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ABSTRACT 
Software effort estimation requires the determination of one or 

more of the following estimates; effort (usually in person-

months), project duration (in calendar time) and cost (in 

money). The ability to accurately estimate software project 

effort is essential for successful project planning, budgeting, 

and execution. This paper focuses on the development of an 

ensemble stacking model to enhance software effort estimation 

accuracy. The integration of a Kalman Filter (KFA) with 

various machine learning techniques, the model offers an 

improvement over traditional single-model approaches. 

Datasets of Albrecht, China, Cocomo81, Desharnais, Kemerer, 

and Maxwell were used for the model training and evaluation. 

Performance metrics of Mean Absolute Error (MAE), Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), and 

R-Squared values were employed to validate the model. The 

results demonstrated a notable improvement in estimation 

accuracy, particularly in larger datasets, as compared to 

established models like the ensemble voting model. We made 

recommendations on the incorporation of additional datasets 

and hyper-parameter optimization to further enhance the 

model's performance. 

General Terms 

Software Engineering, Machine Learning, Software Effort 

Estimation, Software Project Management. 

Keywords 
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1. INTRODUCTION 
Software effort estimation plays a critical role in project 

management by determining the resources, time, and budget 

required to complete the software projects. Accurate effort 

estimation helps mitigate risks associated with under-

budgeting, resource misallocation, and missed deadlines, 

which can negatively impact project outcomes. Traditional 

effort estimation models of COCOMO and Function Point 

Analysis (FPA), have often been limited by inaccuracies due to 

their reliance on algorithmic approaches that cannot effectively 

capture the complexity and uncertainty inherent in modern 

software development.  

Recent advancements in machine learning have introduced new 

opportunities for enhancing the accuracy of effort estimation 

models. Specifically, ensemble learning, which combines the 

strengths of multiple models, has shown promise in improving 

predictive performance. However, while techniques like 

ensemble voting have provided some benefits, there remains a 

need for models that can handle noise and uncertainty in data 

more effectively. This paper addresses this gap by developing 

an ensemble stacking model that integrates the Kalman Filter 

algorithm (KFA) with machine learning techniques for 

improved effort estimation. The objectives of the paper include 

the design, implementation, and evaluation of this model to 

assess its accuracy across some  selected datasets.  

2. RELATED WORKS 
Software effort estimation has been a central focus of software 

engineering since the 1960s, when early models like the 

Constructive Cost Model (COCOMO) were introduced. These 

models aimed to estimate the time, effort, and cost required to 

complete software projects based on key variables such as the 

number of Source Lines of Code (SLOC) and project 

complexity. Although these traditional models, like COCOMO 

and Function Point Analysis (FPA), have been widely adopted, 

they face some limitations as they inaccurately estimate 

software effort due to the dynamic and non-linear nature of 

modern software projects. These models tend to struggle with 

over fitting to historical data or under fitting when they fail to 

capture all the sensitivities of new software projects [1].  

According to [2], as software projects have grown in 

complexity, non-algorithmic and learning-based models have 

been introduced to improve the accuracy of effort estimations. 

The non-algorithmic models, also known as non-parametric 

models, estimate effort by leveraging on analogy or expert 

judgment. For instance, expert judgment relies on insights from 

experienced project managers, while analogy-based estimation 

involves comparing a current project to similar past projects. 

However, these approaches are limited by subjective biases and 

can result in inconsistent estimates across different experts or 

organizations. Similarly, analogy-based models face 

challenges when no closely analogous projects exist in 

historical data, or the quality of past records is poor [3]. 

Machine learning-based methods have become increasingly 

popular for their ability to handle large datasets and uncover 
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patterns that traditional models might overlook. Among these 

are Artificial Neural Networks (ANNs), Support Vector 

Machines (SVMs), and Regression Trees, which use historical 

project data to train predictive models. These models are 

particularly good at discovering complex relationships between 

project attributes (such as team size, technical requirements, 

and project deadlines) and the associated effort. [4] used a 

combination of ANN, SVM, and regression models to improve 

effort estimation accuracy across a large dataset of software 

projects.  Similarly, [5] explored machine learning techniques 

like Naïve Bayes, Logistic Regression, and Random Forests, 

noting that, these approaches provided more reliable 

predictions than traditional models.  

However, these machine learning methods also come with 

some challenges. According to [6], one key issue is the 

tendency to over fit the training data, leading to poor 

generalization to new, unseen projects. [7] added that most 

machine learning algorithms are sensitive to noise in the data, 

which led to inaccurate predictions. This is where ensemble 

learning; a technique that combines multiple predictive models 

comes to play. Ensemble methods, such as bagging and 

boosting, seek to combine the strengths of individual models 

while reducing their weaknesses. Boosting focuses on 

correcting the errors of weak models by training successive 

models to focus on misclassified instances, while bagging 

reduces variance by averaging the predictions of several base 

models trained on different data subsets [8].  

Stacking, a more advanced form of ensemble learning, takes 

this concept further by combining the predictions of multiple 

base models using a meta-model. [9] demonstrated that, 

stacking significantly improved the accuracy of effort 

estimation compared to the single-model approaches. In their 

study, stacking was used to combine multiple regression 

models, outperforming single models across diverse datasets. 

The advantage of stacking lies in its ability to mitigate the 

biases of individual models by learning from their combined 

predictions. 

Despite the success of stacking, challenges still remain. 

Specifically, noise in datasets and the uncertainty associated 

with software project attributes; such as changing requirements 

and unpredictable risks could still lead to inaccurate estimates. 

Kalman Filter Algorithms (KFA) offers a promising solution to 

this problem. The Kalman Filter is a recursive algorithm that 

reduces noise by adjusting predictions based on real-time data, 

which makes it an excellent tool for refining effort estimates in 

dynamic environments. [10] applied Kalman Filter to software 

effort estimation and demonstrated that it could improve 

prediction accuracy by smoothing noisy datasets and 

accounting for unforeseen project changes. By integrating the 

Kalman Filter into an ensemble stacking model, this paper 

builds on the strengths of previous work while addressing key 

limitations related to noise and uncertainty in software project 

data. The developed model combined multiple machine 

learning algorithms with Kalman Filter Algorithm to improve 

predictive accuracy, particularly in datasets with high 

variability or incomplete information. 

3. METHODOLOGY 

3.1 Mixed-Mode Methodology 
The mixed-mode methodology was employed in this work 

which comprised; the interactive waterfall model, 

mathematical model and machine learning models. The 

interactive waterfall model of the verification and validation 

(V&V) method was used for the user interface development as 

seen in Figure 1. The mathematical model was formulated 

along with the architecture as well as the flowchart of the 

ensemble stacking model in Figures 2 and 3 respectively. The 

model development and its implementation are shown in Figure 

4 with the datasets used, the machine learning algorithms 

employed, model evaluation and the performance metrics 

explained in the sub-sections of the paper. 
 

The interactive waterfall model phases employed in the user 

interface design are; 

(i) Phase 1 is the Requirements Gathering Phase. Here, the 

problem was defined to be the development of a hybrid model 

for software project effort estimation. The objective was to 

predict the actual and predicted effort, completion time of the 

software projects. The scope of the project combined existing 

machine learning algorithms to achieve improved software 

effort prediction accuracy. The data collection and 

understanding was online (Zenodo) data sources for training 

the machine learning model. The six datasets used were; 

Albrecht, China, Cocomo, Desharnais, Kemerer and Maxwell 

datasets. These were preprocessed using MinMaxScaler and 

Recursive Feature Elimination (RFE). The metrics used to 

evaluate the models performance were MAE, MSE, RMSE, R-

Squared, Friedman’s Test and Wilcoxon’s Rank Sum Tests. 

(ii) Phase 2 is the design of the system which comprised; the 

algorithm selection, feature engineering and training of the 

model. For the Algorithm Selection, we used regression- based 

machine learning algorithms of Random Forest Regressor, 

Gradient Boosting Regressor, SVR (Support Vector 

Regressor), DecisionTree Regressor, MLPRegressor (Multi-

layer Perceptron Regressor) and Kalman Filter. A meta-model 

for stacking using Linear Regression was developed 

afterwards. 

The Feature Engineering was done to identify relevant features 

from the dataset that were used as inputs to the machine 

learning model. Data preprocessing with MinMaxScaler and 

Pearsons Correlation Coefficient such as normalization, 

encoding categorical variables, handling missing values were 

performed.  

In the model training, the dataset was split into the training and 

validation sets using the ratio of 70:30 respectively. The 

selected machine learning algorithms were trained using the 

training data and validated the developed model using the 

validation sets data and tuned the hyper-parameters as 

necessary. 

(iii)  Phase 3 is the Implementation of the model, its evaluation 

and integration. For the Model Evaluation, the performance of 

the trained model was evaluated using the metrics MAE, MSE, 

RMSE, R-Squared, Friedman’s Test and Wilcoxon’s Rank 

Sum Tests. Different models were compared and the best-

performing one was selected based on the evaluation results. 

The performance metrics values were compared with an 

existing ensemble voting model of [11]. The user interfaces for 

the interaction with the effort prediction and completion 

modules were developed as the system Integration. 
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Figure 1: The Interactive V&V Waterfall Model 

(iv)  Phase 4 is testing the model and system through unit and 

system testing. Unit tests were conducted to verify the 

functionality of individual components of the Hybrid Ensemble 

Stacking Software Effort Prediction (HENSSEP) Model. This 

was done to ensure that each module performed as expected. 

Furthermore, end-to-end testing of the entire HENSSEP Model 

was done as well as validation of the system against different 

algorithms and datasets scenarios as system testing.  

(v) Phase 5 is Deployment. This process was done by 

deploying the HENSSEP Model into the environments to 

include timelines and resources required. The systems 

performance and behavior were monitored after post-

deployment. 

(vi)  Phase 6 is Maintenance and Monitoring. Maintenance is 

done to provide ongoing support and maintenance for the 

deployed system, to tackle bugs, issues, and updates as need 

arises. Monitoring mechanisms were implemented to track the 

performance of the system.  This is to monitor the model drift 

and retrain the model periodically with new datasets. 

3.2 The Ensemble Stacking 

Mathematical Model 
The variables and components of the mathematical model are 

denoted as follows:  

Let 

𝑋:  The feature matrix representing the input features of 

software development projects 

𝑦: The vector representing the actual effort estimation values      

(target variable). 

𝑀: The number of base regression models. 

𝐻: The meta-model (the final regression model that combines 

base model predictions) 

ℎ𝑚(𝑋): The prediction made by base model m on the feature 

matrix X 

𝑍: The matrix of meta-features, where each row i contains 

predictions from all base models plus Kalman Filter for data 

sample i. 

Assumption:  𝑋 and 𝑦 are loaded and preprocessed 

For each base model m, the model was trained on the training 

data to learn a mapping 

                                   𝑖. 𝑒.          ℎ𝑚(𝑋)                                        (1)                                                                                             (1) 

Kalman Filter was applied to the target variable y to generate 

smoothed predictions using   𝑘𝑓𝑚𝑒𝑡𝑎−𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  

For each data sample i in the validation set, generated a meta-

feature vector 𝒛𝒊 that contains predictions from all base models 

plus the Kalman Filter prediction. 

     𝒛𝒊 =  [ℎ1(𝑋𝑖), ℎ2(𝑋𝑖), … , ℎ𝑀(𝑋𝑖), 𝑘𝑓𝑚𝑒𝑡𝑎−𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖
 ]      (2)  

We trained the meta-model 𝐻 (Random Forest Regression, 

Linear Regression, etc) on the entire training set, where the 

input is the matrix of meta-features 𝑍 and the target is the scaled 

target variable  𝑦.  

For each data sample i in the test set, generated a meta-feature 

vector  𝒛𝒊 using the same structures as for the validation set. 

The trained meta-model H was used to make predictions on the 

test set, which resulted in predicted effort estimation values 𝑦̂. 

  ∴ 

                𝑦 ̂ = 𝐻(𝑋)                                                           (3) 

               𝑦 ̂ =  ℎ𝐻(𝑧)                                                          (4) 

 𝒚 ̂ =

𝒉𝑯([𝒉𝟏(𝑿𝒊), 𝒉𝟐(𝑿𝒊), … , 𝒉𝑴(𝑿𝒊), 𝒌𝒇𝒎𝒆𝒕𝒂−𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 ]) (5) 

 

Where, 

ℎ𝐻 represents the prediction function of the meta-model  H 

The developed ensemble stacking mathematical model is as 

presented in equation (5). 

3.3 Ensemble Stacking Architecture 
The model architecture consists of two main components: the 

conventional software effort estimation flow design and the 

developed ensemble stacking effort estimation flow design as 

seen on Figure 2. The latter comprises three key modules: 

feature selection, ensemble stacking model building, and the 

Kalman filter duration estimation module. Different 

methodologies were applied to each component, including a 

mathematical model for regression algorithms, an interactive 

waterfall methodology for interface development, and machine 

learning techniques for estimating software effort through 

ensemble stacking to achieve accurate results. Datasets of 

Albrecht, China, COCOMO, Desharnais, Kemerer, and 

Maxwell were preprocessed to reduce noise and outliers 

removed. The data processing technique employed was 

MinMaxScaler. This was used to normalize and scale the input 

features and target variable. Also used was Recursive Feature 

Elimination (RFE) for feature selection and Imputation for 

handling missing values. MinMax Scaling is also known as 

Min-Max normalization. The MinMax Scaling was applied in 

the model through loading and extracting the input data from 

the CSV file using the Pandas library. The input features X 

(software attributes) and the target variable Y (effort) were 

extracted from the dataset. Regression algorithms of Random 

Forest, Gradient Boosting, Support Vector, Decision Tree, and 

Multilayer Perceptron Regressors, were employed to build 

ensemble models. These models estimated software project 

efforts, and their outputs were combined in a meta-model using 

Linear Regression for more accurate predictions. The model's 

performance was compared with a previous hybrid ensemble 
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voting estimation by [9] using metrics like MAE, MSE, and 

RMSE, showing improvement in accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The Architecture of the Ensemble Stacking Prediction Model 

 

3.4 The Model Development 
The ensemble stacking model was developed as contained in 

Figure 3 using six base model algorithms of, Random Forest, 

Gradient Boosting, Support Vector Machines (SVR), Decision 

Tree, MLPRegressor (Neural Network), and Kalman Filter 

(KFA). These algorithms were selected based on their previous 

success in effort estimation and their ability to handle non-

linear relationships [12]. Recursive Feature Elimination (RFE) 

was applied to select the most relevant features, and MinMax 

scaling was used to normalize the data. The ensemble stacking 

model leveraged on the strengths of the above machine learning 

models and potentially a traditional model (COCOMO) to 

arrive at more accurate software effort estimation, by 

combining the estimation through ensemble stacking, to 

improve the overall accuracy and generalizability of the model 

compared to using a single model alone. 
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Fig 3: The Developed Model of the System 

3.5 Data Sources 
This study used six publicly available datasets of Albrecht, 

China, Cocomo81, Desharnais, Kemerer, and Maxwell, 

sourced online from the Zenodo repository. These datasets 

cover a wide range of project sizes and complexity, offering 

diverse test cases for evaluating the developed model as they 

were seen to be mostly employed in software effort estimation 

[12]. The number of records and the respective attributes are: 

i. Albrecht Dataset: Contains 24 records with attributes such 

as effort, size (in function points), and cost drivers. The effort 

is measured in person-hours. 

ii. China Dataset: The largest of the six, containing 499 

records with multiple attributes and function points as the size 

metric. Effort is measured in person-hours. 

iii. Cocomo81 Dataset: Comprising 63 records with attributes 

like Lines of Code (LOC), this dataset uses person-months as 

the effort unit. 

iv. Desharnais Dataset: Contains 81 records, each 

representing software projects with effort recorded in person-

hours. 

v. Kemerer Dataset: The smallest dataset, with only 15 

records, measuring size in KSLOC (thousands of source lines 

of code) and effort in person-months. 

vi. Maxwell Dataset: Comprising 62 records, this dataset 

focuses on project effort in person-hours and project attributes.  

3.6 Performance Metrics 
The model was validated using the most widely employed 

performance metrics in effort estimation by researchers [12], to 

assess its accuracy and reliability. They are the Mean Absolute 

Error (MAE), that measures the average absolute difference 

between predicted and actual values, the Mean Squared Error 

(MSE) and Root Mean Squared Error (RMSE) extend this by 

penalizing larger errors more heavily. MAE provides a 

straightforward measure of prediction accuracy, MSE gives 

insight into error magnitude with a focus on larger 

discrepancies, and RMSE allows interpretation in the same 

units as the target variable. Additionally, the R-Squared (R²) 

score indicates how well the model captures the variance in the 

data, with a score closer to one signifying a better goodness of 

fit.  

 

Furthermore, to compare multiple models and their 

performance across different datasets, Friedman’s Test was 

conducted. This non-parametric test ranks algorithms and 

checks for significant differences, with a small p-value 

indicating that at least one algorithm outperform the others.  

 

Finally, the Wilcoxon’s Rank Sum Test was employed to 

compare two independent algorithms, assessing to know 

whether one significantly outperforms the other or not. 

Together, these statistical tests and performance metrics 

provided a comprehensive evaluation of the model's 

effectiveness across the various scenarios. 

4. RESULTS AND DISCUSSION 

4.1 Model Experiments 
The first model experiment conducted was to predict the actual 

and predicted effort for the software projects across the six 

datasets. The experiment accepted the datasets as inputs which 

were used to train the base models, generated meta-features, 

and trained the meta-model in the ensemble stacking process 

for software development effort estimation. The expected 

outputs of the experiment were line graphs that showed the 

predicted and actual efforts for all the 6 datasets used. Figures 

4(a) to 4(f) shows the results of the predicted effort versus 

actual effort for Albrecht, China, Cocomo81, Desharnais, 

Kemerer and Maxwell datasets used by the ensemble stacking  

model. The model was able to estimate the software effort 

across the datasets with minimum deviations. The x-axis 

represented the number of records in the datasets while the y-

axis represented the effort of the respective records. 
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Fig 4a:  Albrecht dataset 

 
Fig 4b: China Dataset 

 

 
Fig 4c:  Cocomo Dataset 

 
      

Fig 4d:  Desharnais Dataset 

 
Fig 4e: kemerer Dataset

 

 
   

Fig 4f:  Maxwell Dataset 
 

 

The second model experiment was performed to investigate the 

Mean Absolute Error (MAE), Mean Squared Error (MSE) Root 

Mean Squared Error (RMSE) and R-Squared across the 6 

datasets. The inputs to the experiment were the six datasets and 

the outputs are the tabulated MAE, MSE, RMSE and R-

Squared values contained in Tables 1 – 4, corresponding to 

each algorithm and dataset combination. For the Albrecht 

dataset, the ensemble stacking model demonstrated a 95% R-

Squared value, indicating that it captured most of the variance 

in the dataset. The MAE, MSE and RMSE values were lower 

compared to both the single-model approaches and the 

ensemble voting model. This suggests that the Kalman Filter 

effectively reduced noise and allowed for more accurate 

predictions, particularly in the presence of small variations in 

effort estimates. The improvements are especially notable in 

the areas where traditional models, such as COCOMO, would 

have under or overestimated effort due to the linear 

assumptions inherent in their methodologies. The China dataset 

yielded the best results, with an R-Squared value of 99%, 

making it the highest performing dataset in the study. The size 

of this dataset, along with the diversity of its attributes, allowed 

the model to generalize well and make highly accurate 

predictions. The MAE was minimal, indicating that the 

stacking model correctly predicted the majority of the projects' 

efforts. In the Cocomo81 dataset, the model performed 

similarly well, achieving an R-Squared of 93%. However, the 

RMSE was slightly higher compared to the Albrecht and China 

datasets, which could be attributed to the use of Lines of Code 

(LOC) as a key predictor. LOC is known to be a less reliable 

indicator of project effort due to variations in developer 

productivity and code quality. Nevertheless, the ensemble 

stacking model still outperformed the traditional COCOMO 

model by better accounting for these non-linear relationships.  
 

The results for the Desharnais and Kemerer datasets were less 

impressive compared to the larger datasets. For the Desharnais 
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dataset, the model’s R-Squared value was only 78%, while 

Kemerer had an R-Squared of 80%. The primary reason for this 

under-performance was the small size and outlier presence in 

these datasets. Both datasets were relatively small, with only 15 

and 81 records, respectively, and contained several outliers that 

disproportionately impacted the prediction accuracy. While the 

Kalman Filter was effective in reducing noise, the small sample 

size limited the model's ability to generalize effectively. 

Further refinement, such as the application of outlier detection 

methods or hyper-parameter tuning, could potentially improve 

the results for these smaller datasets. 
 
 

The Maxwell dataset also showed strong performance, with an 

R-squared of 91%. The model’s accuracy in this dataset can be 

attributed to the well-structured nature of the data, which made 

it easier for the base models to generalize. The Kalman Filter 

played a key role in further refining the predictions by 

accounting for potential deviations in the data. Despite the 

challenges posed by smaller datasets, the Kalman Filter's 

inclusion still provided improvements by smoothing 

predictions and accounting for real-time data variations. 

Friedman’s Test and Wilcoxon Rank Sum Test confirmed that 

the performance improvements of the ensemble stacking model 

were statistically significant in the larger datasets, particularly 

for Albrecht, China, and Cocomo81. The tests showed that the 

model's ability to reduce variance and improve prediction 

accuracy was consistent across multiple performance metrics, 

including MAE and RMSE. 

Table 1: MAE of the Individual Algorithms and Hybrid Ensemble Model using the 6 Datasets 

Mean Absolute Error (MAE) 

Algorithms Dataset 1 

Albrecht 

Dataset 2 

China 

Dataset 3 

Cocomo81 

Dataset 4 

Desharnais 

Dataset 5 

Kemerer 

Dataset 6 

Maxwell 

Linear Regression 0.1026 0.0067 0.0596 0.2480 0.1812 0.1047 

Random Forest Regressor 0.0843 0.0079 0.0500 0.2403 0.12380 0.0544 

Decision Tree Regressor 0.1418 0.0102 0.0771 0.2161 0.1491 0.0654 

Support Vector Regressor 0.1179 0.0689 0.0958 0.2449 0.1507 0.1093 

Gradient Boosting Regressor 0.0866 0.0078 0.0611 0.2145 0.1367 0.0608 

MLP Regressor 0.0751 0.0239 0.0736 0.2519 0.1396 0.2314 

Kalman Filter 0.0579 0.0476 0.0434 0.1557 0.1107 0.0618 

Kumar et al., [9] [Voting] 0.0775 0.0077 0.1466 0.0627 0.0925 0.1221 

HENSSEP (Stacking) 0.0333 0.0072 0.0528 0.1192 0.1166 0.0383 

 

Table 2: MSE of the Individual Algorithms and Hybrid Ensemble Model versus the 6 Datasets used in the Experiment 

Mean Square Error (MSE) 

Algorithms Dataset 1 

Albrecht 

Dataset 2 

China 

Dataset 3 

Cocomo81 

Dataset 4 

Desharnais 

Dataset 5 

Kemerer 

Dataset 6 

Maxwell 

Linear Regression 0.0302 0.0003 0.0114 0.0901 0.0608 0.0213 

Random Forest Regressor 0.0304 0.0006 0.0126 0.0843 0.0496 0.0105 

Decision Tree Regressor 0.0732 0.0009 0.0388 0.1327 0.0540 0.0136 

Support Vector Regressor 0.0474 0.0073 0.0150 0.0949 0.0630 0.0212 

Gradient Boosting Regressor 0.0227 0.0007 0.0200 0.0828 0.0509 0.0161 

MLP Regressor 0.0181 0.0015 0.0149 0.0923 0.0545 0.0724 

Kalman Filter 0.0077 0.0067 0.0076 0.0475 0.0331 0.0105 

Kumar et al., [9] [Voting] 0.0099 0.0007 0.0527 0.0061 0.0160 0.0555 

HENSSEP (Stacking) 0.0028 0.0001 0.0060 0.0239 0.0237 0.0033 

Table 3: RMSE of the Individual Algorithms and Hybrid Ensemble Model versus the 6 Datasets used in the Experiment 

Root Mean Square Error (RMSE) 

Algorithms Dataset 1 

Albrecht 

Dataset 2 

China 

Dataset 3 

Cocomo81 

Dataset 4 

Desharnais 

Dataset 5 

Kemerer 

Dataset 6 

Maxwell 

Linear Regression 0.1492 0.0189 0.1039 0.2997 0.2262 0.1448 

Random Forest Regressor 0.1345 0.0245 0.1119 0.2899 0.1770 0.0920 
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Decision Tree Regressor 0.2105 0.0304 0.1870 0.3606 0.2031 0.1110 

Support Vector Regressor 0.1696 0.0858 0.1201 0.3074 0.2128 0.1386 

Gradient Boosting Regressor 0.1271 0.0263 0.1399 0.2864 0.1887 0.1204 

MLP Regressor 0.1081 0.0380 0.1145 0.3032 0.1996 0.2673 

Kalman Filter 0.0809 0.0815 0.0873 0.2178 0.1819 0.1026 

Kumar et al., [9] [Voting] 0.0996 0.0270 0.2297 0.0783 0.1031 0.2356 

HENSSEP (Stacking) 0.0531 0.0110 0.0776 0.0547 0.1541 0.0571 

 

Table 4: R Squared Values across the datasets using the Model 

Dataset R-squared Value 

China 0.9919 

Albrecht 0.9595 

Cocomo81 0.6822 

Desharnais 0.8061 

Kemerer 0.5681 

Maxwell 0.8801 

 

The third experiment was performed to determine the 

Friedman’s test on the models. The Friedman's test was 

conducted to assess the statistical significance of differences 

among the algorithms used in the study. The inputs to the 

experiment were the MAE values gotten from all the 

experiments using the six datasets as tabulated in Table 1 by 

the developed model. The output was the Friedman’s test 

statistics and the p-value is as presented: 

Friedman's test statistic:  22.0 

P-value:  0.004915867265928975   ≈  0.005 

There is a significant difference among the algorithms with the 

Friedman's test. 

According to [11], a p-value ≤ 0.05 for a Friedman’s test 

indicates statistical difference at a general level. This result 

suggested that at least one of the algorithms used in the study 

performed significantly different from the others. It implies that 

the choice of algorithm had a meaningful impact on the 

performance, and it's not merely due to random chance. 

The Wilcoxon’s Rank Sum Test, also known as the Mann-

Whitney U test, was another experiment that was investigated 

to assess the performance differences between pairs of 

algorithms in the study. The test produced p-values for each 

pair-wise comparison, and the p-value helped determine 

whether there was a statistically significant difference in the 

performance of these algorithms. The output was the 

significant algorithm pairs based on Mann-Whitney U test 

statistics and the p-value was presented in Table 5. It was 

observed from Table 5 that each 2 x 2 comparison produced a 

p-value < 0.05. This was an indication that the performance of 

each algorithm was statistically different from one another 

[11]. 

 

Table 5: Wilcoxon’ Rank Sum (Mann-Whitney U) values of the Algorithms across the Datasets 

 
 

Kumar et 

al., [9]  

[Voting] 

HENSS

EP 

(Stacki

ng) 

Kalman 

Filter 

MLP 

Regre

ssor 

Gradient 

Boosting 

Regressor 

Support 

Vector 

Regressor 

Decision 

Tree 

Regressor 

Random 

Forest 

Regressor 

Linear 

Regres

sion 

Kumar et 

al., [9] 

[Voting] 

 

0 

 

0.0011 

 

0.0038 

 

0.0047 

 

0.0081 

 

0.0318 

 

0.0316 

 

0.0035 

 

0.0026 

HENSSEP 

(Stacking) 

 

0.0011 

 

0 

 

0.0027 

 

0.0006 

 

0.0004 

 

0.0027 

 

0.0031 

 

0.0023 

 

0.0016 

Kalman 

Filter 

0.0038 0.0027 0 0.0020 0.0063 0.0031 0.0015 0.0056 0.0093 

MLP 

Regressor 

 

0.0047 

 

0.0006 

 

0.0020 

 

0 

 

0.0341 

 

0.0081 

 

0.0068 

 

0.0062 

 

0.0084 
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Gradient 

Boosting 

Regressor 

 

0.0081 

 

0.0040 

 

0.0063 

 

0.0341 

 

0 

 

0.0217 

 

0.0031 

 

0.0056 

 

s0.0015 

Support 

Vector 

Regressor 

 

0.0318 

 

0.0027 

 

0.0031 

 

0.0081 

 

0.0217 

 

0 

 

0.0156 

 

0.0312 

 

0.0031 

Decision 

Tree 

Regressor 

 

0.0316 

 

0.0031 

 

0.0015 

 

0.0068 

 

0.0031 

 

0.0156 

 

0 

 

0.0156 

 

0.0068 

Random 

Forest 

Regressor 

 

0.0035 

 

0.0023 

 

0.0056 

 

0.0062 

 

0.0056 

 

0.0312 

 

0.0156 

 

0 

 

0.0062 

Linear 

Regression 

 

0.0026 

 

0.0016 

 

0.0093 

 

0.0084 

 

0.0015 

 

0.0031 

 

0.0068 

 

0.0062 

 

0 

 

The last experiment was performed to compare the developed 

model with the existing works of literature to ascertain whether 

there was a significant improvement or not. The ensemble 

voting study of [9] was used for benchmarking. The datasets 

were of the same type, dimension, attributes as well as the 

machine learning algorithms except for the introduction of 

three new algorithms to the model. The inputs to the experiment 

were the MSE values of [9] [Voting] and HENSSEP (Stacking) 

models across the datasets from Table 2. The output is a line 

graph of the Mean Square Errors (MSE) of [9] [Voting] and the 

developed ensemble stacking model (HENSSEP) as seen in 

Figure 5. 

 
Fig 5: MSE of [9] [Voting] and the developed Ensemble 

Stacking Model 

It was seen that the developed model performed better than that 

of the hybrid ensemble voting done by [9] across four of the 

datasets used except in two datasets of the Kemerer and 

Desharnais. The model was seen to have lower values of MSE, 

reflecting an average quantitative measure of the estimation 

accuracy of the model. That the MSE values were higher in the 

four datasets was a strong indication that the software project 

effort estimation accuracy challenge has been improved upon 

greatly with our developed model as it was platform compatible 

with the widely used software effort estimation datasets. 

5. CONCLUSION 
This paper developed an ensemble stacking software effort 

estimation model that addressed how the accuracy of software 

effort estimation could be improved upon by harnessing the 

capabilities of hybrid ensemble stacking techniques, while 

effectively addressing uncertainty and providing practical 

implementation guidance. This was achieved through the 

development of an ensemble stacking model for software effort 

estimation, implementation of the ensemble stacking model, 

developed a mathematical model and integrated Kalman Filter 

algorithm to the design and implementation of the ensemble 

stacking model and the mathematical model formulated. The 

performance of the model was also evaluated for accuracies and 

statistical significant differences amongst the algorithms used 

for its implementation. From the experiments conducted, it was 

seen that the developed ensemble stacking software effort 

estimation model was able to show the actual and estimated 

efforts respectively across the datasets of the software projects 

used with minimal deviations, gave better accuracies and had 

minimal errors. This was seen from the MAE, MSE, RMSE, R-

Squared, Friedman’s test and Wilcoxons rank sum test values 

recorded. The MAE, MSE and RMSE values of the models 

used were at the lowest across the datasets and the respective 

regression models with values of 0.0072, 0.0001 and 0.0110 

respectively. The R-Squared values were above 80% in the four 

datasets while 57% and 68% for two datasets respectively. The 

Friedmans Test indicated that there was a statistical difference 

among the algorithms with a p-value of 0.0049 which 

according to Atsa’am and Wario (2021), a p-value of ≤ 0.05 for 

a Friedman’s test indicated a statistical difference at a general 

level. The Wilcoxons Rank Sum test (Mann-Whitney U test) 

on Table 5 indicted that each 2 x 2 algorithm comparison 

produced a p-value < 0.05, which indicated that the 

performance of each algorithm was statistically different from 

one another [11]. The study equally compared the developed 

model with the hybrid ensemble voting study of [9] and it was 

seen to have a better improvement in terms of the estimation 

accuracies and the performance metrics.  
 

This work is open to further research by incorporating new data 

and refining the system as more data becomes available. Other 

ensemble techniques should be explored to further improve on 

the study as well as other feature engineering techniques for 

data preprocessing. This is important so that the systems 

adaptability to evolving software development 

trends/technology can be met and to improve the accuracy of 

the model. 
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