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ABSTRACT 

Reliability is a critical factor for assessing software quality, as 

it measures the software's ability to perform its intended 

functions without failure. In recent years, research has focused 

on developing more robust models for predicting software 

reliability. This study explores a hybrid approach for software 

reliability prediction by integrating Artificial Neural Networks 

(ANN) with the Fireworks Algorithm (FWA) and ensemble 

learning techniques. By leveraging FWA’s optimization 

capabilities, the ANN’s weights and biases are fine-tuned, and 

predictions are further refined using ensemble models 

consisting of Random Forest and Decision Tree algorithms. 

Using a real-time dataset of execution time and detected faults, 

the hybrid model was trained and evaluated, achieving high 

prediction accuracy, with the ensemble model yielding an R² of 

0.972 and FWA optimization achieving an MSE of 0.0369 after 

50 generations. The results demonstrate that combining ANN, 

FWA, and ensemble learning can significantly improve 

prediction accuracy and model reliability. Future work aims to 

expand this approach by incorporating additional models, 

exploring dynamic FWA tuning, and adapting the method 

across various software environments.   

General Terms 

Fireworks Algorithm, Artificial Neural Network, Ensemble 

Learning Technique, Random Forest, Decision Tree.   

Keywords 
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1. INTRODUCTION 
The increasing reliance on software for various human 

activities has led to rapid growth in software development. 

Governments and businesses adopt software due to its 

efficiency and effectiveness, helping boost revenue. However, 

researchers note that increased software usage correlates with a 

higher likelihood of failures [2]. Given software's pivotal role 

in providing a competitive edge, the need for reliable software 

becomes critical in building trust between organizations and 

their customers [4]. Reliability, as defined by the American 

National Standards Institute (ANSI), is the ability of software 

to function effectively within a specific environment and 

timeframe without encountering breakdowns [19]. It includes 

attributes such as freedom from failure, long lifespan, and ease 

of repair, making it a crucial aspect of software quality [15][5]. 

Recently, Artificial Neural Networks (ANN) have gained 

prominence in predicting software reliability. ANNs are 

machine learning models inspired by the neural structure of the 

human brain, consisting of interconnected artificial neurons. 

These networks model complex relationships between inputs 

and outputs and are trained using historical data. The learning 

process continues until an optimal solution is achieved, making 

ANNs particularly effective for prediction tasks. 

To further enhance the prediction performance, this study 

incorporates Ensemble Learning, a technique that combines 

multiple predictive models such as Decision Tree, K-Nearest 

Neighbor (KNN), Recurrent Neural Network (RNN), Random 

Forest, Support Vector Machines (SVM), and Convolutional 

Neural Network (CNN) to achieve better accuracy and 

robustness [17]. This study uses Random Forest and Decision 

Tree, both effective for dataset classification. Random Forest 

improves accuracy by generating child nodes randomly and 

selecting the most frequent classification results [14]. Decision 

Tree, a popular supervised learning method, is an iterative top-

down approach with root, decision, and leaf nodes, where the 

root node represents the dataset’s most predictive attribute [6]. 

By utilizing Ensemble Learning, the proposed approach 

reduces variance, mitigates overfitting, and strengthens the 

reliability predictions. 

In addition, the Fireworks Algorithm (FWA), a recent 

optimization technique based on swarm intelligence, plays a 

critical role in optimizing the ANN models. The research 

focuses on real-time systems as such systems highlight the 

critical need for software reliability in time-sensitive 

applications such as aerospace, medical devices, or 

autonomous vehicles. Predicting reliability for these systems 

involves dynamic and complex failure modes, providing an 

interesting challenge for optimization algorithms like FWA. 

FWA simulates the behavior of fireworks exploding in the 

night sky, where the sky represents the solution space, and the 

explosion represents the search for optimal solutions [3]. FWA 

generates and evaluates random fireworks according to an 

objective function [20]. Fireworks with better fitness values 

create more sparks with smaller explosion amplitudes, 

improving the chances of finding the best solution. The 

Gaussian mutation operation introduces diversity to the 

population after each explosion, and the next generation of 

fireworks is selected based on performance. This iterative 

process continues until the optimum solution is found. 

This research proposes a novel methodology combining ANN, 

FWA, and Ensemble Learning for software reliability 

prediction. By leveraging the strengths of FWA in optimizing 

ANN weights and biases, and enhancing performance through 

ensemble techniques, the model aims to improve prediction 

accuracy. The paper is structured as follows: Section II reviews 

related work. Section III details the methodology for reliability 

prediction, Section IV shows the implementation, Section V 

discusses the experimental results, and Section VI concludes 

the study and outlines future research directions.  
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2. RELATED WORKS 
Over the years, numerous software reliability growth models 

have been proposed by researchers to improve the development 

of reliable and high-quality software. In 1991, a study [11] 

utilized a feedforward neural network to predict software 

reliability growth. The researchers used real datasets from three 

different software projects to compare the model’s 

performance with existing reliability models. The findings 

indicated that neural networks consistently performed well in 

prediction tasks, with further validation through statistical 

methods. The authors also suggested exploring the use of 

recurrent neural networks in future research.  

In 2006, another study [18] focused on software reliability 

prediction using neural networks. The researchers trained their 

model on real-world software failure data from the John Musa 

Bell laboratory, employing a backpropagation algorithm to 

develop a weighted combinational model. The analysis 

demonstrated that the model could learn from software failure 

history and adapt its weights when encountering new failures.  

A 2012 study [3] proposed a neural network-based model for 

software reliability prediction using a feedforward approach. 

The input parameters were derived from software execution 

time and encoded using exponential and logarithmic functions. 

The model was tested on eighteen software failure datasets, and 

the results demonstrated its efficiency and predictive accuracy. 

In the same year, researchers [2] introduced a hybrid model 

combining a neural network with a simulated annealing 

algorithm for reliability prediction. Their results showed that 

this hybrid approach was highly accurate in predicting software 

failures.  

In 2019, researchers [1] once again utilized a feedforward 

neural network model to predict software reliability growth, 

this time using datasets from various real-world software 

projects. The model successfully predicted the future 

cumulative faults of the software. 

Research has also been done on the use of ensemble learning 

for software reliability prediction. In 2009, research [18] was 

conducted to develop a non-parametric software reliability 

prediction system using neural network ensembles to address 

the limitations of traditional parametric models, such as 

nonhomogeneous Poisson process (NHPP) models. The 

researchers explored how system architecture affects 

performance and compared the ensemble approach to single 

neural networks and NHPP models. The results indicated that 

combining multiple neural networks significantly improves 

predictability, offering a promising alternative to conventional 

methods.  

A 2024 study also [8] investigates software reliability 

prediction through ensemble learning enhanced by random 

hyperparameter optimization. It introduces a regression model 

that utilizes various base learners, such as Ridge and Support 

Vector Regressor, with Ridge serving as the combiner. The 

study evaluates the model's performance against benchmark 

datasets, showcasing its superior accuracy over existing models 

by effectively tuning hyperparameters and minimizing bias and 

variance. This approach aims to advance the predictability of 

software reliability compared to traditional methods.  

Another study [9] in 2024 investigates software reliability 

prediction using ensemble learning techniques such as bagging, 

boosting, and stacking. The model combines multiple machine 

learning algorithms to predict software failures based on the 

Mean Time Between Failures (MTBF) using Musa's dataset 

and classifies software defects using NASA's dataset. The 

study showcases the model's superior performance, achieving 

94% prediction accuracy and 97% classification accuracy, 

highlighting the effectiveness of ensemble methods in 

improving the reliability of software prediction compared to 

traditional approaches. 

These studies collectively highlight that neural networks have 

become a promising alternative for software reliability 

prediction and modeling. Building on this, the current research 

adopts the Fireworks Algorithm (FWA), an optimization 

technique introduced in 2010 and applied across various fields 
for optimizing the weights and biases of an Artificial Neural 

Network (ANN), leveraging ensemble learning techniques to 

further enhance software reliability prediction. This 

combination significantly boosts prediction accuracy. 

3. RESEARCH METHODOLOGY  

3.1  Fireworks Algorithm 
The Fireworks Algorithm (FWA) starts by generating initial 

samples and selects the next generation of explosions. The 

initial explosion occurs at a specified location, n, and sparks are 

generated and evaluated based on their final positions. The 

algorithm iterates until the optimal solution is found. If the 

optimal location is not identified, new positions are selected 

from the current sparks to generate the next set of explosions. 
A flowchart of the operation of FWA is shown in Figure 1. 

 

Fig. 1: Operation of Firework Algorithm 

Each firework explosion produces a unique shape based on its 

design. Hence, they possess unique explosive characteristics 

depending on the set-off location. These characteristics include 

a narrow explosion with few sparks and a wide explosion with 

more sparks. According to [18], fireworks exhibit two 

dominant behaviors: a well-designed firework produces a wide 

explosion with densely centered sparks, while a poorly 

designed one generates a narrow explosion with scattered 

sparks as shown in Figure 2. 
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Fig. 2: Behaviors of Fireworks 

In the context of search algorithms, a "good" firework, as 

illustrated in Figure 2a, suggests proximity to an optimal 

solution due to the large number of sparks that can be used in 

the search process. On the other hand, a "poor" firework, as 

shown in Figure 2b, indicates that the search is further from the 

optimal solution, with fewer and more dispersed sparks to 

guide the search. 

The research employed the following Fireworks Algorithm 

(FWA) strategies to optimize the weights and biases. 

3.1.1 Explosion Sparks Strategy 
This strategy forms the core of the algorithm, generating sparks 

around an exploding firework. It consists of three main 

components: explosive strength, explosive amplitude, and 

explosive displacement. 

Explosive Strength: This technique assigns a 

number of sparks to the firework, which is crucial for 

evaluating its amplitude and optimal value. The sparks 

generated by a firework, xi, are given by Equation (1): 
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    Where: 

        si = sparks generated by firework, 

        m = a constant for the total number of generated sparks, 

        ymax  = worst fitness value in the current generation, 

        f(xi) = fitness value for an individual firework, xi. 

        Ꜫ = small value to prevent division by zero. 

Explosive Amplitude: In optimization, the best fitness values 

are typically found near the optimal solution. The explosive 

amplitude adjusts the explosion’s width based on the current 

fitness value, converging towards the optimal solution. It is 

calculated using Equation (2): 
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    Where: 

        Ai = amplitude of each firework, 

        Â = constant for maximum explosion amplitude, 

        ymin = best fitness value, 

        f(xi) = fitness value for an individual xi, 

        Ꜫ = value to prevent zero-division errors. 

Explosive Displacement: This phase generates 

random values within the explosive amplitude range, ensuring 

diverse exploration of the solution space. 

3.1.2 Gaussian Mutation Sparks Strategy 
The Gaussian mutation strategy increases population diversity 

by generating additional sparks using the Gaussian distribution. 

This introduces variation into the population, helping to avoid 

local optima. 

3.1.3 Mapping Strategy 
The mapping strategy ensures that sparks generated near the 

boundaries of the solution space do not do not build up outside 

it. If a spark is outside the solution space, it is mapped back 

within the boundaries using modular arithmetic. The boundary 

constraints are defined by Equation (3): 

 (3) 

Where: 

    xi = position of sparks outside the solution space, 

    xmin  = minimum boundary of the spark’s position, 

    xmax = maximum boundary of the spark’s position, 

    % = modular arithmetic operation. 

3.1.4 Selection 
Sparks for the next generation are selected from the explosive 

spark strategy and the Gaussian spark strategy using a distance-

based selection method. The best spark is chosen first, followed 

by the selection of remaining sparks based on their Euclidean 

distance from each other, as calculated by Equation (4): 

1
( ) ( , )

K
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=
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Where: 

    xi and xj = distance between one spark from the other, 

    K = set of all sparks generated by both the explosive and 

Gaussian strategies. 

This selection process ensures a diverse set of sparks for the 

next iteration, optimizing the search for the global solution. 

3.2 Ensemble Learning 
The ensemble learning paradigm, which integrates multiple 

base learners, is a robust approach for enhancing prediction 

accuracy. This section offers an overview of three widely 

utilized ensemble methods applied in this research. 

3.2.1 Artificial Neural Networks 
The structure of an Artificial Neural Network (ANN) is multi-

layered, with the middle layer composed of several simple non-

linear functions that mimic the behavior of biological neurons. 

ANNs can be visualized as a weighted directed graph, where 

the artificial neurons serve as nodes, and the directed edges 

between them represent the weights. Each neuron in an ANN, 

as depicted in Figure 3, receives a set of inputs, x1, x2, ..., xn, 

multiplies them by their corresponding weights, and produces 

an output, O, as shown in Equation (5): 
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Where: 

    wi= weight, 

    i and n = integers, 

    f = activation function. 

 

Fig. 3: Artificial Neuron 

The weights in the network determine the strength of the 

connections between neurons, and the activation function is 

responsible for producing the final output. The neurons are 

arranged in layers, with the perceptron being a single-layered 

neuron. The number of neurons in the input layer corresponds 

directly to the number of input attributes, while the number of 

neurons in the output layer corresponds to the desired output 

values. 

The weights between neurons in ANN are calculated using 

Equation (6): 

wi = (xi *hi) + hi *Oi)   (6) 

Where: 

    wi= weight, 

    xi = input, 

    hi = hidden layer output, 

    Oi = final output. 

This structure allows the network to process complex patterns 

and make predictions by adjusting weights through training. 

 

3.2.2 Decision Tree 
Decision trees are widely used for decision-making and 

problem-solving, with criteria acting as interconnected nodes 

to form a tree-like structure [10]. It is organized hierarchically, 

comprising a parent node and two child nodes [12]. Each 

branch represents an attribute that must be satisfied to progress 

to the next branch, ultimately leading to the leaf node. Each 

parent node includes a split condition that identifies a predictor 

and a cutoff value, aiming to minimize impurities in the child 

nodes. The reduction in impurities resulting from this split is 

known as information gain, which is evaluated using various 

criteria. The tree-building process continues until a leaf node is 

reached, which signifies the predicted class of the response 

variable [7]. 

3.2.3 Random Forest 
Random Forest (RF) is an algorithm that employs a recursive 

binary split method to navigate through a tree structure for 

classification and regression tasks [16]. This algorithm offers 

several benefits, such as achieving relatively low error rates, 

excellent classification performance, and the ability to 

efficiently handle large training datasets while effectively 

estimating missing data. The RF method enhances accuracy by 

randomly generating child nodes for each node. It constructs a 

decision tree with root nodes, internal nodes, and leaf nodes, 

selecting attributes and data randomly according to established 

guidelines. The root node sits at the top of the tree, while 

internal nodes are branching points with at least two outputs 

and one input. The leaf node, or terminal node, is the final node 

with only one input and no outputs. The decision tree process 

starts by calculating the entropy value to assess the impurity 

level of the attributes and determine information gain [13]. 

4. EXPERIMENTAL DATA SETUP 

4.1 Dataset 
Analyzing software reliability growth models requires multiple 

datasets, but collecting them can be difficult due to the 

confidentiality surrounding software failure dataset. In this 

research, we utilized a real-time dataset from a software project 
represented as D in Equation (7), which reflects the 

accumulated execution time and the corresponding number of 

faults.  

D = {(Ni + ti), i = 1, 2 …n}   (7) 

Where: 

   Ni = accumulated number of software failures,  

   ti = the execution time. 

The dataset encapsulates the failure history of the software and 

was tested over thirty weeks, with a cumulative debugging time 

of 65.77 hours and 472 failures. The network was trained using 

execution time as input and fault count as output. After training, 

the network predicted the total number of faults based on the 

final execution time during testing. This dataset is detailed in 

Table 1. 

Table 1. Dataset Used for Experiment 

Weeks Execution Time of 

CPU (hours) 

Number of 

detected Faults 

1 4.67 35 

2 6.02 76 

3 9.56 89 

4 11.25 106 

5 13.79 117 

6 16.23 125 

7 18.67 179 

8 21.08 192 

9 22.26 203 

10 25.40 248 

11 27.49 283 

12 29.43 291 

13 31.51 325 

14 34.41 337 

15 37.96 343 

16 39.34 349 

17 41.70 358 

18 41.96 372 

19 44.89 379 

20 45.76 385 

21 46.72 397 

22 48.99 401 

23 54.78 413 

24 56.93 419 
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25 57.84 420 

26 58.57 429 

27 60.05 442 

28 60.91 449 

29 63.78 458 

30 65.77 472 

 

4.2 Normalization, Pre-processing and 

Splitting of Dataset 
The data used for prediction was first cleaned and organized 

into separate datasets, with 70% allocated for training and 30% 

for testing. The dataset was then normalized using the min-max 

normalization technique, as shown in Equation (8), to scale it 

between 0 and 1: 

-

-

min
norm

max min

X X
X =

X X
   (8) 

Where: 

    Xnorm = Normalized value, 

    X = Original data value, 

    Xmin = Minimum value, 

    Xmax = Maximum value. 

The model's input consists of the software's execution time, 

while the output is the predicted number of failures. The 

normalized dataset is detailed in Table 2. 

Table 2. Normalized Dataset  

Weeks Normalized 

Execution Time   

Normalized 

Detected Faults 

1 0.000000                     0.000000                     

2 0.022095                     0.093822 

3 0.080033                     0.123570 

4 0.107692                     0.162471 

5 0.149264                     0.187643 

6 0.189198                     0.205950 

7 0.229133                     0.329519 

8 0.268576                     0.359268 

9 0.287889                     0.384439 

10 0.339280                     0.487414 

11 0.373486                     0.567506 

12 0.405237                     0.585812 

13 0.439280                     0.663616 

14 0.486743                     0.691076 

15 0.544845                     0.704805 

16 0.567430                     0.718535 

17 0.606056                     0.739130 

18 0.610311                     0.771167 

19 0.658265                     0.787185 

20 0.672504                     0.800915 

21 0.688216                     0.828375 

22 0.725368                     0.837529 

23 0.820131                     0.864989 

24 0.855319                     0.878719 

25 0.870213                     0.881007 

26 0.882160                     0.901602 

27 0.906383                     0.931350 

28 0.920458                     0.947368 

29 0.967430                     0.967963 

30 1.000000                     1.000000                     

 

4.3 Implementation 
The Artificial Neural Network (ANN) was configured with an 

input neuron derived from the normalized dataset and an output 

neuron for binary classification (0 or 1). The hidden layers used 

the Rectified Linear Unit (ReLU) activation function to scale 

outputs, while the output layer applied a linear function suitable 

for regression tasks. The optimal number of hidden neurons 

was determined experimentally, and the biases were set to 

match the sum of hidden neurons and the output neuron. The 

Decision Tree regressor model divided the data into branches 

using decision rules, recursively partitioning the feature space 

to predict the target variable. A random seed of 50 was 

specified for consistent results. In the Random Forest regressor 

model, the number of trees was set to 100, with a random seed 

of 50 for reproducibility. Ensemble predictions from these 

models were used as input for the Fireworks Algorithm (FWA), 

which refined the model parameters. The maximum training 

cycle was configured to randomly generate fireworks for the 

first FWA generation, and the optimal location was calculated 

to determine the amplitude and number of sparks. Gaussian 

sparks were generated and evaluated, selecting the best ones for 

the next generation until optimal weights and biases were 

achieved. The algorithm for training FWA is shown in Table 3. 

Table 3. Algorithm for Training FWA 

Begin 

Randomly produce first generation of fireworks 

For i=1 to maximum generation of fireworks do 

Calculate error; 

End for 

Set optimal location 

For j=1 to maximum training cycle do 

       For i=1 to maximum generation of fireworks 

              Evaluate amplitude; 

              Evaluate number of sparks; 

       End for 

Produce sparks using Gaussian distribution; 

Evaluate sparks; 

Select sparks for next explosion; 

Produce new generation of fireworks; 

End for 

Return values; 

End 

 

5. RESULTS  
The experimental results are illustrated in Figures 4 to 7 to 

evaluate the performance of different predictive models based 
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on normalized detected faults plotted against normalized 

execution time. The models assessed include Random Forest 

Regression, Decision Tree Regression, and Artificial Neural 

Networks (ANN), alongside an ensemble approach refined by 

Fireworks Algorithm (FWA). The results demonstrate strong 

predictive capabilities, as evidenced by the close alignment of 

the red (predicted) and blue (actual) points in the graphs. This 

alignment suggests that the models’ predictions are generally 

accurate. However, a few gaps between actual and predicted 

faults reveal some minor deviations, indicating slight 

discrepancies in the model predictions. 

 

Fig 4: Random Forest Regression 

The random forest regression model achieved a Mean Absolute 

Error (MAE) of 0.023, and a Mean Squared Error (MSE) of 

0.0009575. The low MAE and MSE values reflect the model's 

accuracy in predicting fault counts, with the MAE showing 

that, on average, the predictions deviate by only 0.023 from the 

actual values. Meanwhile, the low MSE value indicates 

minimal squared differences between predicted and actual 

values, emphasizing the model's precision in capturing fault 

patterns. Together, these metrics confirm the Random Forest 

model's effectiveness in accurately predicting software faults 

based on normalized execution time, making it one of the most 

reliable models in this study. 

 

Fig 5: Decision Tree Regression 

The decision tree regression model yielded a Mean Absolute 

Error (MAE) of 0.0355 and a Mean Squared Error (MSE) of 

0.001838, indicating good predictive accuracy. The MAE 

suggests that predictions typically deviate from actual values 

by about 0.036 normalized units. Although the MSE is slightly 

higher than that of the Random Forest model, it remains low 

overall, highlighting the model's reliability in predicting 

software faults. While Decision Trees are known for their 

simplicity, this model's performance demonstrates its 

capability to handle the complexity of software fault prediction 

effectively. 

 

 

Fig 6: Artificial Neural Network 

The artificial neural network (ANN) model achieved a Mean 

Absolute Error (MAE) of 0.0269 and a Mean Squared Error 

(MSE) of 0.001492, indicating strong predictive accuracy. The 

MAE value shows that, on average, predictions differ from 

actual values by only about 0.027 normalized fault units. The 

low MSE further confirms the model's ability to minimize 

significant errors in its predictions, reflecting the model's 

consistency. These metrics collectively suggest that the ANN 

model is effective in accurately forecasting software reliability, 

making it a reliable option for forecasting software faults, 

particularly in scenarios where complex relationships between 

variables need to be captured. 
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Fig 7: R-squared for Ensemble models 

The R-squared (R²) values for the random forest regression, 

decision tree regression, artificial neural network (ANN), and 

the ensemble model are 0.974, 0.950, 0.959, and 0.972, 

respectively. This measures how well the model explains the 

variance in the data. High R² values indicate that each model 

can explain a substantial proportion of the variability in 

detected faults based on execution time, with the random forest 

regression and the ensemble model showing particularly strong 

performance. An R² value of 0.974 for the random forest 

regression, for instance, means that 97.4% of the variance in 

detected faults is accounted for by the model, suggesting a high 

level of accuracy and fit. The slight differences among the 

models’ R² values indicate variations in their predictive 

capabilities: while all models perform well, the random forest 

and ensemble models capture the data patterns more precisely. 

The decision tree model, with an R² of 0.950, performs slightly 

less accurately, which may reflect its simpler structure 

compared to the other methods. Overall, the high R² values 

across these models confirm that the chosen ensemble and 

individual methods are effective for fault prediction, and 

combining them may yield a model with balanced strengths, 

improving reliability and robustness in predictions. 

The ensemble approach combines predictions from the 

Random Forest, Decision Tree, and ANN models to create a 

baseline prediction. These predictions then act as input for the 

Fireworks Algorithm (FWA) to further refine the ensemble 

results. The FWA further generates multiple sparks around the 

ensemble’s baseline prediction while iteratively adjusting 

parameters to minimize prediction errors. After 50 generations, 

FWA achieved its best fitness, with an MSE of 0.0369 and an 

optimal Normalized Execution Time of 0.6319. The FWA’s 

refinement significantly enhances the ensemble model’s 

accuracy, reducing discrepancies and ensuring a high level of 

reliability in software fault prediction. By leveraging the 

strengths of individual models and further enhancing 

predictions through FWA, the ensemble approach 

demonstrates its potential to deliver balanced, precise, and 

robust predictions. This iterative refinement process shows the 

effectiveness of combining machine learning models with 

optimization algorithms for complex software reliability 

forecasting. 

6. CONCLUSION 
The results demonstrate that ensemble learning, combining 

Random Forest, Decision Tree, and Artificial Neural Network 

(ANN), provides a strong baseline for predicting software 

reliability by capturing patterns in execution time and fault 

detection with high accuracy. The ensemble model achieved an 

impressive R-squared (R²) value of 0.972, reflecting that it 

explains 97.2% of the variance in detected faults. By applying 

the Fireworks Algorithm (FWA) to further refine these 

predictions, the model achieved even greater precision. FWA 

optimized the execution time parameters, yielding a best fitness 

with a Mean Squared Error (MSE) of 0.0369 at generation 50. 

The optimal Normalized Execution Time of 0.6319 (equivalent 

to approximately 311.15 in the original scale) indicates a 

minimal deviation from actual fault values, highlighting the 

effectiveness of this hybrid approach. Overall, integrating 

ensemble learning with FWA provides a powerful tool for 

accurate and reliable software fault prediction, making it highly 

valuable for real-time software reliability analysis. 

Future research will explore integrating additional machine 

learning models into the ensemble, such as Support Vector 

Machines or Gradient Boosting, to further enhance predictive 

performance. Additionally, applying adaptive or dynamic 

tuning of FWA parameters will improve optimization 

efficiency, particularly for larger or more complex datasets. 

Finally, expanding the approach to analyze different types of 

software and fault scenarios will offer insights into its 

generalizability and adaptability across various domains. 
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