
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.58, December 2024

45

Improving Software Effort Estimation Accuracy with a

Kalman Filter-Driven Ensemble Model

Beatrice O. Akumba
Department of

Mathematics/Computer Science
Benue State University

Makurdi, Benue State, Nigeria

Emmanuel Ogala
Department of Computer Science
Joseph Sarwuan Tarka University
(Formerly University of Agriculture)

Makurdi, Benue State, Nigeria

Iorshase Agaji
Department of Computer Science
Joseph Sarwuan Tarka University
(Formerly University of Agriculture)

Makurdi, Benue State, Nigeria

Barnabas T. Akumba
HISP Nigeria, Abuja.

Nachamada V. Blamah
Department of Computer Science

University of Jos
Jos, Plateau State

Samera U. Otor
Department of

Mathematics/Computer Science
Benue State University

Makurdi, Benue State, Nigeria

ABSTRACT
Software effort estimation requires the determination of one or

more of the following estimates; effort (usually in person-

months), project duration (in calendar time) and cost (in

money). The ability to accurately estimate software project

effort is essential for successful project planning, budgeting,

and execution. This paper focuses on the development of an

ensemble stacking model to enhance software effort estimation

accuracy. The integration of a Kalman Filter (KFA) with

various machine learning techniques, the model offers an

improvement over traditional single-model approaches.

Datasets of Albrecht, China, Cocomo81, Desharnais, Kemerer,

and Maxwell were used for the model training and evaluation.

Performance metrics of Mean Absolute Error (MAE), Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), and

R-Squared values were employed to validate the model. The

results demonstrated a notable improvement in estimation

accuracy, particularly in larger datasets, as compared to

established models like the ensemble voting model. We made

recommendations on the incorporation of additional datasets

and hyper-parameter optimization to further enhance the

model's performance.

General Terms

Software Engineering, Machine Learning, Software Effort

Estimation, Software Project Management.

Keywords

Ensemble Stacking, Effort Estimation, Kalman Filter, Software

Project.

1. INTRODUCTION
Software effort estimation plays a critical role in project

management by determining the resources, time, and budget

required to complete the software projects. Accurate effort

estimation helps mitigate risks associated with under-

budgeting, resource misallocation, and missed deadlines,

which can negatively impact project outcomes. Traditional

effort estimation models of COCOMO and Function Point

Analysis (FPA), have often been limited by inaccuracies due to

their reliance on algorithmic approaches that cannot effectively

capture the complexity and uncertainty inherent in modern

software development.

Recent advancements in machine learning have introduced new

opportunities for enhancing the accuracy of effort estimation

models. Specifically, ensemble learning, which combines the

strengths of multiple models, has shown promise in improving

predictive performance. However, while techniques like

ensemble voting have provided some benefits, there remains a

need for models that can handle noise and uncertainty in data

more effectively. This paper addresses this gap by developing

an ensemble stacking model that integrates the Kalman Filter

algorithm (KFA) with machine learning techniques for

improved effort estimation. The objectives of the paper include

the design, implementation, and evaluation of this model to

assess its accuracy across some selected datasets.

2. RELATED WORKS
Software effort estimation has been a central focus of software

engineering since the 1960s, when early models like the

Constructive Cost Model (COCOMO) were introduced. These

models aimed to estimate the time, effort, and cost required to

complete software projects based on key variables such as the

number of Source Lines of Code (SLOC) and project

complexity. Although these traditional models, like COCOMO

and Function Point Analysis (FPA), have been widely adopted,

they face some limitations as they inaccurately estimate

software effort due to the dynamic and non-linear nature of

modern software projects. These models tend to struggle with

over fitting to historical data or under fitting when they fail to

capture all the sensitivities of new software projects [1].

According to [2], as software projects have grown in

complexity, non-algorithmic and learning-based models have

been introduced to improve the accuracy of effort estimations.

The non-algorithmic models, also known as non-parametric

models, estimate effort by leveraging on analogy or expert

judgment. For instance, expert judgment relies on insights from

experienced project managers, while analogy-based estimation

involves comparing a current project to similar past projects.

However, these approaches are limited by subjective biases and

can result in inconsistent estimates across different experts or

organizations. Similarly, analogy-based models face

challenges when no closely analogous projects exist in

historical data, or the quality of past records is poor [3].

Machine learning-based methods have become increasingly

popular for their ability to handle large datasets and uncover

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.58, December 2024

46

patterns that traditional models might overlook. Among these

are Artificial Neural Networks (ANNs), Support Vector

Machines (SVMs), and Regression Trees, which use historical

project data to train predictive models. These models are

particularly good at discovering complex relationships between

project attributes (such as team size, technical requirements,

and project deadlines) and the associated effort. [4] used a

combination of ANN, SVM, and regression models to improve

effort estimation accuracy across a large dataset of software

projects. Similarly, [5] explored machine learning techniques

like Naïve Bayes, Logistic Regression, and Random Forests,

noting that, these approaches provided more reliable

predictions than traditional models.

However, these machine learning methods also come with

some challenges. According to [6], one key issue is the

tendency to over fit the training data, leading to poor

generalization to new, unseen projects. [7] added that most

machine learning algorithms are sensitive to noise in the data,

which led to inaccurate predictions. This is where ensemble

learning; a technique that combines multiple predictive models

comes to play. Ensemble methods, such as bagging and

boosting, seek to combine the strengths of individual models

while reducing their weaknesses. Boosting focuses on

correcting the errors of weak models by training successive

models to focus on misclassified instances, while bagging

reduces variance by averaging the predictions of several base

models trained on different data subsets [8].

Stacking, a more advanced form of ensemble learning, takes

this concept further by combining the predictions of multiple

base models using a meta-model. [9] demonstrated that,

stacking significantly improved the accuracy of effort

estimation compared to the single-model approaches. In their

study, stacking was used to combine multiple regression

models, outperforming single models across diverse datasets.

The advantage of stacking lies in its ability to mitigate the

biases of individual models by learning from their combined

predictions.

Despite the success of stacking, challenges still remain.

Specifically, noise in datasets and the uncertainty associated

with software project attributes; such as changing requirements

and unpredictable risks could still lead to inaccurate estimates.

Kalman Filter Algorithms (KFA) offers a promising solution to

this problem. The Kalman Filter is a recursive algorithm that

reduces noise by adjusting predictions based on real-time data,

which makes it an excellent tool for refining effort estimates in

dynamic environments. [10] applied Kalman Filter to software

effort estimation and demonstrated that it could improve

prediction accuracy by smoothing noisy datasets and

accounting for unforeseen project changes. By integrating the

Kalman Filter into an ensemble stacking model, this paper

builds on the strengths of previous work while addressing key

limitations related to noise and uncertainty in software project

data. The developed model combined multiple machine

learning algorithms with Kalman Filter Algorithm to improve

predictive accuracy, particularly in datasets with high

variability or incomplete information.

3. METHODOLOGY

3.1 Mixed-Mode Methodology
The mixed-mode methodology was employed in this work

which comprised; the interactive waterfall model,

mathematical model and machine learning models. The

interactive waterfall model of the verification and validation

(V&V) method was used for the user interface development as

seen in Figure 1. The mathematical model was formulated

along with the architecture as well as the flowchart of the

ensemble stacking model in Figures 2 and 3 respectively. The

model development and its implementation are shown in Figure

4 with the datasets used, the machine learning algorithms

employed, model evaluation and the performance metrics

explained in the sub-sections of the paper.

The interactive waterfall model phases employed in the user

interface design are;

(i) Phase 1 is the Requirements Gathering Phase. Here, the

problem was defined to be the development of a hybrid model

for software project effort estimation. The objective was to

predict the actual and predicted effort, completion time of the

software projects. The scope of the project combined existing

machine learning algorithms to achieve improved software

effort prediction accuracy. The data collection and

understanding was online (Zenodo) data sources for training

the machine learning model. The six datasets used were;

Albrecht, China, Cocomo, Desharnais, Kemerer and Maxwell

datasets. These were preprocessed using MinMaxScaler and

Recursive Feature Elimination (RFE). The metrics used to

evaluate the models performance were MAE, MSE, RMSE, R-

Squared, Friedman’s Test and Wilcoxon’s Rank Sum Tests.

(ii) Phase 2 is the design of the system which comprised; the

algorithm selection, feature engineering and training of the

model. For the Algorithm Selection, we used regression- based

machine learning algorithms of Random Forest Regressor,

Gradient Boosting Regressor, SVR (Support Vector

Regressor), DecisionTree Regressor, MLPRegressor (Multi-

layer Perceptron Regressor) and Kalman Filter. A meta-model

for stacking using Linear Regression was developed

afterwards.

The Feature Engineering was done to identify relevant features

from the dataset that were used as inputs to the machine

learning model. Data preprocessing with MinMaxScaler and

Pearsons Correlation Coefficient such as normalization,

encoding categorical variables, handling missing values were

performed.

In the model training, the dataset was split into the training and

validation sets using the ratio of 70:30 respectively. The

selected machine learning algorithms were trained using the

training data and validated the developed model using the

validation sets data and tuned the hyper-parameters as

necessary.

(iii) Phase 3 is the Implementation of the model, its evaluation

and integration. For the Model Evaluation, the performance of

the trained model was evaluated using the metrics MAE, MSE,

RMSE, R-Squared, Friedman’s Test and Wilcoxon’s Rank

Sum Tests. Different models were compared and the best-

performing one was selected based on the evaluation results.

The performance metrics values were compared with an

existing ensemble voting model of [11]. The user interfaces for

the interaction with the effort prediction and completion

modules were developed as the system Integration.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.58, December 2024

47

Figure 1: The Interactive V&V Waterfall Model

(iv) Phase 4 is testing the model and system through unit and

system testing. Unit tests were conducted to verify the

functionality of individual components of the Hybrid Ensemble

Stacking Software Effort Prediction (HENSSEP) Model. This

was done to ensure that each module performed as expected.

Furthermore, end-to-end testing of the entire HENSSEP Model

was done as well as validation of the system against different

algorithms and datasets scenarios as system testing.

(v) Phase 5 is Deployment. This process was done by

deploying the HENSSEP Model into the environments to

include timelines and resources required. The systems

performance and behavior were monitored after post-

deployment.

(vi) Phase 6 is Maintenance and Monitoring. Maintenance is

done to provide ongoing support and maintenance for the

deployed system, to tackle bugs, issues, and updates as need

arises. Monitoring mechanisms were implemented to track the

performance of the system. This is to monitor the model drift

and retrain the model periodically with new datasets.

3.2 The Ensemble Stacking

Mathematical Model
The variables and components of the mathematical model are

denoted as follows:

Let

𝑋: The feature matrix representing the input features of

software development projects

𝑦: The vector representing the actual effort estimation values

(target variable).

𝑀: The number of base regression models.

𝐻: The meta-model (the final regression model that combines

base model predictions)

ℎ𝑚(𝑋): The prediction made by base model m on the feature

matrix X

𝑍: The matrix of meta-features, where each row i contains

predictions from all base models plus Kalman Filter for data

sample i.

Assumption: 𝑋 and 𝑦 are loaded and preprocessed

For each base model m, the model was trained on the training

data to learn a mapping

 𝑖. 𝑒. ℎ𝑚(𝑋) (1) (1)

Kalman Filter was applied to the target variable y to generate

smoothed predictions using 𝑘𝑓𝑚𝑒𝑡𝑎−𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

For each data sample i in the validation set, generated a meta-

feature vector 𝒛𝒊 that contains predictions from all base models

plus the Kalman Filter prediction.

 𝒛𝒊 = [ℎ1(𝑋𝑖), ℎ2(𝑋𝑖), … , ℎ𝑀(𝑋𝑖), 𝑘𝑓𝑚𝑒𝑡𝑎−𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖
] (2)

We trained the meta-model 𝐻 (Random Forest Regression,

Linear Regression, etc) on the entire training set, where the

input is the matrix of meta-features 𝑍 and the target is the scaled

target variable 𝑦.

For each data sample i in the test set, generated a meta-feature

vector 𝒛𝒊 using the same structures as for the validation set.

The trained meta-model H was used to make predictions on the

test set, which resulted in predicted effort estimation values 𝑦̂.

 ∴

 𝑦 ̂ = 𝐻(𝑋) (3)

 𝑦 ̂ = ℎ𝐻(𝑧) (4)

 𝒚 ̂ =

𝒉𝑯([𝒉𝟏(𝑿𝒊), 𝒉𝟐(𝑿𝒊), … , 𝒉𝑴(𝑿𝒊), 𝒌𝒇𝒎𝒆𝒕𝒂−𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔]) (5)

Where,

ℎ𝐻 represents the prediction function of the meta-model H

The developed ensemble stacking mathematical model is as

presented in equation (5).

3.3 Ensemble Stacking Architecture
The model architecture consists of two main components: the

conventional software effort estimation flow design and the

developed ensemble stacking effort estimation flow design as

seen on Figure 2. The latter comprises three key modules:

feature selection, ensemble stacking model building, and the

Kalman filter duration estimation module. Different

methodologies were applied to each component, including a

mathematical model for regression algorithms, an interactive

waterfall methodology for interface development, and machine

learning techniques for estimating software effort through

ensemble stacking to achieve accurate results. Datasets of

Albrecht, China, COCOMO, Desharnais, Kemerer, and

Maxwell were preprocessed to reduce noise and outliers

removed. The data processing technique employed was

MinMaxScaler. This was used to normalize and scale the input

features and target variable. Also used was Recursive Feature

Elimination (RFE) for feature selection and Imputation for

handling missing values. MinMax Scaling is also known as

Min-Max normalization. The MinMax Scaling was applied in

the model through loading and extracting the input data from

the CSV file using the Pandas library. The input features X

(software attributes) and the target variable Y (effort) were

extracted from the dataset. Regression algorithms of Random

Forest, Gradient Boosting, Support Vector, Decision Tree, and

Multilayer Perceptron Regressors, were employed to build

ensemble models. These models estimated software project

efforts, and their outputs were combined in a meta-model using

Linear Regression for more accurate predictions. The model's

performance was compared with a previous hybrid ensemble

Requirement

Analysis

Design

Development

 Testing

 Design

Implementation

Maintenance

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.58, December 2024

48

voting estimation by [9] using metrics like MAE, MSE, and

RMSE, showing improvement in accuracy.

Figure 2: The Architecture of the Ensemble Stacking Prediction Model

3.4 The Model Development
The ensemble stacking model was developed as contained in

Figure 3 using six base model algorithms of, Random Forest,

Gradient Boosting, Support Vector Machines (SVR), Decision

Tree, MLPRegressor (Neural Network), and Kalman Filter

(KFA). These algorithms were selected based on their previous

success in effort estimation and their ability to handle non-

linear relationships [12]. Recursive Feature Elimination (RFE)

was applied to select the most relevant features, and MinMax

scaling was used to normalize the data. The ensemble stacking

model leveraged on the strengths of the above machine learning

models and potentially a traditional model (COCOMO) to

arrive at more accurate software effort estimation, by

combining the estimation through ensemble stacking, to

improve the overall accuracy and generalizability of the model

compared to using a single model alone.

Performed Pearson’s feature

Correlation

Datasets of

Albrecht

China ,

Cocomo

Desharnais

Kemerer

Maxwell

Performed data cleaning and

removed outliers, noise and null

values

Split Data into Train &

Test (70%: 30%)

COCOMO Model

Estimated Software Projects Costs

and Efforts

Model Evaluated

with MAE, MSE,

RMSE and R2

Built Kalman Filter

Prediction Model

Predicted Software Project

Completion Time & Duration

Completion Time

Results

Built Ensemble Stacking

Regression Models

Predict Software

Project Effort

Evaluate the Model

Prediction Results Compared the Results of the

Developed Model with

Ensemble Voting Model of

Kumar et. al., 2023

Outcome of comparisons

in Graphs

Developed Approach

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.58, December 2024

49

Fig 3: The Developed Model of the System

3.5 Data Sources
This study used six publicly available datasets of Albrecht,

China, Cocomo81, Desharnais, Kemerer, and Maxwell,

sourced online from the Zenodo repository. These datasets

cover a wide range of project sizes and complexity, offering

diverse test cases for evaluating the developed model as they

were seen to be mostly employed in software effort estimation

[12]. The number of records and the respective attributes are:

i. Albrecht Dataset: Contains 24 records with attributes such

as effort, size (in function points), and cost drivers. The effort

is measured in person-hours.

ii. China Dataset: The largest of the six, containing 499

records with multiple attributes and function points as the size

metric. Effort is measured in person-hours.

iii. Cocomo81 Dataset: Comprising 63 records with attributes

like Lines of Code (LOC), this dataset uses person-months as

the effort unit.

iv. Desharnais Dataset: Contains 81 records, each

representing software projects with effort recorded in person-

hours.

v. Kemerer Dataset: The smallest dataset, with only 15

records, measuring size in KSLOC (thousands of source lines

of code) and effort in person-months.

vi. Maxwell Dataset: Comprising 62 records, this dataset

focuses on project effort in person-hours and project attributes.

3.6 Performance Metrics
The model was validated using the most widely employed

performance metrics in effort estimation by researchers [12], to

assess its accuracy and reliability. They are the Mean Absolute

Error (MAE), that measures the average absolute difference

between predicted and actual values, the Mean Squared Error

(MSE) and Root Mean Squared Error (RMSE) extend this by

penalizing larger errors more heavily. MAE provides a

straightforward measure of prediction accuracy, MSE gives

insight into error magnitude with a focus on larger

discrepancies, and RMSE allows interpretation in the same

units as the target variable. Additionally, the R-Squared (R²)

score indicates how well the model captures the variance in the

data, with a score closer to one signifying a better goodness of

fit.

Furthermore, to compare multiple models and their

performance across different datasets, Friedman’s Test was

conducted. This non-parametric test ranks algorithms and

checks for significant differences, with a small p-value

indicating that at least one algorithm outperform the others.

Finally, the Wilcoxon’s Rank Sum Test was employed to

compare two independent algorithms, assessing to know

whether one significantly outperforms the other or not.

Together, these statistical tests and performance metrics

provided a comprehensive evaluation of the model's

effectiveness across the various scenarios.

4. RESULTS AND DISCUSSION

4.1 Model Experiments
The first model experiment conducted was to predict the actual

and predicted effort for the software projects across the six

datasets. The experiment accepted the datasets as inputs which

were used to train the base models, generated meta-features,

and trained the meta-model in the ensemble stacking process

for software development effort estimation. The expected

outputs of the experiment were line graphs that showed the

predicted and actual efforts for all the 6 datasets used. Figures

4(a) to 4(f) shows the results of the predicted effort versus

actual effort for Albrecht, China, Cocomo81, Desharnais,

Kemerer and Maxwell datasets used by the ensemble stacking

model. The model was able to estimate the software effort

across the datasets with minimum deviations. The x-axis

represented the number of records in the datasets while the y-

axis represented the effort of the respective records.

Base Models

SVM

MlPReg

Kalman

Filter

XGBoost

RF

Meta Model

Data Preprocessing

Data Cleaning &

Selection

Feature Selection

Pearson’s

Correlation

MixMaxScaler

Load

dataset

Apply 2

fold Cross-

Validation

DTR

R

Ensemble Stacking with

Linear Regression (LR)

Model Evaluation

using MAE, MSE,

RMSE, R2, Friedmans

Test and Wilcoxons

Rank Sum Test

Display Results of

Effort and duration

Estimations

Datasets of

Albrecht

China ,

Cocomo

Desharnais

Kemerer

Maxwell

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.58, December 2024

50

Fig 4a: Albrecht dataset

Fig 4b: China Dataset

Fig 4c: Cocomo Dataset

Fig 4d: Desharnais Dataset

Fig 4e: kemerer Dataset

Fig 4f: Maxwell Dataset

The second model experiment was performed to investigate the

Mean Absolute Error (MAE), Mean Squared Error (MSE) Root

Mean Squared Error (RMSE) and R-Squared across the 6

datasets. The inputs to the experiment were the six datasets and

the outputs are the tabulated MAE, MSE, RMSE and R-

Squared values contained in Tables 1 – 4, corresponding to

each algorithm and dataset combination. For the Albrecht

dataset, the ensemble stacking model demonstrated a 95% R-

Squared value, indicating that it captured most of the variance

in the dataset. The MAE, MSE and RMSE values were lower

compared to both the single-model approaches and the

ensemble voting model. This suggests that the Kalman Filter

effectively reduced noise and allowed for more accurate

predictions, particularly in the presence of small variations in

effort estimates. The improvements are especially notable in

the areas where traditional models, such as COCOMO, would

have under or overestimated effort due to the linear

assumptions inherent in their methodologies. The China dataset

yielded the best results, with an R-Squared value of 99%,

making it the highest performing dataset in the study. The size

of this dataset, along with the diversity of its attributes, allowed

the model to generalize well and make highly accurate

predictions. The MAE was minimal, indicating that the

stacking model correctly predicted the majority of the projects'

efforts. In the Cocomo81 dataset, the model performed

similarly well, achieving an R-Squared of 93%. However, the

RMSE was slightly higher compared to the Albrecht and China

datasets, which could be attributed to the use of Lines of Code

(LOC) as a key predictor. LOC is known to be a less reliable

indicator of project effort due to variations in developer

productivity and code quality. Nevertheless, the ensemble

stacking model still outperformed the traditional COCOMO

model by better accounting for these non-linear relationships.

The results for the Desharnais and Kemerer datasets were less

impressive compared to the larger datasets. For the Desharnais

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.58, December 2024

51

dataset, the model’s R-Squared value was only 78%, while

Kemerer had an R-Squared of 80%. The primary reason for this

under-performance was the small size and outlier presence in

these datasets. Both datasets were relatively small, with only 15

and 81 records, respectively, and contained several outliers that

disproportionately impacted the prediction accuracy. While the

Kalman Filter was effective in reducing noise, the small sample

size limited the model's ability to generalize effectively.

Further refinement, such as the application of outlier detection

methods or hyper-parameter tuning, could potentially improve

the results for these smaller datasets.

The Maxwell dataset also showed strong performance, with an

R-squared of 91%. The model’s accuracy in this dataset can be

attributed to the well-structured nature of the data, which made

it easier for the base models to generalize. The Kalman Filter

played a key role in further refining the predictions by

accounting for potential deviations in the data. Despite the

challenges posed by smaller datasets, the Kalman Filter's

inclusion still provided improvements by smoothing

predictions and accounting for real-time data variations.

Friedman’s Test and Wilcoxon Rank Sum Test confirmed that

the performance improvements of the ensemble stacking model

were statistically significant in the larger datasets, particularly

for Albrecht, China, and Cocomo81. The tests showed that the

model's ability to reduce variance and improve prediction

accuracy was consistent across multiple performance metrics,

including MAE and RMSE.

Table 1: MAE of the Individual Algorithms and Hybrid Ensemble Model using the 6 Datasets

Mean Absolute Error (MAE)

Algorithms Dataset 1

Albrecht

Dataset 2

China

Dataset 3

Cocomo81

Dataset 4

Desharnais

Dataset 5

Kemerer

Dataset 6

Maxwell

Linear Regression 0.1026 0.0067 0.0596 0.2480 0.1812 0.1047

Random Forest Regressor 0.0843 0.0079 0.0500 0.2403 0.12380 0.0544

Decision Tree Regressor 0.1418 0.0102 0.0771 0.2161 0.1491 0.0654

Support Vector Regressor 0.1179 0.0689 0.0958 0.2449 0.1507 0.1093

Gradient Boosting Regressor 0.0866 0.0078 0.0611 0.2145 0.1367 0.0608

MLP Regressor 0.0751 0.0239 0.0736 0.2519 0.1396 0.2314

Kalman Filter 0.0579 0.0476 0.0434 0.1557 0.1107 0.0618

Kumar et al., [9] [Voting] 0.0775 0.0077 0.1466 0.0627 0.0925 0.1221

HENSSEP (Stacking) 0.0333 0.0072 0.0528 0.1192 0.1166 0.0383

Table 2: MSE of the Individual Algorithms and Hybrid Ensemble Model versus the 6 Datasets used in the Experiment

Mean Square Error (MSE)

Algorithms Dataset 1

Albrecht

Dataset 2

China

Dataset 3

Cocomo81

Dataset 4

Desharnais

Dataset 5

Kemerer

Dataset 6

Maxwell

Linear Regression 0.0302 0.0003 0.0114 0.0901 0.0608 0.0213

Random Forest Regressor 0.0304 0.0006 0.0126 0.0843 0.0496 0.0105

Decision Tree Regressor 0.0732 0.0009 0.0388 0.1327 0.0540 0.0136

Support Vector Regressor 0.0474 0.0073 0.0150 0.0949 0.0630 0.0212

Gradient Boosting Regressor 0.0227 0.0007 0.0200 0.0828 0.0509 0.0161

MLP Regressor 0.0181 0.0015 0.0149 0.0923 0.0545 0.0724

Kalman Filter 0.0077 0.0067 0.0076 0.0475 0.0331 0.0105

Kumar et al., [9] [Voting] 0.0099 0.0007 0.0527 0.0061 0.0160 0.0555

HENSSEP (Stacking) 0.0028 0.0001 0.0060 0.0239 0.0237 0.0033

Table 3: RMSE of the Individual Algorithms and Hybrid Ensemble Model versus the 6 Datasets used in the Experiment

Root Mean Square Error (RMSE)

Algorithms Dataset 1

Albrecht

Dataset 2

China

Dataset 3

Cocomo81

Dataset 4

Desharnais

Dataset 5

Kemerer

Dataset 6

Maxwell

Linear Regression 0.1492 0.0189 0.1039 0.2997 0.2262 0.1448

Random Forest Regressor 0.1345 0.0245 0.1119 0.2899 0.1770 0.0920

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.58, December 2024

52

Decision Tree Regressor 0.2105 0.0304 0.1870 0.3606 0.2031 0.1110

Support Vector Regressor 0.1696 0.0858 0.1201 0.3074 0.2128 0.1386

Gradient Boosting Regressor 0.1271 0.0263 0.1399 0.2864 0.1887 0.1204

MLP Regressor 0.1081 0.0380 0.1145 0.3032 0.1996 0.2673

Kalman Filter 0.0809 0.0815 0.0873 0.2178 0.1819 0.1026

Kumar et al., [9] [Voting] 0.0996 0.0270 0.2297 0.0783 0.1031 0.2356

HENSSEP (Stacking) 0.0531 0.0110 0.0776 0.0547 0.1541 0.0571

Table 4: R Squared Values across the datasets using the Model

Dataset R-squared Value

China 0.9919

Albrecht 0.9595

Cocomo81 0.6822

Desharnais 0.8061

Kemerer 0.5681

Maxwell 0.8801

The third experiment was performed to determine the

Friedman’s test on the models. The Friedman's test was

conducted to assess the statistical significance of differences

among the algorithms used in the study. The inputs to the

experiment were the MAE values gotten from all the

experiments using the six datasets as tabulated in Table 1 by

the developed model. The output was the Friedman’s test

statistics and the p-value is as presented:

Friedman's test statistic: 22.0

P-value: 0.004915867265928975 ≈ 0.005

There is a significant difference among the algorithms with the

Friedman's test.

According to [11], a p-value ≤ 0.05 for a Friedman’s test

indicates statistical difference at a general level. This result

suggested that at least one of the algorithms used in the study

performed significantly different from the others. It implies that

the choice of algorithm had a meaningful impact on the

performance, and it's not merely due to random chance.

The Wilcoxon’s Rank Sum Test, also known as the Mann-

Whitney U test, was another experiment that was investigated

to assess the performance differences between pairs of

algorithms in the study. The test produced p-values for each

pair-wise comparison, and the p-value helped determine

whether there was a statistically significant difference in the

performance of these algorithms. The output was the

significant algorithm pairs based on Mann-Whitney U test

statistics and the p-value was presented in Table 5. It was

observed from Table 5 that each 2 x 2 comparison produced a

p-value < 0.05. This was an indication that the performance of

each algorithm was statistically different from one another

[11].

Table 5: Wilcoxon’ Rank Sum (Mann-Whitney U) values of the Algorithms across the Datasets

Kumar et

al., [9]

[Voting]

HENSS

EP

(Stacki

ng)

Kalman

Filter

MLP

Regre

ssor

Gradient

Boosting

Regressor

Support

Vector

Regressor

Decision

Tree

Regressor

Random

Forest

Regressor

Linear

Regres

sion

Kumar et

al., [9]

[Voting]

0

0.0011

0.0038

0.0047

0.0081

0.0318

0.0316

0.0035

0.0026

HENSSEP

(Stacking)

0.0011

0

0.0027

0.0006

0.0004

0.0027

0.0031

0.0023

0.0016

Kalman

Filter

0.0038 0.0027 0 0.0020 0.0063 0.0031 0.0015 0.0056 0.0093

MLP

Regressor

0.0047

0.0006

0.0020

0

0.0341

0.0081

0.0068

0.0062

0.0084

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.58, December 2024

53

Gradient

Boosting

Regressor

0.0081

0.0040

0.0063

0.0341

0

0.0217

0.0031

0.0056

s0.0015

Support

Vector

Regressor

0.0318

0.0027

0.0031

0.0081

0.0217

0

0.0156

0.0312

0.0031

Decision

Tree

Regressor

0.0316

0.0031

0.0015

0.0068

0.0031

0.0156

0

0.0156

0.0068

Random

Forest

Regressor

0.0035

0.0023

0.0056

0.0062

0.0056

0.0312

0.0156

0

0.0062

Linear

Regression

0.0026

0.0016

0.0093

0.0084

0.0015

0.0031

0.0068

0.0062

0

The last experiment was performed to compare the developed

model with the existing works of literature to ascertain whether

there was a significant improvement or not. The ensemble

voting study of [9] was used for benchmarking. The datasets

were of the same type, dimension, attributes as well as the

machine learning algorithms except for the introduction of

three new algorithms to the model. The inputs to the experiment

were the MSE values of [9] [Voting] and HENSSEP (Stacking)

models across the datasets from Table 2. The output is a line

graph of the Mean Square Errors (MSE) of [9] [Voting] and the

developed ensemble stacking model (HENSSEP) as seen in

Figure 5.

Fig 5: MSE of [9] [Voting] and the developed Ensemble

Stacking Model

It was seen that the developed model performed better than that

of the hybrid ensemble voting done by [9] across four of the

datasets used except in two datasets of the Kemerer and

Desharnais. The model was seen to have lower values of MSE,

reflecting an average quantitative measure of the estimation

accuracy of the model. That the MSE values were higher in the

four datasets was a strong indication that the software project

effort estimation accuracy challenge has been improved upon

greatly with our developed model as it was platform compatible

with the widely used software effort estimation datasets.

5. CONCLUSION
This paper developed an ensemble stacking software effort

estimation model that addressed how the accuracy of software

effort estimation could be improved upon by harnessing the

capabilities of hybrid ensemble stacking techniques, while

effectively addressing uncertainty and providing practical

implementation guidance. This was achieved through the

development of an ensemble stacking model for software effort

estimation, implementation of the ensemble stacking model,

developed a mathematical model and integrated Kalman Filter

algorithm to the design and implementation of the ensemble

stacking model and the mathematical model formulated. The

performance of the model was also evaluated for accuracies and

statistical significant differences amongst the algorithms used

for its implementation. From the experiments conducted, it was

seen that the developed ensemble stacking software effort

estimation model was able to show the actual and estimated

efforts respectively across the datasets of the software projects

used with minimal deviations, gave better accuracies and had

minimal errors. This was seen from the MAE, MSE, RMSE, R-

Squared, Friedman’s test and Wilcoxons rank sum test values

recorded. The MAE, MSE and RMSE values of the models

used were at the lowest across the datasets and the respective

regression models with values of 0.0072, 0.0001 and 0.0110

respectively. The R-Squared values were above 80% in the four

datasets while 57% and 68% for two datasets respectively. The

Friedmans Test indicated that there was a statistical difference

among the algorithms with a p-value of 0.0049 which

according to Atsa’am and Wario (2021), a p-value of ≤ 0.05 for

a Friedman’s test indicated a statistical difference at a general

level. The Wilcoxons Rank Sum test (Mann-Whitney U test)

on Table 5 indicted that each 2 x 2 algorithm comparison

produced a p-value < 0.05, which indicated that the

performance of each algorithm was statistically different from

one another [11]. The study equally compared the developed

model with the hybrid ensemble voting study of [9] and it was

seen to have a better improvement in terms of the estimation

accuracies and the performance metrics.

This work is open to further research by incorporating new data

and refining the system as more data becomes available. Other

ensemble techniques should be explored to further improve on

the study as well as other feature engineering techniques for

data preprocessing. This is important so that the systems

adaptability to evolving software development

trends/technology can be met and to improve the accuracy of

the model.

6. REFERNCES
[1] Jørgensen, M. (2014). "Challenges in Software Cost

Estimation." Journal of Systems and Software, 101, 174-

190.

[2] Awan, M. J., and Asif, M. (2021). "A Comprehensive

Review on Software Effort Estimation: Machine

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.58, December 2024

54

[3] Idri, A., and Abran, A. (2015). "Analogy-based Software

Development Effort Estimation: A Systematic Mapping

and Review." Information and Software Technology, 58,

206-230.

[4] Pospieszny, P., Czarnacka-Chrobot, B. and Kobyliński, A.

(2017). An Effective Approach for Software Project Effort

and Duration Estimation with Machine Learning

Algorithms, The Journal of Systems & Software . doi:

10.1016/j.jss.2017.11.066.

[5] BaniMustafa, A. (2018). Predicting Software Effort

Estimation Using Machine Learning Techniques. 2018

8th International Conference on Computer Science and

Information Technology

(CSIT). doi:10.1109/csit.2018.8486222

[6] Zhang, X., Yang, F., and Jiang, S. (2020). "A Review on

Ensemble Learning Algorithms in Machine Learning."

Journal of Physics: Conference Series, 1693, 012129.

[7] Fernández-Delgado, M., Cernadas, E., Barro, S., and

Amorim, D. (2019). "Do We Need Hundreds of

Classifiers to Solve Real World Classification Problems?"

Journal of Machine Learning Research, 15(90), 3133-

3181.

[8] Sharma, A., and Kaur, A. (2020). "A Review on Ensemble

Techniques in Machine Learning." International Journal

of Advanced Science and Technology, 29(3), 6874-6886.

[9] Kumar, B. K., Bilgaiyan, S. and Mishra, B. S. P. (2023).

Software Effort Estimation through Ensembling of Base

Models in Machine Learning using a Voting Estimator.

International Journal of Advanced Computer Science and

Applications (IJACSA), 14,(2)

[10] Fadhil, A. A., Alsarraj, R. G. and Altaie, A. M. (2020).

Software Cost Estimation Based on Dolphin Algorithm.

IEEE Access 8, Digital Object Identifier

10.1109/ACCESS.2020.2988867.

[11] Atsa'am, D. D. and Wario, R. (2021). Classifier Selection

for the Prediction of Dominant Transmission Mode of

Coronavirus within Localities: Predicting COVID-19

Transmission Mode. International Journal of E-Health

and Medical Communications (IJEHMC) 12(6)

[12] Akumba, B. O., Blamah, N.V., Agaji, I. and Ogalla, E.

(2023). Quest Journals Journal of Software Engineering

and Simulation 9(4). 01-07 ISSN(Online) :2321-3795

ISSN (Print):2321-3809 www.questjournals.org

IJCATM : www.ijcaonline.org

