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ABSTRACT 
Network in Network is an important extension of the deep 

convolution neural network that uses a shallow multilayer 

perceptron (MLP), a nonlinear function, to replace the linear 

filter. In this article, we propose to replace convolution layers 

with convolution modules. The main feature of this architecture 

is the improved utilization of computing resources inside the 

network. This has been achieved through a carefully crafted 

design that allows for increased network depth and width while 

keeping the compute budget constant. The experimental results 

on the CIFAR10 dataset demonstrate the effectiveness of the 

proposed method. 
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1. INTRODUCTION 
We Convolutional Neural Networks (CNN) have achieved 

state-of-the-art performance in the tasks of image classification 

and object detection. They are organized in successive 

calculation layers alternating between convolution, activation 

function and pooling. In a convolutional layer, linear filters are 

used for convolution. Convolution layers can be improved by 

replacing the linear filter with a linear convolution module 

which incorporates several types and sizes of convolution 

filters. In this article, we propose to modify the convolution 

layer of size 5x5 exploited inside the ”MLPconv” structure by 

a convolution module which makes it possible to increase the 

depth and the width of the network while maintaining the 

computation budget constant. The contributions of this article 

are:  

• A convolution module is proposed and used as convolutional 

filters.  

• We propose a new architecture for the MLPconv layers which 

allows to have models with considerably improved 

performances. 

 • We present a detailed experimental study of deep model 

architectures that ex amines in depth several important aspects 

of the new MLPconv layers . 

• The proposed network significantly outperforms NiN in 

reducing the test error rate on the CIFAR10 dataset.  

The rest of this article is organized as follows: In Sect. 2, an 

overview of related works is given. Section 3 is about strategy. 

Experimental evaluations and comparative analysis are 

presented and discussed in Sect. 4. Section 5 is devoted to 

implementation details. The work is concluded in the last 

section  

2. RELATED WORKS 
Various CNN models are proposed since the remarkable 

performance of AlexNet on the ImageNet database in 2012. 

These innovations were mainly due to the reorganization of 

different layers and the design of new blocks or the exploitation 

of multipath. 

Zeiler and Fergus introduced a de-convolutional neural 

network [1] which reduced the error rate from 16.4% to 11.7% 

thanks to a modification in the topology of AlexNet by 

reducing both the size of the filters of the first layer from (11 x 

11) up to (7 x 7) and increase the number of convolution kernels 

for the last three convolution layers. In 2014, several 

architectures with different numbers of layers ranging from 11 

to 19 are proposed in [2]. In the VGG-16 topology, the 

convolution filters (7x7) are replaced by 3 size convolution 

filters (3x3) in order to increase the number of activation 

functions exploited and to keep the same resulting dimension 

by reducing the complexity. of calculation and the number of 

parameters. It is noted that the number of convolution kernels 

of VGG 16 [2] starts from 64 and increases by a factor of 2 for 

every 2 convolution layers. 

GoogLeNet [3] was introduced in 2014 by Szegedy et al. The 

main target of this architecture was to reduce the computational 

cost and the number of parameters while offering high 

precision thanks to the reduction of the channel dimension. 

Exploiting the 1x1 convolution layer before the 3x3 and 5x5 

layers. In the classifier of architecture [4] and [3], a global 

average pooling layer is exploited instead of using an all-

connected layer which is traditionally used in classical CNNs 

for the purpose of reducing the connection density. 

Generally speaking, one can notice from this literature, that 

there are six directions that can be used to improve the 

performance of CNN: Increasing the width; The increase in 

depth; changing convolution [5 - 9] or pooling [10-18] 

parameters, change the activation function and reduce the 

number of parameters and resources. 

We consider the first three previous directions to propose a new 

approach. convolution which incorporates multiple filters 

instead of layer operated convolution. As a result, we obtain a 

new NiN architecture [4] that is deeper and much more precise. 

3. PROPOSED MODEL 

3.1 Network in Network (NiN) 
The "Network In Network" model [4] consists of several 

"MLPconv" structures which are stacked in a successive way 

and a global average pooling layer is used instead of the fully 
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connected layers. Figure 1 illustrates the overall structure of the 

architecture. 

 

 

Figure 1: « MLPConvinception.» structure. 

In terms of accuracy, NIN [4] generates an error rate equivalent 

to 10.41% using the dropout layer and without data 

augmentation. Using these layers, NIN [11] obtained an error 

rate equivalent to 8.81%. 

 

3.2 MLPconvinception structure:  

Compared to the original architecture [4], the convolution layer 

is replaced by a convolution module. A stack of two 

convolution layers of size 3x3 is used in parallel with a single 

5x5 layer and a single max pooling layer of size 3x3. Figure 2 

illustrates the architecture of « MLPConvinception». 

 

Figure 2: « MLPConvinception.» structure. 

Table 1: The numbers of the convolution kernels 

Layers Conv 3x3 Conv 5x5 MLP-1 MLP-2 

Numbers  96 96 160 96 

 

For all « MLPConvinception.» structures, the numbers of 

convolution kernels are the same. Table 1 describes the 

numbers of the kernels. 

3.3 NINinception structure: 
We describe our different NINinception model configurations 

for CIFAR-10.  In this model, convolutional layers follow two 

simple design rules: first, layers that participate in 

MLPconvinception have the same output function feature map 

size and the same number of filters; second, the max pooling 

layer  leveraged inside MLPconvinception should generate the 

same size output function feature map. We perform 

downsampling using the maximum pooling layers of size 3×3 

which have a stride of 2 (3×3/ST.2). These layers are usually 

inserted after the first two MLPconvinception structures. The 

network ends with a global average pooling layer and a softmax 

layer. Figure 3 shows the overall structure of NINinception. 

 

Figure 3: The overall structure of NINinception. 

3.4 Regularization layers in 

MLPConvinception 

A Dropout layer is added after each pooling layer that is 

located between the MLPconvinception. This layer also 

produces a regularization effect to avoid over-training of the 

network. 

Data augmentation layer in NINinception: 

Data augmentation is a strategy for dramatically increasing the 

diversity of data available for training models, without the need 

to collect new data, i.e. creating modified copies of each 

instance in a database. Data augmentation techniques such as 

cropping, padding, and horizontal flipping are commonly used 

to train large neural networks. 

4. Experimental result : 
We evaluate our configurations on a reference data set:  

CIFAR-10. The CIFAR-10 (Canadian Institute for Advanced 

Research) dataset consists of 60,000 RGB images of size 32×32 

grouped into 10 image classes. The dataset is divided into five 

training packages and one test package, each containing 10,000 

images. The training packages contain exactly 5000 images of 

each class. The test batch contains exactly 1000 randomly 

selected images from each class. 

4.1 Dropout effect in NINinception: 
Dropout has proven to be an effective technique for 

regularizing different networks  because it reduced the error 

rate with around 1.5%. 

4.2 The effect of data augmentation in 

NINinception 
The effect of data augmentation in NINinception : 

The exploitation of this layer has shown a positive effect in 

reducing the classification test error and automatically leads to 
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significantly better results than learning without exploiting this 

layer. 

4.3 NINinception performance: 
In terms of accuracy, the NINinception model obtained an 

accuracy rate equivalent to 92.31% using normalization and 

regularization and without data augmentation. By using the 

data augmentation layer (translation and horizontal flip), the 

model obtained an accuracy rate equivalent to 92.72%. The 

experimental results obtained by averaging over 5 runs with a 

mini-batch size equivalent to 128 also demonstrate the 

effectiveness of the proposed idea of replacing convolution 

layers with convolution modules. 

Table 2 represents a comparison between our work and the state 

of the art on the CIFAR-10 database with/without the use of 

data augmentation. 

 
Ref Method Error (%) 

No data augmentation 

[10] Stochastic pooling   15.13 

[19] Maxout network (k=2)   11.68 

[5] NIN   10.41 

Our NINinception 7.69 

[20] DSN   9.69 

[24] MIM (k=2)   8.52±0.20 

Data augmentation 

[19] Maxout network (k=2)   9.38 

[5] NIN [11] 8.81 

[20] DSN [15] 8.22 

Our NINinception 7.28 

[21] ResNet 6.43 

[22] Wide Resnet(28,10) 3.89 

[23] ResNeXt 3.58 

 

5. IMPLEMENTATION details: 
During the training, we exploited the stochastic gradient 

descent with a Momentum equivalent to 0.9 in all the 

experiments carried out. The base learning rate is equivalent to 

0.005 and decreases by a factor of 10 every 10 epochs. The 

weight loss is equivalent to 0.0005. We initialized the weights 

in each layer from a normal to mean random distribution with 

a standard deviation equivalent to 0.01. We initialized neural 

biases in all convolution layers, as well as MLP layers with the 

constant 0. All experiments performed are run for a total of 160 

epochs. All models used in this study were compiled with CPU 

support. All experimental studies were conducted in Google 

cloud environment on Linux operating system running on Dell 

Intel Core i5-2450M 2.50GHz processor and 6GB DDR4–2400 

RAM. All codes are created with a python algorithm based on 

the "TensorFlow" deep learning framework. 

6. CONCLUSION 

In this paper, we proposed a new convolutional network 

architecture, which we call NINinception. In this architecture, 

we have replaced the convolution layer with a convolution 

module. NINinception tend to produce improved accuracy with 

increasing number of settings, with no signs of performance 

degradation or overfitting. The results are described as 

acceptable compared to other architectures tested on CIFAR-

10 datasets. Future work should focus on designing new 

versions of CNN models that can meet or exceed the level of 

accuracy of this proposed model requiring shorter training time 

with less parameter consumption. 
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