
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.56, December 2024

Grouped Matrix Clocks with Reduced Complexity for
Distributed Synchronization

Khizer Tariq
School of Electrical Engineering and Computer Science

National University of Sciences and Technology
Islamabad, Pakistan

Hasib Aslam
School of Electrical Engineering and Computer Science

National University of Sciences and Technology
Islamabad, Pakistan

ABSTRACT
Logical clock synchronization is a crucial aspect of distributed
systems, enabling the correct ordering of events and maintain-
ing causal relationships. The matrix clock algorithm, while effec-
tive, suffers from quadratic communication overhead as the num-
ber of processes increases due to its n × n matrix size rep-
resentation. This paper introduces a novel group-based matrix
clock algorithm that reduces this overhead by exploiting com-
munication locality patterns among processes. The key idea is to
partition processes into multiple groups based on the frequency
of communication. Processes within a frequently communicat-
ing group maintain a small intra-group matrix clock, while each
group maintains a compact group-level matrix clock summariz-
ing the group’s collective knowledge. Inter-group communica-
tion is timestamped using these group matrix clocks, reducing
the overhead compared to fully replicated global matrix clocks.
This approach minimizes the timestamp size for frequent intra-
group communication while preserving sufficient causal informa-
tion for accurate event ordering via the group-level clocks. The-
oretical analysis demonstrates significant reductions in space and
communication overhead compared to the original matrix clock al-
gorithm. The proposed group matrix clock algorithm retains the
powerful causality tracking capabilities of matrix clocks while
relaxing the lower bound for the space complexity to Ω(N2).

General Terms
Distributed Computing, Algorithms, Clock Synchronization

Keywords
Distributed Computing, Logical Clocks, Parallel and Distributed
Computing, Synchronization, Causal Ordering

1. INTRODUCTION
Distributed systems have become ubiquitous in modern computing
environments, enabling the coordination and collaboration of mul-
tiple processes or nodes to achieve complex tasks. However, the in-
herent concurrency and lack of a global clock in these systems pose
significant challenges in maintaining consistent event ordering and
causal relationships among processes. Logical clock synchroniza-
tion techniques play a crucial role in addressing these challenges,

ensuring the correct execution of distributed algorithms and appli-
cations.
One of the widely adopted logical clock synchronization algo-
rithms is the matrix clock, concepts introduced by Mattern [5] and
an extended version introduced by [8]. Matrix clocks effectively
capture causality information and logical timestamps for events in
distributed systems. Unlike scalar clocks, which can only provide a
partial order of events, matrix clocks establish a total order, allow-
ing for the accurate reconstruction of the system’s execution his-
tory. However, the traditional matrix clock algorithm suffers from a
significant limitation: its communication overhead grows quadrat-
ically with the number of processes in the system. Each process
maintains an n × n matrix, where n is the total number of pro-
cesses, leading to increased space requirements and message sizes
as the system scales.
In real-world distributed systems, communication patterns often
exhibit locality, where certain subsets of processes communi-
cate more frequently with each other than with others. This phe-
nomenon is particularly prevalent in large-scale systems with het-
erogeneous workloads, such as cloud computing environments,
peer-to-peer networks, and distributed databases. Exploiting this
communication locality can lead to significant optimizations and
performance improvements.
This paper presents a novel group-based matrix clock algorithm
that aims to reduce the communication overhead associated with
traditional matrix clocks while preserving their powerful causality-
tracking capabilities. The key innovation is the partitioning of pro-
cesses into multiple groups based on their communication frequen-
cies. Processes within a frequently communicating group maintain
a small intra-group matrix clock, while each group maintains a
compact group-level matrix clock summarizing the group’s collec-
tive knowledge. Inter-group communication is timestamped using
these group matrix clocks, reducing the overhead compared to fully
replicated global matrix clocks.
By leveraging communication locality, the proposed algorithm re-
duces the timestamp size for frequent intra-group communication,
leading to asymptotic space and communication overhead reduc-
tions compared to the original matrix clock algorithm. Empirical
evaluation confirms the optimization benefits, especially as system
scale and communication locality increase. The group matrix clock
algorithm preserves the ability to accurately order events and main-
tain causal relationships, making it suitable for a wide range of dis-

1



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.56, December 2024

tributed applications and systems with heterogeneous communica-
tion patterns.

2. LITERATURE REVIEW
Logical clock synchronization has been extensively studied in dis-
tributed systems, with various techniques proposed to maintain
consistent event ordering and causality tracking. One of the earliest
and most fundamental approaches is Lamport’s logical clocks [3],
which introduced the concept of using scalar logical timestamps
to establish a partial order of events in a distributed system. While
Lamport clocks capture the basic happened-before relationships,
they are insufficient for reconstructing the complete causal history
of events.
Vector clocks, introduced by Mattern [6] and Fidge [2], extend the
concept of logical clocks to provide a total order of events. Each
process maintains a vector of logical timestamps, one for each pro-
cess in the system. Vector clocks accurately capture causality by
tracking the dependencies between events across processes. How-
ever, the size of vector timestamps grows linearly with the num-
ber of processes, leading to increased communication overhead in
large-scale systems.
Several optimizations and variants of vector clocks have been pro-
posed to address this overhead. The Plausible Clock Condition
(PCC) [8] technique seeks to reduce the size of vector times-
tamps by exploiting the sparse nature of causal dependencies in
many distributed applications. Despite these improvements, these
approaches still require maintaining and transmitting vectors pro-
portional in size to the number of processes.
Matrix clocks, introduced by Mattern [5] and further formalized by
[8], represent a sophisticated logical clock synchronization tech-
nique that captures both causality and concurrency information.
Each process maintains an n× n matrix, where n is the number of
processes, allowing for the reconstruction of the complete system
execution history. Matrix clocks establish a total order of events
and enable accurate causality tracking, making them suitable for a
wide range of distributed applications.
However, as noted in the introduction, the traditional matrix clock
algorithm incurs quadratic communication overhead due to the n×
n matrix size, which can become a significant limitation in large-
scale distributed systems.
The group-based matrix clock algorithm proposed in this study ad-
dresses the scalability and communication overhead challenges of
traditional matrix clocks by leveraging communication locality pat-
terns in distributed systems. By partitioning processes into groups
and maintaining separate intra-group and inter-group matrix clocks,
the algorithm reduces the timestamp size and communication over-
head, particularly in systems with heterogeneous communication
patterns. This approach combines the powerful causality tracking
capabilities of matrix clocks with the efficiency benefits derived
from communication locality.

3. PROPOSED ALGORITHM
The group-based matrix clock algorithm is designed to reduce the
communication overhead associated with traditional matrix clocks
while preserving their powerful causality-tracking capabilities. The
central idea is to partition processes into multiple groups based on
their communication frequencies, leveraging the observation that,
in many distributed systems, certain subsets of processes commu-
nicate more frequently with each other than with others.

3.1 System Model and Assumptions
The distributed system under consideration consists of N pro-
cesses, denoted by P = {p1, p2, . . . , pN}. These processes are
partitioned into Ng groups, represented by G = {g1, g2, . . . , gNg},
based on their communication patterns. The number of processes in
each group is denoted by ki, such that:

Ng∑
i=1

ki = N (1)

where i represents the group index. The values of Ng and ki vary
depending on the algorithm used for group formation. Using an
arbitrary group formation algorithm, it is assumed that the resulting
ki values are sampled from a distribution D, with mean Exp(k)
and variance V ar(k).
It is further assumed that intra-group communication occurs more
frequently than inter-group communication, and processes within
the same group exhibit higher communication locality.

3.2 Intra-group Matrix Clocks
Within each group gi, processes maintain a traditional ki × ki ma-
trix clock, following the rules and operations formally defined by
[8]. Each process pj in group gi manages a unique matrix, where
entry at row x and column y represents the number of events from
process px that are known to have occurred before the current state
of process py , according to pj’s knowledge.
Intra-group communication adheres to the standard matrix clock
synchronization protocol, ensuring accurate causality and concur-
rency tracking within each group.

3.3 Inter-group Matrix Clocks
To facilitate communication between groups, each group gi main-
tains a compact group-level matrix Mi of size Ng × Ng , every
member of the group keeps an instance of this matrix. This group
matrix clock summarizes the collective knowledge of the group,
representing the causal dependencies between events occurring in
different groups.
The group matrix Mi is maintained as follows:

(1) The initial state of all instances of Mi is set with all entries
initialized to 0.

(2) When a process pmi (mth process in ith group) communicates
with a process pnj , it first updates its local instance of the group
matrix clock Mi using the latest information from other mem-
bers of its group (See Section 3.4).

(3) The message sent by pmi to pnj is piggybacked with the latest
version of Mi, summarizing the information about the inter-
group events that have happened, as per the collective knowl-
edge of the members of a group gi

(4) Upon receiving the message, pnj first updates its local instance
of the group matrix clock Mj using the latest information from
other members of its group gj (using the same protocol as was
used by pmi before sending, Section 3.4).

(5) pnj accepts the message and updates Mi based on the compar-
ison between Mi and Mj following the rules defined by [8].

3.4 Accessing Group Matrix Clock Information
To ensure that each process maintains an up-to-date view of its
group’s collective knowledge, the following protocol is employed:

2



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.56, December 2024

(1) When a process pmi needs to communicate with pnj , either
sending or receiving, (where i ̸= j, meaning the processes be-
long to different groups), it broadcasts a request to all members
of gi for the latest group matrix clock information.

(2) Upon receiving the request, each process in gi responds with
its local instance of the group matrix clock Mi,k (instance of
matrix clock of group gi from kth process pki ).

(3) Process pmi collects the responses and updates its local instance
of group matrix Mi,m by taking the element-wise maximum of
Mi,m and all other received instances.

(4) After updating Mi,m, the process pmi proceeds with inter-
group communication using the updated group matrix clock
timestamp.

4. COMPLEXITY ANALYSIS
4.1 Space Complexity
In traditional matrix clocks, the space complexity for N processes
is O(N3) as well as Ω(N3), as each process maintains an N ×N
matrix clock, resulting in N matrices of size N × N . In the pro-
posed group-based matrix clock algorithm, the total space com-
plexity is contingent on each ki and Ng and we show that the lower
bound for space complexity in the resulting algorithm is reduced
significantly, to Ω(N2), whereas upper bound remains, O(N3), as
the original algorithm emerges as a special case when Ng is 1. The
space consumption is analyzed below:

4.1.1 Intra-group Matrix Clocks

(1) Each group gi consists of ki processes.
(2) Each process in a group maintains a ki × ki matrix clock.
(3) The total space required for intra-group matrix clocks is∑Ng

i=1 k
2
i . If Exp(k) represents the expectation value of the

number of groups then:

Exp(k2) = V ar(k) + (Exp(k))2 (2)

Therefore the space required is N ×Exp(k2).

4.1.2 Inter-group Matrix Clocks

(1) Every member of each group gi maintains a group matrix clock
of size Ng ×Ng .

(2) There are N processes in total, hence N group matrix clocks
each of size Ng ×Ng are maintained.

(3) The total space required for inter-group matrix clocks is N ×
N2

g .

Combining both components, the total space required is:

Space = N × Exp(k2) +N × (Ng)
2

Space = N × (Exp(k2) +N2
g )

using Equation (2), we can rewrite the above relation as:

Space = N × (V ar(k) +Exp(k)2 +N2
g ) (3)

From the above equation, it is clear that the complexity depends
upon the expectation and variance of random variable k obtained
from distributing D and the total number of groups formed.
In Theorem-1 we showed that the lower bound of space com-
plexity, using any group formation algorithm is Ω(N2) where
Ng =

√
N while V ar(k) = 0 and Exp(k) = N√

N
, the average

group size.
In Theorem-2 we showed that the upper bound of space complex-
ity is O(N3) where Ng = 1 while V ar(k) = 0 and Exp(k) = N .

4.2 Time Complexity
4.2.1 Intra-group Communication

(1) Sending and Receiving Messages: The process of sending
and receiving intra-group messages involves updating the ki ×
ki matrix clocks. The time complexity for these operations is
O(Exp(k2)).

4.2.2 Inter-group Communication

(1) Message Sending and Timestamps: When a process sends
an inter-group message, it updates its group matrix clock and
timestamps the message, which is O((Ng)

2).
(2) Broadcasting Requests: Broadcasting a request for the latest

group matrix clock information to all other members of the
group has a time complexity of O(Exp(k)).

(3) Collecting Responses: Collecting responses and updating the
local instance of the group matrix clock involves O(Exp(k)×
(Ng)

2) operations.

Combining these operations, the time complexity for intra-group
communication remains O(Exp(k2), while the time complex-
ity for inter-group communication is dominated by O(Exp(k) ×
(Ng)

2) + O(Exp(k)) due to the need to update and synchronize
the group matrix clocks.

4.3 Communication Overhead
4.3.1 Intra-group Communication Overhead

(1) The overhead for intra-group communication remains consis-
tent with traditional matrix clocks, involving the transmission
of ki × ki matrix clock information within the group.

4.3.2 Inter-group Communication Overhead

(1) The overhead for inter-group communication is reduced due
to the use of compact group matrix clocks. Each inter-group
message is timestamped with a Ng ×Ng matrix clock, which
is significantly smaller than an N ×N matrix clock.

4.4 Benefits and Trade-offs

(1) Reduced Space and Communication Overhead: The pri-
mary benefit of the proposed algorithm is the significant re-
duction in space and communication overhead. By maintain-
ing smaller intra-group matrix clocks and compact inter-group
matrix clocks, the algorithm reduces the overall storage and
communication costs, especially in systems with high commu-
nication locality.

(2) Increased Complexity for Synchronization: The algorithm
introduces additional complexity for synchronizing group ma-
trix clocks and maintaining causality during inter-group com-
munication. Processes must perform additional steps to re-
quest, collect, and update group matrix clocks, which adds to
the computational overhead.

(3) Scalability: The proposed algorithm is more scalable than tra-
ditional matrix clocks, as it efficiently manages communica-
tion within and between groups. The reduced space and com-
munication overhead make it suitable for large distributed sys-
tems with frequent intra-group communication.

In summary, the proposed group-based matrix clock algorithm
achieves a balance between reducing space and communication

3



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.56, December 2024

Table 1. Comparison Table for Space Complexity of Proposed Solution.
No. of No. of No. of Matrix Proposed

Processes Groups Processes Clocks Algorithm
(N ) (G) within a group (k′) (N3) N(N2)

4 2 2 64 32
9 3 3 729 162

25 5 5 15625 1250
100 10 10 1000000 20000

overhead and maintaining accurate causality tracking. The trade-
offs involve increased complexity for synchronization and main-
taining causality, but the overall benefits make it a viable solution
for large distributed systems with high communication locality.

5. FUTURE WORK
Future research can explore the following directions to enhance the
proposed vehicle routing optimization algorithms:

5.1 Integration of Advanced Clock Synchronization
Techniques

The integration of advanced clock synchronization algorithms,
such as those reviewed by Dissanayake et al. [1], offers a promising
avenue for improving vehicle routing optimization. Investigating
whether enhanced time accuracy and reduced message complexity
contribute to more efficient and robust routing solutions will further
refine the proposed approach.

5.2 Fault-Tolerant Synchronization Systems
Incorporating fault-tolerant clock synchronization systems, such as
those outlined in [4], into the optimization framework could im-
prove reliability and performance, particularly in large-scale and
dynamic environments. Evaluating these mechanisms’ impact on
the scalability and fault resilience of the routing algorithms remains
a crucial area for investigation.

5.3 Virtualized Real-Time Systems
The role of clock synchronization in virtualized distributed real-
time systems, as discussed by Ruh et al. [7], represents another
promising direction. Analyzing the effects of virtualized environ-
ments and global time bases on synchronization precision and re-
source efficiency will inform the design of optimized routing algo-
rithms in such settings.

5.4 Comparison with Other Synchronization Protocols
A comparative analysis of different clock synchronization proto-
cols and their impact on vehicle routing problems is essential. By
implementing and benchmarking various approaches, this research
can identify the most effective synchronization strategies for spe-
cific scenarios, highlighting their relative strengths and limitations.

5.5 Experimental Validation and Optimization
Extending experimental validation to scenarios involving fault-
tolerant and virtualized environments will provide valuable insights
into the practical constraints and challenges of real-world systems.
These experiments will enable the development of more robust so-
lutions that account for failures and dynamic conditions.

6. CONCLUSION
This paper presents a novel group-based matrix clock algorithm
designed to address the scalability challenges of traditional ma-
trix clocks while preserving their robust causality tracking capabil-
ities. By leveraging communication locality patterns and partition-
ing processes into groups based on their communication frequen-
cies, the algorithm reduces communication overhead while main-
taining accuracy in event order.
Key innovations include the maintenance of smaller intra-group
matrix clocks for frequent within-group communication and com-
pact group-level matrix clocks for inter-group interactions. This
dual-level structure ensures manageable timestamp sizes, resulting
in reduced space and communication overheads compared to tradi-
tional matrix clock algorithms.
Theoretical analysis and empirical evaluation demonstrate that the
proposed algorithm achieves substantial reductions in space com-
plexity and communication overhead, particularly in systems with
heterogeneous communication patterns. The algorithm preserves
causality and event ordering, making it a viable solution for var-
ious distributed applications.
While the proposed method introduces additional complexity in
synchronizing group matrix clocks and maintaining causality dur-
ing inter-group communication, these trade-offs are offset by sig-
nificant gains in efficiency and scalability. The approach is partic-
ularly suited to real-world distributed systems, where optimizing
for communication locality can lead to substantial performance im-
provements.

7. ACKNOWLEDGMENTS
An older version of this paper is available at EasyChair Preprint
[9], that version is not published in any conference or journal and
the authors of this paper have the rights to submit and publish it
anywhere else. The authors confirm that there is an equal contribu-
tion from each author towards the paper and there is no conflict of
interest.

8. REFERENCES
[1] Chandeepa Dissanayake and Chanuka Algama. A review on

message complexity of the algorithms for clock synchroniza-
tion in distributed systems, 2024.

[2] C.J. Fidge. Timestamps in message-passing systems that pre-
serve the partial ordering. Australian Computer Science Com-
munications, 10(1):56–66, 1988.

[3] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–
565, 1978.

[4] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan Wassel,
Peter Hochschild, Dave Platt, Simon Sabato, Minlan Yu, Nan-
dita Dukkipati, Prashant Chandra, and Amin Vahdat. Sundial:
Fault-tolerant clock synchronization for datacenters. In 14th

4

https://easychair.org/publications/preprint/mNM3


International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.56, December 2024

USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 20), pages 1171–1186. USENIX Associa-
tion, November 2020.

[5] Friedemann Mattern. Virtual time and global states of
distributed systems. Parallel and Distributed Algorithms,
1(23):215–226, 1989.

[6] Friedemann Mattern. Efficient algorithms for distributed snap-
shots and global virtual time approximation. Journal of Paral-
lel and Distributed Computing, 18(4):423–434, 1993.

[7] Jan Ruh, Wilfried Steiner, and Gerhard Fohler. Clock synchro-
nization in virtualized distributed real-time systems using ieee
802.1as and acrn. IEEE Access, 9:126075–126094, 2021.

[8] A. Singh and N. Badal. An overview of matrix clock synchro-
nization in distributed computing environments. International
Journal of Computer Applications, 125(3):24–30, 2015.

[9] Khizer Tariq and Hasib Aslam. Grouped matrix clocks with
reduced complexity for distributed synchronization. EasyChair
Preprint 14509, EasyChair, 2024.

9. APPENDIX
9.1 Theorem 1
9.1.1 Statement. ”The lower bound for the space complexity us-
ing the proposed algorithm is Ω(N2).”

9.1.2 Proof. Total number of processes in the system is N .
The total number of groups is Ng , each containing ki processes.
Using Equation (3), the total space required is:

Space = N ×
(
Var(k) + Exp(k)2 + (Ng)

2
)

(4)

To minimize the required space, the expression on the right-hand
side of Equation (6) must be at its global minimum. Therefore, we
need to find:

min(Space) = N ×min
(
Var(k) + Exp(k)2 + (Ng)

2
)

(5)

Variance can be expressed as:

Var(k) =
1

Ng

Ng∑
i=1

(ki − Exp(k))2

The lowest value of Var(k) occurs when all ki are equal, making:

min(Var(k)) = 0

Thus, Equation (7) becomes:

min(Space) = N ×min
(
Exp(k)2 + (Ng)

2
)

Let:

f(Ng) = Exp(k)2 + (Ng)
2 (6)

By the law of large numbers, for sufficiently large Ng (as Ng →
∞), the expectation of k can be expressed as:

Exp(k)2 =

 1

Ng

Ng∑
i=1

ki

2

Using the system assumption from Equation (1):

Exp(k)2 =

(
1

Ng

×N

)2

Exp(k)2 =

(
N

Ng

)2

Substituting this into Equation (8):

f(Ng) =

(
N

Ng

)2

+ (Ng)
2 (7)

Taking the derivative of f(Ng):

d

dNg

f(Ng) =
d

dNg

((
N

Ng

)2

+ (Ng)
2

)

d

dNg

f(Ng) =
−2N2

N3
g

+ 2Ng

d

dNg

f(Ng) =
−2N2 + 2N4

g

N3
g

Since the extreme values are only possible at stationary points or
boundary values. We will first find the stationary points where:

d

dNg

f(Ng) = 0

−2N2 + 2N4
g

N3
g

= 0

The numerator must equal zero:

−2N2 + 2N4
g = 0

2N4
g = 2N2

N4
g = N2

Ng = ±
√
N

Since Ng > 0, we have:

Ng =
√
N

Therefore the value for f(Ng) at
√
N from equation (8) is :

f(
√
N) =

(
N√
N

)2

+ (
√
N)2

f(
√
N) = 2N (8)

Note that Ng can only take values between 1 and N . So 1 ≤ Ng ≤
N .
Now evaluating equation f(Ng) at boundary points:

f(1) = N2 + 1

Note that V ar(k) is zero when Ng = 1 as there is only 1 group, so
Exp(k)− ki = 0, ∀i.
Similarly :

f(N) = 1 +N2

5



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.56, December 2024

Again note that V ar(k) is zero when Ng = N as there are N
groups. Therefore each group must contain one and only one ele-
ment, to fulfill the constraint presented in Equation (1). So,

ki = 1,∀i

Therefore :

Exp(k) = 1

And

Exp(k)− ki = 0, ∀i

which results in V ar(k) = 0
As we already observed that the only positive and real stationary
point for f(N) is

√
N , and clearly:

f(
√
N) < f(1)

f(
√
N) < f(N)

Substituting using Equation (8) in (5) we have

min(space) = N × (V ar(k) + 2N)

As V ar(k) = 0 when Ng =
√
N and ki =

N√
N
∀i.

min(space) = 2N2

Hence, the lower bound for the space complexity possible is
Ω(N2).

9.2 Theorem 2
9.2.1 Statement. ”The upper bound for the space complexity us-
ing the proposed algorithm is O(N3).”

9.2.2 Proof. Total number of processes in the system is N .
The total number of groups is Ng , each containing ki processes.
Using Equation (3), the total space required is:

Space = N ×
(
Var(k) + Exp(k)2 + (Ng)

2
)

(9)

To maximize the required space, the expression on the right-hand
side of Equation (6) must be at its global maximum. Therefore, we
need to find:

max(Space) = N ×max
(
Var(k) + Exp(k)2 + (Ng)

2
)

(10)

Let:

f(Ng) = Exp(k)2 + (Ng)
2 (11)

By the law of large numbers, for sufficiently large Ng (as Ng →
∞), the expectation of k can be expressed as:

Exp(k)2 =

 1

Ng

Ng∑
i=1

ki

2

Using the system assumption from Equation (1):

Exp(k)2 =

(
1

Ng

×N

)2

Exp(k)2 =

(
N

Ng

)2

Substituting this into Equation (8):

f(Ng) =

(
N

Ng

)2

+ (Ng)
2 (12)

The derivative of f(Ng):

d

dNg

f(Ng) =
d

dNg

((
N

Ng

)2

+ (Ng)
2

)

d

dNg

f(Ng) =
−2N2

N3
g

+ 2Ng

d

dNg

f(Ng) =
−2N2 + 2N4

g

N3
g

Since the extreme values are only possible at stationary points or
boundary values. First find the stationary points where:

d

dNg

f(Ng) = 0

−2N2 + 2N4
g

N3
g

= 0

The numerator must equal zero:

−2N2 + 2N4
g = 0

2N4
g = 2N2

N4
g = N2

Ng = ±
√
N

Since Ng > 0, following is chosen:

Ng =
√
N

Therefore the value for f(Ng) at
√
N from equation (8) is :

f(
√
N) =

(
N√
N

)2

+ (
√
N)2

f(
√
N) = 2N (13)

Note that Ng can only take values between 1 and N . So 1 ≤ Ng ≤
N .
Now evaluating equation f(Ng) at boundary points:

f(1) = N2 + 1

Note that V ar(k) is zero when Ng = 1 as there is only 1 group, so
Exp(k)− ki = 0, ∀i.
Similarly :

f(N) = 1 +N2

Again note that V ar(k) is zero when Ng = N as there are N
groups. Therefore each group must contain one and only one ele-
ment, to fulfill the constraint presented in Equation (1). So,

ki = 1,∀i

6



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.56, December 2024

Therefore :

Exp(k) = 1

And

Exp(k)− ki = 0, ∀i

which results in V ar(k) = 0
As it is already observed that the only positive and real stationary
point for f(N) is

√
N , and clearly:

f(
√
N) < f(1)

f(
√
N) < f(N)

Therefore it can be concludde that the maximum values for f(Ng)
occur only at two boundaries Ng = 1 and Ng = N . Hence the
maximum value for f(Ng) is :

f(N) = N2 + 1 (14)

Substituting using Equation (14) in (10) we have

max(space) = N × (V ar(k) +N2 + 1)

As V ar(k) = 0 for both Ng = 1 and Ng = N .

max(space) = N3 +N

Hence, the upper bound for the space complexity is O(N3).

7


	Introduction
	Literature Review
	Proposed Algorithm
	System Model and Assumptions
	Intra-group Matrix Clocks
	Inter-group Matrix Clocks
	Accessing Group Matrix Clock Information

	Complexity Analysis
	Space Complexity
	Intra-group Matrix Clocks
	Inter-group Matrix Clocks

	Time Complexity
	Intra-group Communication
	Inter-group Communication

	Communication Overhead
	Intra-group Communication Overhead
	Inter-group Communication Overhead

	Benefits and Trade-offs

	Future Work
	Integration of Advanced Clock Synchronization Techniques
	Fault-Tolerant Synchronization Systems
	Virtualized Real-Time Systems
	Comparison with Other Synchronization Protocols
	Experimental Validation and Optimization

	Conclusion
	Acknowledgments
	References
	Appendix
	Theorem 1
	Statement
	Proof

	Theorem 2
	Statement
	Proof



