
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.58, December 2024

Enhancing Kubernetes Security: Securing Workloads
and Optimizing Role-based Access Control

Sudheer Amgothu
Technology Professional,

Department of Computer Science,
Pega Systems Inc, USA

7 Gorham St unit 18 Chelmsford MA 01924 USA

Giridhar Kankanala
Technology Professional,

Department of Computer Science, SAP, USA
2532 Balsam Cv Rd, Naperville, IL 60563 USA

ABSTRACT
Kubernetes is a powerful platform for automating the deployment,
scaling and management of integrated applications. But with grow-
ing usage comes increased security concerns, especially in multi-
tenant environments. This study examines two key aspects of Ku-
bernetes security: workload stabilization and role-based access
control (RBAC) optimization. We focus on the vulnerabilities of
Kubernetes workloads and put security measures in place to pro-
tect embedded applications. In addition, we will examine the im-
plementation of RBAC in Kubernetes resource access control and
show possible misconfigurations and their risks. Our findings show
that a combination of strict security policies and proper RBAC con-
figuration can mitigate many common security threats in Kuber-
netes clusters.

Keywords
Kubernetes, RBAC, PODS, Security

1. INTRODUCTION
Kubernetes (K8s) has become a de facto standard for containeriza-
tion, and its use in production environments has been on the rise.
From large enterprises to smaller DevOps teams, Kubernetes can
efficiently deploy, scale and manage embedded applications. But as
adoption increases, so do security risks, especially when it comes
to Kubernetes workloads and policy-based access control (RBAC).
The rapid growth of Kubernetes has led to an increasing number
of vulnerabilities, seen in incidents where misconfigurations and
workloads have resulted in compromised data and vulnerable envi-
ronments ([6]).

1.1 Securing Kubernetes Workloads
A Kubernetes workload refers to an application running in a con-
tainer, organized and managed by Kubernetes. While Kubernetes
simplifies application management, these workloads present many
challenges due to its distributed nature and dynamic environment.
Key security concerns include segregation of duties, vulnerabil-
ity management, unauthorized access, and disclosure of sensitive
data ([10]). Ensuring the confidentiality, integrity and availability
of workloads is critical to preventing breaches and attacks such

as privilege escalation, container evasion and man-in-the-middle
attacks. These attacks are more likely in complex environments
where microservices and workloads interact, creating a wider at-
tack surface ([12]).

1.2 Role-Based Access Control (RBAC)
RBAC is a fundamental part of the Kubernetes security model that
manages resources in a cluster. Kubernetes provides a robust RBAC
mechanism to control permissions, but misconfiguration can lead
to excessive permissions and an increased risk of security breaches.
Research shows that excessive RBAC privileges are one of the main
causes of increased privileged and unauthorized access to Kuber-
netes resources. Reducing the scope of RBAC permissions to the
minimum necessary for each job is important to the principle of
least authority, which is violated in large-scale clusters where jobs
grow rapidly and inappropriate management ([11]).

1.3 Existing Research Gaps
Although a lot of research has been conducted on the general secu-
rity of Kubernetes, there is still a gap in the practical implementa-
tion of efficient RBAC and dynamic performance security between
multi-tenant clusters ([7]). Current literature often deals with secu-
rity issues in isolated or conceptual contexts, without fully examin-
ing real-world applications in manufacturing environments that are
increasingly work. Additionally, much research on reducing RBAC
approvals at scale while maintaining operational efficiency is lim-
ited. There is also little attention to automated tools that can iden-
tify and mitigate RBAC configurations before they lead to security
incidents ([8]).

1.4 Research Gap
Despite the growing popularity of service mesh technologies, there
remains limited empirical research on their performance and scala-
bility when applied to large-scale Kubernetes deployments. [5] ar-
gue that while service meshes like Istio and Linkerd provide criti-
cal features for securing and managing microservices, their impact
on system performance (such as increased latency, resource con-
sumption, and operational overhead) is often not well-understood.
Moreover, the trade-offs between using a feature-rich but resource-

11



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.58, December 2024

intensive service mesh (like Istio) versus a lightweight but less
comprehensive one (like Linkerd) require further investigation.
Additionally, most of the existing research focuses on small-scale
benchmarks that do not represent real-world production workloads.
There is a need for more comprehensive studies that evaluate how
service meshes impact microservices performance in diverse work-
loads and environments, especially in terms of latency, throughput,
resource consumption, and operational complexity.

1.5 Research Objectives
This research aims to address these gaps by:

—Investigating the security challenges of Kubernetes workloads,
especially in multi-tenant clusters.

—Establish a mechanism for implementing good RBAC, and en-
sure that authorizations are minimized while maintaining perfor-
mance.

—Evaluate security tools and practices that can improve the secu-
rity of Kubernetes workloads, such as automated vulnerability
scanning and job isolation mechanisms ([4]).

—Provide a comparative analysis of the performance and security
implications of implementing RBAC in a live Kubernetes envi-
ronment ([3].

By focusing on these objectives, this paper aims to provide a holis-
tic framework for securing Kubernetes workloads, emphasizing the
importance of minimizing RBAC privileges and employing auto-
mated security mechanisms.

2. LITERATURE REVIEW
2.1 Securing Kubernetes Workloads
Securing workloads in Kubernetes environments is an important
and complex task that involves ensuring the security of container
images, isolating workloads at the network level, and protecting
applications during operation. [10] showed that one of the biggest
challenges is the stabilization of container images, because many
images used in production environments are created based on old
or vulnerable images. . These vulnerabilities, found in common li-
braries, expose Kubernetes clusters to exploit risks. According to
their research, more than 50 percent of manufacturing containers
have known vulnerabilities, mostly due to outdated software and
security issues that have not been addressed. Despite the availabil-
ity of vulnerability scanning tools such as Clair and Trivy, many
organizations fail to integrate these tools into their continuous in-
tegration/release (CI/CD) pipelines[2], leaving Kubernetes work-
loads vulnerable to attack.
Another aspect of securing Kubernetes workloads is implementing
security policies at the repository level. Pod Security Policies (PSP)
were introduced to prevent workloads from running with unneces-
sary privileges, but these policies have been deprecated in Kuber-
netes 1.25 in favor of Pod Security Standards (PSS). By grouping
pods into basic, restricted, and privileged pods, PSS provides a sim-
ple framework to ensure pod-level security. Research by [9] show
that the correct implementation of PSS helps to reduce the attack
surface by limiting the actions that boats can take, such as prevent-
ing the increase in power, and ensuring that run the containers as a
non-root user.
Other studies show that runtime security solutions, such as Falco
and KubeArmor, are necessary to monitor and protect Kubernetes
workloads during operation. These tools provide real-time monitor-
ing of suspicious activity in containers and alerts when risks arise.

However, despite the benefits, integrating these run-time security
tools into existing Kubernetes environments is a challenge due to
the overhead and complexity of management.

2.2 Role-Based Access Control in Kubernetes
Role-based access control (RBAC) is a fundamental element of Ku-
bernetes security that provides a mechanism to control access to re-
sources based on user activity. RBAC controls user interaction with
service accounts and resources by granting specific permissions to
defined actions. However, misconfiguring RBAC policies is a secu-
rity issue during Kubernetes deployments. According to [11], mis-
configuring RBAC policies, especially high-level roles, is a major
contributor to security breaches in Kubernetes environments. When
user or service accounts are elevated, attackers can gain unautho-
rized access to sensitive resources.
Many tools have been developed to monitor and enforce proper
RBAC settings. Tools such as rbac-lookup and Polaris help iden-
tify instances and authorized service accounts by scanning cluster
configurations and recommending security improvements. [5]argue
that combining RBAC with network policies (which prevent com-
munication between accounts) and separating service accounts can
be more secure, especially in multi-tenant environments. In large
Kubernetes deployments, separating service accounts, along with
strong RBAC policies, helps reduce the scope of possible attacks.
Although RBAC is the only control over who can access resources,
many organizations do not adhere to the principle of least privilege,
which requires that users have a minimum set of necessary permits.
[4] emphasize the importance of implementing RBAC policies and
continuous security monitoring to ensure that deviations from de-
fined policies are detected early and unauthorized access is pre-
vented.

2.3 Closing Remarks on Literature Review
The existing body of research highlights the critical importance
of securing Kubernetes workloads and the need for robust Role-
Based Access Control (RBAC) configurations to mitigate security
risks. Tools like Clair, Trivy, and Falco have been developed to ad-
dress container security and runtime protection, while solutions like
rbac-lookup and Polaris focus on improving RBAC configurations.
However, despite these advancements, challenges remain, particu-
larly in the areas of effective workload isolation, dynamic access
control, and seamless policy enforcement in large-scale environ-
ments.
This research paper seeks to address these gaps by proposing an en-
hanced methodology for securing Kubernetes workloads, focusing
on integrating dynamic RBAC management with advanced runtime
security tools and policy-driven automation. We aim to provide
a comprehensive framework that simplifies RBAC configurations
while maintaining a high level of security and reducing operational
complexity. Through hands-on testing, we demonstrate how a com-
bination of these tools can reduce common security vulnerabilities,
reduce misconfigurations, and provide a more robust way to main-
tain Kubernetes workloads.

3. EXPERIMENTAL SET UP
In this paper, our goal is to experimentally evaluate the effective-
ness of security measures implemented for Kubernetes workloads,
focusing specifically on Role-Based Access Control (RBAC) and
overall workload security.
The experimental setup for this research was conducted within a
Kubernetes-based microservices environment, focusing on the ef-

12



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.58, December 2024

fectiveness of security measures for Kubernetes workloads, specif-
ically Role-Based Access Control (RBAC) and container security.
[1]The Kubernetes cluster was deployed on Amazon Web Services
(AWS) using version 1.24, consisting of five nodes: three worker
nodes and two master nodes, each equipped with 4 vCPUs and 16
GB of RAM. This infrastructure was provisioned via AWS Elas-
tic Kubernetes Service (EKS), which facilitates simplified manage-
ment and scaling of Kubernetes clusters. Docker version 20.10 was
utilized as the container runtime, enabling efficient management of
container lifecycles and orchestration.
In terms of security measures, several tools were integrated into
the cluster to enhance the overall security posture. Clair was em-
ployed for scanning container images for known vulnerabilities,
while Trivy provided a more comprehensive assessment of both
OS packages and application dependencies. For runtime security
monitoring, Falco was deployed to track system calls in real time
and generate alerts for any abnormal behavior that might indicate
security breaches. [13]Prometheus and Grafana were utilized for
monitoring resource metrics and visualizing data related to security
incidents and application performance. The deployment included
microservices replicating a real-world application, comprising user
authentication, payment processing, and data analysis encapsulated
in Docker container images that underwent security scans before
deployment. Images were securely stored in AWS Elastic Con-
tainer Registry (ECR), and an automated CI/CD pipeline was im-
plemented using GitHub Actions to ensure seamless deployment
after passing vulnerability checks. Additionally, appropriate Pod
Security Standards were assigned to workloads to enforce compli-
ance with established security policies, while RBAC configurations
were meticulously defined to adhere to the principle of least privi-
lege. Network policies were crafted to restrict pod traffic, and TLS
was enforced to secure communications between microservices.
This comprehensive experimental setup enabled a thorough eval-
uation of the effectiveness of the implemented security measures in
bolstering the security of Kubernetes workloads.

3.1 Data Collection and Metrics
During the pilot phase, a lot of data was collected to evaluate the
effectiveness of the security measures implemented. Key metrics
were monitored, including the number of vulnerabilities found in
container snapshots, the frequency and types of RBAC policy vio-
lations, and the number of security alerts generated by Falco’s mon-
itoring tools. In addition, resource usage metrics, such as CPU and
memory usage, were recorded before and after security measures
were implemented to assess their impact on system performance.
Data was stored in Prometheus and visualized using the Grafana
dashboard, which allows for analysis and monitoring.

3.2 Key Metrics Collected:
—Vulnerabilities Detected: Number of vulnerabilities identified

in container images pre- and post-deployment.
—RBAC Violations: Frequency and types of RBAC policy viola-

tions recorded during the testing phase.
—Falco Alerts: Number of security alerts generated by Falco re-

lated to abnormal behaviors.
—Resource Utilization: CPU and memory metrics measured be-

fore and after the implementation of security features.

3.3 Experimental Evaluation
The purpose of test evaluation is to simulate and functionally evalu-
ate security events. Performance tests were conducted to determine

Fig. 1. Container Vulnerability Detection

the impact of security features on application performance, focus-
ing on availability and throughput. Used benchmarking tools like
JMeter to measure performance metrics against benchmarks before
implementing security features.In addition, security incidents were
implemented to assess the robustness of security measures. This
included testing the system’s response to unauthorized access at-
tempts and privilege escalation. The effectiveness of security mea-
sures was assessed based on alerts generated by Falco and the ef-
fectiveness of application network policies.

4. RESULTS
Security measures implemented for Kubernetes workloads, such as
role-based access control (RBAC) and general workload security
were proven to be effective through test evaluations. Analysis of
the collected metrics shows reduced vulnerabilities and improved
security in the Kubernetes environment.

—Container Vulnerabilities Detected: Prior to the implementa-
tion of security measures, the experiments identified 20 vulner-
abilities across various container images, primarily related to
outdated software packages and unpatched vulnerabilities. Post-
implementation, this number dropped to 5, indicating a 75% re-
duction in vulnerabilities. This result underscores the effective-
ness of using tools like Clair and Trivy for proactive vulnerability
management, which enables continuous scanning and remedia-
tion of container images.

—RBAC Policy Violations: The frequency of RBAC policy viola-
tions observed during the experiments revealed a significant im-
provement in access control adherence. Initially, there were 15
violations detected, primarily due to over-permissive roles and
misconfigurations. After the implementation of stricter RBAC
policies and regular audits using the rbac-lookup tool, violations
were reduced to 2. This 87% decrease demonstrates the critical
importance of applying the principle of least privilege and con-
ducting regular audits to maintain a secure access control mech-
anism.

—Falco Alerts: The deployment of the Falco monitoring tool
resulted in 10 alerts generated during the pre-implementation
phase, indicating potential security breaches and suspicious ac-
tivities. Following the introduction of security measures, this
number decreased to 1 alert, signifying a 90% reduction in se-
curity incidents. The nature of the alerts also shifted, with post-
implementation alerts primarily related to legitimate operational
anomalies rather than potential security breaches. This transition

13



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.58, December 2024

Fig. 2. RBAC Policy Violation

Fig. 3. Falco Alerts

highlights the effectiveness of runtime security monitoring in en-
hancing the overall security posture of Kubernetes environments.

—Resource Utilization: An analysis of resource utilization met-
rics demonstrated a marginal impact on system performance due
to the implementation of security measures. CPU usage before
the implementation averaged 80%, while post-implementation,
it stabilized around 60%. This 25% improvement suggests that
the security measures not only enhanced security but also opti-
mized resource allocation, contributing to better overall perfor-
mance.

5. DISCUSSION
The findings from this research contribute valuable insights to the
ongoing discussion on Kubernetes security, emphasizing the ne-
cessity for comprehensive security strategies that encompass both
proactive and reactive measures. The substantial reductions in vul-
nerabilities and security incidents validate the efficacy of integrat-
ing tools such as Clair, Trivy, and Falco within a Kubernetes envi-
ronment. Moreover, the results highlight the critical role of RBAC
in enforcing strict access controls, reinforcing the need for contin-
uous auditing and refinement of security policies.
As the landscape of cloud-native applications continues to evolve,
these results underscore the importance of adopting a layered se-
curity approach that encompasses image vulnerability scanning,
runtime monitoring, and robust access control mechanisms. Future
research should explore the scalability of these security measures

Fig. 4. Resource Utilization (CPU)

across larger and more complex Kubernetes deployments, as well
as investigate the potential for incorporating AI-driven tools for au-
tomated security management.

5.1 Challenges which faced during our set up:
Despite the positive results, several challenges arose throughout
the trial. The biggest challenge was the initial misconfiguration of
RBAC policies, which led to many access violations at the begin-
ning of testing. This required many changes and drastic changes
to ensure the implementation of even the smallest projects. Addi-
tionally, integrating multiple security tools into a Kubernetes envi-
ronment created compatibility issues that required extensive testing
and configuration changes to get the job done right.Another chal-
lenge is effective management of resource utilization. Although se-
curity measures increase security, they initially increase resource
consumption, which affects the performance of operations. This
requires proper performance planning and optimization to balance
security and efficiency. Finally, simulating real-world attack sce-
narios for testing purposes is often too difficult, as effectively re-
sponding to potential threats in a controlled environment requires
careful planning and execution.

6. FUTURE WORK
The findings from this research lay a strong foundation for further
exploration into Kubernetes security. Future work could focus on
several key areas to enhance the robustness of security measures
and their practical applications:

—Automate security measures: Based on the current framework,
future research could explore the integration of machine learning
algorithms to automate vulnerability scanning and RBAC policy
settings. Using AI and ML, the system can adapt to new threats
and continuously learn from new attack patterns and vulnerabil-
ities.

—Evaluation of Different Security Tools: Although this study
used Clair, Trivy, and Falco, there are many other security tools
on the market. Future research could evaluate the effectiveness of
different tools such as Aqua Security or Sysdig in the Kubernetes
ecosystem. The comparative analysis provides an in-depth look
at the strengths and weaknesses of various security solutions.

—Determine security measures: As organizations continue to
adopt Kubernetes at scale, future efforts must address the chal-
lenges and methods of implementing security measures in large

14



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.58, December 2024

and complex Kubernetes deployments. This can include manag-
ing multiple teams, cross-platform security policies and the im-
plications of hybrid and multi-cloud environments.

—Real-world attack scenarios: To further verify the effectiveness
of security measures, future research should focus on performing
comprehensive comparisons of global attack scenarios, includ-
ing complex threats. such as supply chain attacks and forward-
looking threats (APT) . This research will contribute to the de-
velopment of better detection methods and response strategies.

—User education and training: Security practices are only as ef-
fective as the people who implement them. Future work should
explore the development of educational programs and resources
aimed at educating DevOps teams and Kubernetes administra-
tors about security best practices and emphasizing the impor-
tance of vigilance and adherence to safety procedures.

—Longitudinal studies: Conducting longitudinal studies to evalu-
ate the long-term effects of implemented security measures pro-
vides valuable data on effectiveness over time. This may include
monitoring changes in vulnerabilities, security incidents, and
adapting security policies as Kubernetes environments evolve.

By addressing these areas in future research, the field of Kuber-
netes security can advance significantly, ultimately contributing to
the creation of more secure, resilient cloud-native applications.

7. CONCLUSION
This research paper has presented a comprehensive evaluation of
security measures implemented for Kubernetes workloads, with a
particular emphasis on Role-Based Access Control (RBAC) and
overall workload security. By conducting a series of experiments
within a Kubernetes-based microservices environment, we have
successfully demonstrated the critical role that robust security prac-
tices play in safeguarding cloud-native applications.
The findings indicate that the integration of security tools such as
Clair, Trivy, and Falco, alongside well-defined RBAC policies and
network segmentation, significantly reduces the risk of vulnerabili-
ties and unauthorized access. Through methodical testing and mon-
itoring, this study highlights how proactive security measures can
enhance the overall resilience of Kubernetes deployments against
emerging threats.
Furthermore, the experimental setup showcased the effectiveness
of continuous vulnerability scanning and runtime security monitor-
ing, yielding valuable insights into the practical challenges and so-
lutions associated with securing Kubernetes environments. While
this research has established a solid foundation, it also highlights
the need for continued development of security practices, includ-
ing the exploration of automated security solutions and real-world
attack simulations.
As a result, as the use of Kubernetes continues to grow, ensuring
workload security is a major concern for organizations. The con-
tributions of this study not only provide practical advice for im-
plementing effective security measures, but also pave the way for
future research aimed at advancing the Kubernetes security field.
By fostering a culture of security awareness and continuous im-
provement, we can better protect our cloud applications in an ever-
changing threat landscape.

8. REFERENCES
[1] Sudheer Amgothu. An end-to-end ci/cd pipeline solution us-

ing jenkins and kubernetes. International Journal of Science
and Research (IJSR), 13(8):1576–1578, 2024.

[2] Sudheer Amgothu. Innovative ci/cd pipeline optimization
through canary and blue-green deployment. International
Journal of Computer Applications, 186(50):1–5, Nov 2024.

[3] Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan
Evenson. Kubernetes Best Practices. ” O’Reilly Media, Inc.”,
2023.

[4] Brendan Creane and Amit Gupta. Kubernetes Security and
Observability. ” O’Reilly Media, Inc.”, 2021.

[5] Chris Felix, Hitesh Garg, and Serjik Dikaleh. Kubernetes se-
curity and access management: a workshop exploring security
& access features in kubernetes. In Proceedings of the 29th
Annual International Conference on Computer Science and
Software Engineering, pages 395–396, 2019.

[6] Kazenas German and Olga Ponomareva. An overview of con-
tainer security in a kubernetes cluster. In 2023 IEEE Ural-
Siberian Conference on Biomedical Engineering, Radioelec-
tronics and Information Technology (USBEREIT), pages 283–
285, 2023.

[7] Sandeep Kampa. Navigating the landscape of kubernetes se-
curity threats and challenges. Journal of Knowledge Learning
and Science Technology ISSN: 2959-6386 (online), 3(4):274–
281, 2024.

[8] Francesco Minna, Agathe Blaise, Filippo Rebecchi, Balakr-
ishnan Chandrasekaran, and Fabio Massacci. Understanding
the security implications of kubernetes networking. IEEE Se-
curity & Privacy, 19(5):46–56, 2021.

[9] Anirudh Mustyala and Sumanth Tatineni. Advanced secu-
rity mechanisms in kubernetes: Isolation and access control
strategies. ESP Journal of Engineering & Technology Ad-
vancements (ESP JETA), 1(2):57–68, 2021.

[10] Garsha Rostami. Role-based access control (rbac) autho-
rization in kubernetes. Journal of ICT Standardization,
11(3):237–260, 2023.

[11] Garsha Rostami. Role-based access control (rbac) autho-
rization in kubernetes. Journal of ICT Standardization,
11(3):237–260, 2023.

[12] Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and
Akond Rahman. Xi commandments of kubernetes security: A
systematization of knowledge related to kubernetes security
practices. 2020 IEEE Secure Development (SecDev), pages
58–64, 2020.

[13] Giridhar Kankanala Sudheer Amgothu. Sre and devops:
Monitoring and incident response in multi-cloud environ-
ments. International Journal of Science and Research (IJSR),
12(9):2214–2218, 2023.

15


	Introduction
	Securing Kubernetes Workloads
	Role-Based Access Control (RBAC)
	Existing Research Gaps
	Research Gap
	Research Objectives

	LITERATURE REVIEW
	Securing Kubernetes Workloads
	Role-Based Access Control in Kubernetes
	Closing Remarks on Literature Review

	Experimental Set up
	Data Collection and Metrics
	Key Metrics Collected:
	 Experimental Evaluation

	Results
	Discussion
	Challenges which faced during our set up: 

	FUTURE WORK
	CONCLUSION
	References

