
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.56, December 2024

35

Going More Deeper with Convolutions for Network in

Network

Neji Kouka
MARS laboratory, ISITCom

hammam Sousse, University of
Sousse, Tunisia

Jawaher Ben Khalfa
MARS laboratory, ISITCom

hammam Sousse, University of
Sousse, Tunisia

Jalel Eddine Hajlaoui
MARS laboratory, ISITCom

hammam Sousse University of
Sousse, Tunisia

ABSTRACT
Network in Network is an important extension of the deep

convolution neural network that uses a shallow multilayer

perceptron (MLP), a nonlinear function, to replace the linear

filter. In this article, we propose to replace convolution layers

with convolution modules. The main feature of this architecture

is the improved utilization of computing resources inside the

network. This has been achieved through a carefully crafted

design that allows for increased network depth and width while

keeping the compute budget constant. The experimental results

on the CIFAR10 dataset demonstrate the effectiveness of the

proposed method.

Keywords

Convolutional Neural Networks (CNNs), Image recognition,

Network in Network (NiN).

1. INTRODUCTION
We Convolutional Neural Networks (CNN) have achieved

state-of-the-art performance in the tasks of image classification

and object detection. They are organized in successive

calculation layers alternating between convolution, activation

function and pooling. In a convolutional layer, linear filters are

used for convolution. Convolution layers can be improved by

replacing the linear filter with a linear convolution module

which incorporates several types and sizes of convolution

filters. In this article, we propose to modify the convolution

layer of size 5x5 exploited inside the ”MLPconv” structure by

a convolution module which makes it possible to increase the

depth and the width of the network while maintaining the

computation budget constant. The contributions of this article

are:

• A convolution module is proposed and used as convolutional

filters.

• We propose a new architecture for the MLPconv layers which

allows to have models with considerably improved

performances.

 • We present a detailed experimental study of deep model

architectures that ex amines in depth several important aspects

of the new MLPconv layers .

• The proposed network significantly outperforms NiN in

reducing the test error rate on the CIFAR10 dataset.

The rest of this article is organized as follows: In Sect. 2, an

overview of related works is given. Section 3 is about strategy.

Experimental evaluations and comparative analysis are

presented and discussed in Sect. 4. Section 5 is devoted to

implementation details. The work is concluded in the last

section

2. RELATED WORKS
Various CNN models are proposed since the remarkable

performance of AlexNet on the ImageNet database in 2012.

These innovations were mainly due to the reorganization of

different layers and the design of new blocks or the exploitation

of multipath.

Zeiler and Fergus introduced a de-convolutional neural

network [1] which reduced the error rate from 16.4% to 11.7%

thanks to a modification in the topology of AlexNet by

reducing both the size of the filters of the first layer from (11 x

11) up to (7 x 7) and increase the number of convolution kernels

for the last three convolution layers. In 2014, several

architectures with different numbers of layers ranging from 11

to 19 are proposed in [2]. In the VGG-16 topology, the

convolution filters (7x7) are replaced by 3 size convolution

filters (3x3) in order to increase the number of activation

functions exploited and to keep the same resulting dimension

by reducing the complexity. of calculation and the number of

parameters. It is noted that the number of convolution kernels

of VGG 16 [2] starts from 64 and increases by a factor of 2 for

every 2 convolution layers.

GoogLeNet [3] was introduced in 2014 by Szegedy et al. The

main target of this architecture was to reduce the computational

cost and the number of parameters while offering high

precision thanks to the reduction of the channel dimension.

Exploiting the 1x1 convolution layer before the 3x3 and 5x5

layers. In the classifier of architecture [4] and [3], a global

average pooling layer is exploited instead of using an all-

connected layer which is traditionally used in classical CNNs

for the purpose of reducing the connection density.

Generally speaking, one can notice from this literature, that

there are six directions that can be used to improve the

performance of CNN: Increasing the width; The increase in

depth; changing convolution [5 - 9] or pooling [10-18]

parameters, change the activation function and reduce the

number of parameters and resources.

We consider the first three previous directions to propose a new

approach. convolution which incorporates multiple filters

instead of layer operated convolution. As a result, we obtain a

new NiN architecture [4] that is deeper and much more precise.

3. PROPOSED MODEL

3.1 Network in Network (NiN)
The "Network In Network" model [4] consists of several

"MLPconv" structures which are stacked in a successive way

and a global average pooling layer is used instead of the fully

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.56, December 2024

36

connected layers. Figure 1 illustrates the overall structure of the

architecture.

Figure 1: « MLPConvinception.» structure.

In terms of accuracy, NIN [4] generates an error rate equivalent

to 10.41% using the dropout layer and without data

augmentation. Using these layers, NIN [11] obtained an error

rate equivalent to 8.81%.

3.2 MLPconvinception structure:

Compared to the original architecture [4], the convolution layer

is replaced by a convolution module. A stack of two

convolution layers of size 3x3 is used in parallel with a single

5x5 layer and a single max pooling layer of size 3x3. Figure 2

illustrates the architecture of « MLPConvinception».

Figure 2: « MLPConvinception.» structure.

Table 1: The numbers of the convolution kernels

Layers Conv 3x3 Conv 5x5 MLP-1 MLP-2

Numbers 96 96 160 96

For all « MLPConvinception.» structures, the numbers of

convolution kernels are the same. Table 1 describes the

numbers of the kernels.

3.3 NINinception structure:
We describe our different NINinception model configurations

for CIFAR-10. In this model, convolutional layers follow two

simple design rules: first, layers that participate in

MLPconvinception have the same output function feature map

size and the same number of filters; second, the max pooling

layer leveraged inside MLPconvinception should generate the

same size output function feature map. We perform

downsampling using the maximum pooling layers of size 3×3

which have a stride of 2 (3×3/ST.2). These layers are usually

inserted after the first two MLPconvinception structures. The

network ends with a global average pooling layer and a softmax

layer. Figure 3 shows the overall structure of NINinception.

Figure 3: The overall structure of NINinception.

3.4 Regularization layers in

MLPConvinception

A Dropout layer is added after each pooling layer that is

located between the MLPconvinception. This layer also

produces a regularization effect to avoid over-training of the

network.

Data augmentation layer in NINinception:

Data augmentation is a strategy for dramatically increasing the

diversity of data available for training models, without the need

to collect new data, i.e. creating modified copies of each

instance in a database. Data augmentation techniques such as

cropping, padding, and horizontal flipping are commonly used

to train large neural networks.

4. Experimental result :
We evaluate our configurations on a reference data set:

CIFAR-10. The CIFAR-10 (Canadian Institute for Advanced

Research) dataset consists of 60,000 RGB images of size 32×32

grouped into 10 image classes. The dataset is divided into five

training packages and one test package, each containing 10,000

images. The training packages contain exactly 5000 images of

each class. The test batch contains exactly 1000 randomly

selected images from each class.

4.1 Dropout effect in NINinception:
Dropout has proven to be an effective technique for

regularizing different networks because it reduced the error

rate with around 1.5%.

4.2 The effect of data augmentation in

NINinception
The effect of data augmentation in NINinception :

The exploitation of this layer has shown a positive effect in

reducing the classification test error and automatically leads to

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.56, December 2024

37

significantly better results than learning without exploiting this

layer.

4.3 NINinception performance:
In terms of accuracy, the NINinception model obtained an

accuracy rate equivalent to 92.31% using normalization and

regularization and without data augmentation. By using the

data augmentation layer (translation and horizontal flip), the

model obtained an accuracy rate equivalent to 92.72%. The

experimental results obtained by averaging over 5 runs with a

mini-batch size equivalent to 128 also demonstrate the

effectiveness of the proposed idea of replacing convolution

layers with convolution modules.

Table 2 represents a comparison between our work and the state

of the art on the CIFAR-10 database with/without the use of

data augmentation.

Ref Method Error (%)

No data augmentation

[10] Stochastic pooling 15.13

[19] Maxout network (k=2) 11.68

[5] NIN 10.41

Our NINinception 7.69

[20] DSN 9.69

[24] MIM (k=2) 8.52±0.20

Data augmentation

[19] Maxout network (k=2) 9.38

[5] NIN [11] 8.81

[20] DSN [15] 8.22

Our NINinception 7.28

[21] ResNet 6.43

[22] Wide Resnet(28,10) 3.89

[23] ResNeXt 3.58

5. IMPLEMENTATION details:
During the training, we exploited the stochastic gradient

descent with a Momentum equivalent to 0.9 in all the

experiments carried out. The base learning rate is equivalent to

0.005 and decreases by a factor of 10 every 10 epochs. The

weight loss is equivalent to 0.0005. We initialized the weights

in each layer from a normal to mean random distribution with

a standard deviation equivalent to 0.01. We initialized neural

biases in all convolution layers, as well as MLP layers with the

constant 0. All experiments performed are run for a total of 160

epochs. All models used in this study were compiled with CPU

support. All experimental studies were conducted in Google

cloud environment on Linux operating system running on Dell

Intel Core i5-2450M 2.50GHz processor and 6GB DDR4–2400

RAM. All codes are created with a python algorithm based on

the "TensorFlow" deep learning framework.

6. CONCLUSION

In this paper, we proposed a new convolutional network

architecture, which we call NINinception. In this architecture,

we have replaced the convolution layer with a convolution

module. NINinception tend to produce improved accuracy with

increasing number of settings, with no signs of performance

degradation or overfitting. The results are described as

acceptable compared to other architectures tested on CIFAR-

10 datasets. Future work should focus on designing new

versions of CNN models that can meet or exceed the level of

accuracy of this proposed model requiring shorter training time

with less parameter consumption.

7. REFERENCES
[1] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In Computer Vision–ECCV

2014, pages 818–833. Springer, 2014.

[2] K. Simonyan, A. Zisserman, "Very deep convolutional

networks for large-scale image recognition", CoRR, vol.

abs/1409.1556, 2014, [online] Available:

http://arxiv.org/abs/1409.1556

[3] C. Szegedy et al., "Going deeper with

convolutions", CoRR, vol. abs/1409.4842, 2014, [online]

Available: http://arxiv.org/abs/1409.4842

[4] M. Lin, Q. Chen, and S. Yan. Network in network.

International Conference on Learning Representations,

abs/1312.4400, 2014.

[5] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,

and R. Salakhutdinov. Improving neural networks by

preventing co-adaptation of feature detectors. CoRR,

abs/1207.0580, 2012.

[6] D. Ciresan, U. Meier, J. Schmidhuber, "Multi-column

deep neural networks for image classification", CoRR,

vol. abs/1202.2745, 2012, [online] Available:

http://arxiv.org/abs/1202.2745

[7] K. Gregor, Y. LeCun, "Emergence of complex-like cells

in a termporal product network with local receptive

fields", CoRR, vol. abs/1006.0448, 2010, [online]

Available: http://arxiv.org/abs/1006.0448..

[8] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, Y. LeCun,

"What is the best multi-stage architecture for object

recognition?", Proc. IEEE Int. Conf. Comput. Vis., pp.

2146-2153, Sep. 2009.

[9] Y. LeCun, K. Kavukcuoglu, C. Farabet, "Convolutional

networks and applications in vision", Proc. IEEE Int.

Symp. Circuits Syst., pp. 253-256, Jun. 2010

[10] M. D. Zeiler, R. Fergus, "Stochastic pooling for

regularization of deep convolutional neural

networks", CoRR, vol. abs/1301.3557, 2013, [online]

Available: http://arxiv.org/abs/1301.3557

[11] K. He, X. Zhang, S. Ren, J. Sun, "Spatial pyramid pooling

in deep convolutional networks for visual

recognition", Proc. Eur. Conf. Comput. Vis., pp. 346-361,

2014.

[12] T. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, Y. Ma, "PCANet:

A simple deep learning baseline for image

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1202.2745
http://arxiv.org/abs/1006.0448
http://arxiv.org/abs/1301.3557

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.56, December 2024

38

classification?", CoRR, vol. abs/1404.3606, 2014,

[online] Available: http://arxiv.org/abs/1404.3606.

[13] C. Lee, P. Gallagher, Z. Tu, "Generalizing pooling

functions in convolutional neural networks: Mixed gated

and tree", CoRR, vol. abs/1509.08985, 2015, [online]

Available:https://arxiv.org/abs/1509.08985

[14] J. Springenberg, A. Dosovitskiy, T. T. Brox, M.

Riedmiller, "Striving for simplicity: The all convolutional

net", CoRR, vol. abs/1412.6806, 2014,

[online]Available:http://arxiv.org/abs/1412.6806.

[15] K. Gregor, Y. LeCun, "Emergence of complex-like cells

in a termporal product network with local receptive

fields", CoRR, vol. abs/1006.0448, 2010, [online]

Available: http://arxiv.org/abs/1006.0448.

[16] D. Yoo, S. Park, J. Lee, I. Kweon, "Multi-scale pyramid

pooling for deep convolutional representation", Proc.

IEEE Workshop Comput. Vis. Pattern Recognit., pp. 1-5,

Sep. 2015.

[17] B. Graham, "Fractional max-pooling", CoRR, vol.

abs/1412.6071, 2014, [online] Available:

https://arxiv.org/abs/1412.6071

[18] N. Murray, F. Perronnin, "Generalized max pooling",

Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., pp.

2473-2480, Sep. 2014.

[19] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C.

Courville, and Y. Bengio. Maxout networks. In

Proceedings of the 30th International Conference on

Machine Learning (ICML 2013), volume 28 of JMLR

Proceedings, pages 1319– 1327. JMLR.org, 2013.

[20] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu.

Deeply supervised nets. In Proceedings of AISTATS

2015, 2015.

[21] K. He, X. Zhang, S. Ren, J. Sun, "Deep residual learning

for image recognition", CoRR, vol. abs/1512.03385,

2015, [online] Available: http://arxiv.org/abs/1512.03385.

[22] S. Zagoruyko and N. Komodakis. Wide residual networks.

In BMVC, 2016.

[23] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu,

Kaiming He, Aggregated Residual Transformations for

Deep Neural Networks, arXiv:1611.05431.

[24] Z. Liao and G. Carneiro. On the importance of

normalisation layers in deep learning with piecewise

linear activation units. ArXiv preprint arXiv: 1508.00330,

IJCATM : www.ijcaonline.org

http://arxiv.org/abs/1404.3606
https://arxiv.org/abs/1509.08985
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1006.0448
https://arxiv.org/abs/1412.6071
http://arxiv.org/abs/1512.03385

