making it a reliable option for forecasting software faults,

particularly in scenarios where complex relationships between

variables need to be captured.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

al
iz

ed
 D

et
ec

te
d

 F
au

lt
s

Normalized Execution Time

Random Forest Regression: Actual vs Predicted Faults

Actual Faults
Predicted Faults

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

al
iz

ed
 D

et
ec

te
d

 F
au

lt
s

Normalized Execution Time

Decision Tree Regression: Actual vs Predicted Faults

Actual Faults
Predicted Faults

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

al
iz

ed
 D

et
ec

te
d

 F
au

lt
s

Normalized Execution Time

Software Reliability Prediction: Actual vs Predicted

Actual
Predicted

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

33

Fig 7: R-squared for Ensemble models

The R-squared (R²) values for the random forest regression,

decision tree regression, artificial neural network (ANN), and

the ensemble model are 0.974, 0.950, 0.959, and 0.972,

respectively. This measures how well the model explains the

variance in the data. High R² values indicate that each model

can explain a substantial proportion of the variability in

detected faults based on execution time, with the random forest

regression and the ensemble model showing particularly strong

performance. An R² value of 0.974 for the random forest

regression, for instance, means that 97.4% of the variance in

detected faults is accounted for by the model, suggesting a high

level of accuracy and fit. The slight differences among the

models’ R² values indicate variations in their predictive

capabilities: while all models perform well, the random forest

and ensemble models capture the data patterns more precisely.

The decision tree model, with an R² of 0.950, performs slightly

less accurately, which may reflect its simpler structure

compared to the other methods. Overall, the high R² values

across these models confirm that the chosen ensemble and

individual methods are effective for fault prediction, and

combining them may yield a model with balanced strengths,

improving reliability and robustness in predictions.

The ensemble approach combines predictions from the

Random Forest, Decision Tree, and ANN models to create a

baseline prediction. These predictions then act as input for the

Fireworks Algorithm (FWA) to further refine the ensemble

results. The FWA further generates multiple sparks around the

ensemble’s baseline prediction while iteratively adjusting

parameters to minimize prediction errors. After 50 generations,

FWA achieved its best fitness, with an MSE of 0.0369 and an

optimal Normalized Execution Time of 0.6319. The FWA’s

refinement significantly enhances the ensemble model’s

accuracy, reducing discrepancies and ensuring a high level of

reliability in software fault prediction. By leveraging the

strengths of individual models and further enhancing

predictions through FWA, the ensemble approach

demonstrates its potential to deliver balanced, precise, and

robust predictions. This iterative refinement process shows the

effectiveness of combining machine learning models with

optimization algorithms for complex software reliability

forecasting.

6. CONCLUSION
The results demonstrate that ensemble learning, combining

Random Forest, Decision Tree, and Artificial Neural Network

(ANN), provides a strong baseline for predicting software

reliability by capturing patterns in execution time and fault

detection with high accuracy. The ensemble model achieved an

impressive R-squared (R²) value of 0.972, reflecting that it

explains 97.2% of the variance in detected faults. By applying

the Fireworks Algorithm (FWA) to further refine these

predictions, the model achieved even greater precision. FWA

optimized the execution time parameters, yielding a best fitness

with a Mean Squared Error (MSE) of 0.0369 at generation 50.

The optimal Normalized Execution Time of 0.6319 (equivalent

to approximately 311.15 in the original scale) indicates a

minimal deviation from actual fault values, highlighting the

effectiveness of this hybrid approach. Overall, integrating

ensemble learning with FWA provides a powerful tool for

accurate and reliable software fault prediction, making it highly

valuable for real-time software reliability analysis.

Future research will explore integrating additional machine

learning models into the ensemble, such as Support Vector

Machines or Gradient Boosting, to further enhance predictive

performance. Additionally, applying adaptive or dynamic

tuning of FWA parameters will improve optimization

efficiency, particularly for larger or more complex datasets.

Finally, expanding the approach to analyze different types of

software and fault scenarios will offer insights into its

generalizability and adaptability across various domains.

7. REFERENCES
[1] Arora, M. and Choudhary, S. 2019. Software Reliability

Prediction Using Neural Network.

[2] Benaddy, M. and Wakrim, M. 2012. Simulated Annealing

Neural Network for Software Failure Prediction,

International Journal of Software Engineering and Its

Applications, Vol. 6, No. 4, pp. 35-46.

[3] Bisi, M. and Goyal, N. K. 2012. Software Reliability

Prediction using Neural Network with Encoded Input,

International Journal of Computer Applications (0975 –

8887), Volume 47, No. 22.

[4] Botchway, I., Alese, B. K. and Agangiba, W. A. 2021.

“Evaluation of E-government Applications based on

ISO/IEC 9126 Model”, Annals Computer Science Series,

Vol. 19, No. 1, pp. 26-36.

[5] Choudhary, A., Baghel, A., and Sangwan, O. 2017.

Efficient parameter estimation of software reliability

growth models using harmony search. IET Software

11(6):286–291.

[6] Dutta, K. K., Sunny, S. A., Victor, A., Nathu, A. G.,

Ayman Habib, M., and Parashar, D. 2020. Kannada

alphabets recognition using decision tree and random

forest models. Proceedings of the 3rd International

Conference on Intelligent Sustainable Systems, ICISS

2020, 534–541.

[7] Guo, Y., Zhou, Y., Hu, X., and Cheng, W. 2019. Research

on recommendation of insurance products based on

random forest. Proceedings - 2019 International

Conference on Machine Learning, Big Data and Business

Intelligence, MLBDBI 2019, 308–311.

[8] Habtemariam, M. G., Mohapatra, S. K. and Seid, H. W.

2024. Software reliability prediction using ensemble

learning with random hyperparameter optimization,

Review of Computer Engineering Research, Vol. 11, No.

1, pp. 1-15.

[9] Habtemariam, M. G., Mohapatra, S. K., Seid, H. W.,

Prasad, S., Panigrahy, T. P. and Bal, P. K. 2024. Prediction

and classification of software reliability using ensemble

0.974

0.95

0.959

0.9725

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

Random

Forest

Decision Tree ANN Ensemble

R-squared

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.59, December 2024

34

learning, Journal of Integrated Science and Technology,

Vol. 13, No. 2.

[10] Jijo, B. T., and Abdulazeez, A. M. (2021). Classification

based on decision tree algorithm for machine learning.

Evaluation, 6(7).

[11] Karunanithi, N., Malaiya, Y. K., and Whitley, D. (1991),

Prediction of software reliability using neural networks. In

Proceedings of the Second IEEE International Symposium

on Software Reliability Engineering (pp. 124–130), 1991

[12] Lee, J., Sim, M. K. and Hong, J. S. 2024, Assessing

Decision Tree Stability: A Comprehensive Method for

Generating a Stable Decision Tree, IEEE Access, vol. 12,

pp. 90061-90072

[13] Putra, P. H., Purba, B. and Dalimunthe, Y. A. 2023,

Random Forest and decision tree algorithms for car price

prediction, Jurnal Matematika Dan Ilmu Pengetahuan

Alam LLDikti Wilayah (JUMPA), Vol. 3, No. 2, pp. 81-

89.

[14] Saadah, S., and Salsabila, H. 2021. Prediksi Harga Ponsel

Menggunakan Metode Random Forest. Jurnal Komputer

Terapan, 7(1), 24–32.

[15] Sahu, K. and Srivastava, R. K. 2019. Revisiting Software

Reliability

[16] Smarra, F., Di Girolamo, G. D., De Iuliis, V., Jain, A.,

Mangharam, R., and D’Innocenzo, A. 2020. Data-driven

switching modeling for mpc using regression trees and

random forests. Nonlinear Analysis: Hybrid Systems, 36,

100882.

[17] Sotarjua, L. M., and Santoso, D. B. 2022. Perbandingan

Algoritma Knn, Decision Tree, Dan Random Forest Pada

Data Imbalanced Class Untuk Klasifikasi Promosi

Karyawan. Informatika Sains Dan, 7(2), 192–200.

[18] Su, Y.-S., and Huang, C.-Y. 2006. Neural-network-based

approaches for software reliability estimation using

dynamic weighted combinational models. Journal of

Systems and Software, 80(4), 606–615

[19] Zheng, J. 2009, Predicting software reliability with neural

network ensembles, Expert Systems with Applications,

Vol. 36, pp. 2116–2122

[20] Zhiwei, X., Kai, Z., Xin, X. and Juanjuan, H. 2020, A

Firework Algorithm Based on Transfer Spark for

Evolutionary Multitasking.

IJCATM : www.ijcaonline.org

