
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.56, December 2024

39

An Enhanced Grey Wolf Optimization Algorithm for
Efficient Task Scheduling in Mobile Edge Computing

Jafar Aminu
Faculty of Computer

Science and Information
Technology University Putra

Malaysia

Shafinah Kamarudin

Faculty of Computer
Science and Information

Technology University Putra
Malaysia

Rohaya Latip
Faculty of Computer

Science and Information
Technology University Putra

Malaysia

Bashar Umar Kangiwa
Department of Computer

Science
Kebbi State University of

Science and Technology Aleiro

Zurina Mohd Hanafi
Faculty of Computer

Science and Information
Technology University Putra

Malaysia

Ayuba Liman
Department of Computer

Science
Kebbi State University of

Science and Technology Aleiro

ABSTRACT

Mobile edge computing (MEC) is a fundamental paradigm that

brings computational resources closer to end users, minimizing

latency and improving performance for real-time applications.

Task scheduling optimization is generally a significant

difficulty in MEC systems because of the dynamic nature of

edge servers, limited processing resources, and energy

restrictions. This leads to several problems, such as high energy

consumption, makespan, extended task execution durations,

and inefficient resource utilization. An enhanced grey wolf

optimization method that introduces novel strategies to balance

the exploration and exploitation processes more successfully

will be used in this study to address these problems. The

suggested EGWO algorithm handles the dynamic task

allocation for maximum usage of resources, which minimizes

makespan and energy consumption. We undertake

comprehensive simulations for different workloads and show

that EGWO consistently performs better than state-of-the-art

techniques like WOA, PSO, and RFOAOA. EGWO leads to

significant improvements in energy efficiency and makespan.

It is, therefore a reliable and scalable solution for scheduling

tasks in the MEC environment

Keywords

Mobile Edge computing, Task Scheduling Energy

consumption, Makespan, Gray Wolf Optimization.

1. INTRODUCTION
Mobile Edge Computing (MEC) is an emerging computing

paradigm that brings computational resources closer to end-

users by integrating them with network edge devices, such as

cellular base stations[1]. Unlike traditional Mobile Cloud

Computing (MCC), where tasks are processed in distant data

centers, MEC significantly reduces communication delays by

performing computations at the network's edge. This proximity

to end-users is crucial for applications requiring low latency

and high throughput, such as augmented reality, innovative

healthcare, and industrial IoT [2]. While MEC offers numerous

advantages, such as reduced latency and improved quality of

service (QoS), it also presents significant challenges in

resource management due to the limited computational power,

storage, and network resources of edge servers[3]. Efficient

task scheduling in MEC is critical to managing these

constraints while optimizing performance metrics such as

latency, energy consumption, and resource utilization[4][5].

Task scheduling involves the assignment of computational

tasks to available resources in a way that ensures minimal

makespan (total task completion time), reduced energy

consumption, and low operational costs [6].

The core problem addressed in this paper is how to efficiently

schedule tasks in a mobile edge computing environment to

minimize makespan and energy consumption while dealing

with edge servers' resource limitations and dynamic nature.

Traditional algorithms often need help balancing exploration

and exploitation, leading to suboptimal solutions in complex,

real-time scenarios. In applications like augmented reality or

competent healthcare, inefficient task scheduling can lead to

significant delays, reduced quality of service, and excessive

energy consumption, making real-time performance untenable

for end-users[7].

In this context, traditional scheduling algorithms often need

help keeping up with MEC environments' dynamic and

resource-constrained nature. As a result, advanced optimization

techniques have gained prominence in addressing these

challenges[8]. Among them, metaheuristic algorithms have

shown promise due to their ability to solve complex

optimization problems by mimicking natural processes or

behaviors. Specifically, the Grey Wolf Optimizer (GWO)

algorithm, a relatively new metaheuristic approach inspired by

the social hierarchy and hunting behavior of grey wolves, has

emerged as a powerful solution [9]

The GWO algorithm has several key strengths, including a

reduced number of search parameters, strong global search

capabilities, and simplicity in implementation. These features

make GWO particularly well-suited for dynamic and resource-

limited environments like MEC, where computational

efficiency and scalability are essential [10] However, despite

its advantages, the standard GWO algorithm faces some

limitations, such as slow convergence and a tendency to

become trapped in local optima, especially in complex

optimization scenarios.[11]. Existing methods such as Whale

Optimization Algorithm (WOA), Particle Swarm Optimization

(PSO), and Reinforced Fruit Fly Optimization Algorithm

(RFOAOA), though effective in various optimization

problems, often fail to adapt quickly enough to the rapidly

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.56, December 2024

40

changing resource availability and task requirements in MEC

environments, leading to suboptimal task allocation and high

energy consumption.

To address these limitations, this paper introduces an Enhanced

Grey Wolf Optimization (EGWO) algorithm that incorporates

new strategies aimed at achieving a more effective balance

between exploration and exploitation during the optimization

process. The proposed EGWO algorithm is specifically

designed to optimize task scheduling in MEC by improving

resource utilization, reducing makespan, and minimizing

energy consumption.

As MEC continues to evolve, with more real-time applications

being deployed at the edge, solving the task scheduling

problem efficiently is critical for enabling scalable, low-latency

services that can meet the increasing demands of users.

Through extensive simulations, we demonstrate that EGWO

consistently outperforms existing task scheduling methods,

including WOA, PSO, and RFOAOA. Our approach not only

enhances the convergence rate but also ensures that the solution

avoids premature convergence to local optima.

Main Contributions:
i. A task scheduling strategy is developed for edge

computing environments to optimize both makespan

and energy consumption.

ii. An EGWO-based method is introduced to address

the task scheduling problem, with its performance

evaluated through Python simulations. The results

are compared against those obtained from WOA,

PSO, and RFOAOA.

The rest of this paper is structured as follows: Section 2 offers

a review of related work on task scheduling within edge

computing environments. Section 3 outlines the problem

formulation, and Section 4 details the developed model.

Section 5 presents the simulation results, while Section 6

concludes the paper and suggests directions for future research.

2. RELATED WORKS
This paper [12] addressed the issue of task scheduling in edge

computing (EC) through the incorporation of reinforcement

learning techniques into representation models. The findings

show that, in terms of energy consumption and service level

agreement violation (SLAV), the suggested representation

model in conjunction with a DRL-based algorithm performs

better than the baseline techniques on average. The author [13]

examines and determines whether the energy cost minimization

problem is NP-hard while taking virtual machine migration,

workload distribution, and green energy scheduling into

account. A heuristic approach that approximates the ideal

answer is suggested as a way to deal with computational

complexity. It is shown through thorough simulations that the

suggested algorithm may attain near ideal performance and cut

brown energy usage significantly. The author [14] suggests a

cooperative task scheduling method for edge computing

supported by the Internet of Things. This method takes into

account the completion of local tasks as well as the time of

offloaded tasks for each IoT device. In contrast, an edge node

selects the IoT devices that will carry out the tasks that have

been offloaded by taking into account variables like energy

consumption and execution time. The study [15] The approach

initially assumes a system configuration with a single virtual

machine (VM) and then extends to provide three heuristics for

systems with multiple VMs. The proposed method, which

utilizes immigrated VMs based on the Minimum Energy

Transferring Attenuation Ratio (METAR), has proven effective

in reducing overall energy consumption and brown energy

usage, while simultaneously increasing the utilization of green

energy, as evidenced by simulation results, the author [16]

tackles the issue of multi-objective job scheduling in a 6G

network with MEC support. The next task scheduling problem

the paper addresses using an improved multi-objective cuckoo

search (IMOCS) algorithm based on directed acyclic graphs

(DAG) with the goal of lowering user equipment (UE) energy

consumption and execution latency. This author [17] examines

the job scheduling method in the context of fog computing. By

using a task scheduling method based on a hybrid heuristic

(HH) algorithm, the study primarily addresses the problem of

terminal devices with low computing power and high energy

consumption. This tactic makes it more feasible to process jobs

for terminal devices more effectively and in real time. In the

end, the experimental findings show that the suggested method

performs better than alternative approaches.

3. SYSTEM MODEL
Figure 1 depicts the environment at the cloud's edge, structured

into three layers: the user layer, edge layer, and cloud layer. The

proposed EGWO algorithm is deployed at the edge layer,

where it initially verifies the availability of resources on the

MEC server to ensure they meet user requirements. If the

resources are insufficient, the request is escalated to the cloud

layer. Additionally, the MEC server's algorithm processes all

users’ requests, prioritizing them as needed. The MEC server

comprises multiple servers, including virtual machines and

mini datacenters, with the MEC server manager overseeing

resources like processors and virtual machines (VMs). The user

layer, at the bottom, sends requests to the nearest MEC server.

The EGWO algorithm is then utilized to allocate tasks to the

appropriate virtual machines (VMs) it identifies both

underutilized and overutilized (VMs), deactivating the

underutilized ones. This method significantly reduces energy

consumption and shortens the makespan.

 Fig 1 task scheduling model on edge computing

3.1 Problem Description
In an edge computing environment, the set of mobile devices is

represented as 𝐾 = (𝑘1, 𝑘2, … , 𝑘𝑛), while the set of MEC

servers is denoted as 𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑚), and the set of virtual

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.56, December 2024

41

machines (VMs) is identified as 𝑉 = (𝑣𝑚1, 𝑣𝑚2, … , 𝑣𝑚𝑝).

These virtual machines are responsible for processing the tasks

𝑇 = (𝑡1, 𝑡2, … , 𝑡𝑞) submitted by users. Each task 𝑡𝑖 is

characterized by its arrival time 𝑎𝑡𝑖, size or length 𝑙𝑒𝑛𝑖 ,
deadline 𝑑𝑑𝑙𝑖 , and completion time 𝑐𝑡𝑖. A scheduler assigns

these tasks to the appropriate 𝑣𝑚𝑠 𝑣𝑚𝑗 with the goal of

optimizing VM resource usage, reducing energy consumption

𝐸, minimizing and shortening the total task completion time

(makespan). The aggregate processing time for all tasks 𝑃𝑡𝑜𝑡𝑎𝑙

can be expressed as the cumulative sum of individual

processing times 𝑃𝑖𝑗 across all VMs, represented by:.

𝑃𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑃𝑖𝑗

𝑝

𝑗=1

𝑞

𝑖=1

 (1)

To address challenges such as prolonged task execution times,

inefficient resource usage, and excessive energy consumption,

we propose an enhanced grey wolf optimization (EGWO)

approach. This method dynamically adjusts task allocation to

optimize VM utilization, reduce makespan, and minimize

energy consumption. The adaptive nature of the EGWO

continuously improves the task scheduling process, leading to

enhanced overall system performance in edge computing

environments.

3.1.2 Energy Consumption Model

Energy =𝐸 + (𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑇𝑙𝑎𝑠𝑡 𝑢𝑠𝑒𝑑) × 𝑃ℎ𝑜𝑠𝑡 (2)

Energy consumption refers to the total energy utilized by the

system, including the network's edge, sensors, gateway, and

other components. This energy consumption can be calculated

using Equation 2. To determine the energy usage of edge

devices, the power consumption of each host is measured over

a specific period, where EC represents energy consumption,

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current time, and 𝑇𝑙𝑎𝑠𝑡 𝑢𝑠𝑒𝑑 represent last

utilization time, respectively. Once

the energy is calculated, resource management is carried out

using the enhanced gray wolf optimization algorithm.

3.1.3 Maksepan

The term makespan refers to the total time required to complete

all computational processes. Therefore, efficient job mapping

is crucial to achieving a shorter makespan. The makespan,

denoted as MKS, is calculated as follows.

Makespan =𝑚𝑎𝑥𝑘 ∈ {1,2, … , 𝑝} (∑ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑗𝑘)
𝑞
𝑗=1

4. PROPOSED APPROACH
The GWO algorithm is inspired by the social hunting strategies

and leadership characteristics of grey wolves, which belong to

the Canidae family. This algorithm operates in three phases:

tracking, encircling, and attacking. As illustrated in Fig. 2, grey

wolves are classified into four distinct types: α, β, δ, and ω.

These types form a strict hierarchical social structure. The

Alpha grey wolf holds the dominant position in the pack,

establishing hunting and sleeping schedules that are adhered to

by the other, more submissive wolves. The Beta wolf occupies

the second tier in the hierarchy and aids the alpha in decision-

making, enforcing the alpha's commands among the other

wolves. When the alpha becomes old or dies, the beta is the

most likely candidate to take its place. The delta wolf ranks

third in the hierarchy, submitting to and taking orders from the

alpha and beta wolves while exerting dominance over the

omega wolves. The omega wolf is at the lowest level of the

hierarchy, submitting to all the more dominant wolves above it,

including the alpha, beta, and delta[18]. An interesting aspect

of grey wolves' social behavior is their teamwork during hunts,

which is influenced by this hierarchical structure. The primary

hunting strategies employed by grey wolves are outlined below

 Fig 2. Hierarchy of grey wolf

4.1 Mathematical Model

The fittest wolves, α, β, and δ, are used to mathematically

describe the social hunting behavior of grey wolves in order to

find the best possible solution. In this hunting strategy, ω

wolves follow behind the more dominant wolves.

4.2 Encircling the pray

grey wolves hunt by chasing and encircling their victim. It is

modeled mathematically according to Eq. (4) and (5):

𝐿 = |𝑄 × 𝑌𝑝(𝑡) − 𝑌(𝑡) (4)

𝑌(𝑡 + 1) = 𝑌𝑝(𝑡) − 𝐵 × 𝐿 (5)

In this context, 𝑡 represents the current iteration, and 𝑡 + 1

indicates the subsequent iteration. The prey's position vector is

indicated by 𝑌𝑝, while the position vector of the grey wolf is

represented by 𝑌. The coefficient vectors 𝐵 and 𝑄 are

expressed as follows:

𝐵 = 2 × 𝑏 × 𝑟2 − 𝑏 (6)

𝑄 = 2 × 𝑟2 (7)

Over the course of the iterations, the components of b reduce

linearly from 2 to 0, while r1 and r2 are random vectors within

the range of [0, 1]

4.3Hunting

Grey wolves use their α, β, and δ hunting mechanisms to guide

them as they encircle their prey once they have been roughly

located. The prey's location is unknown throughout the search

space, but the α, β, and δ wolves are thought to be aware of it.

As a result, other agents, also known as lesser gray wolves,

constantly alter their own positions in accordance with the top

three options that are retained.

The hunt is mathematically guided by equation (10), which is

derived from equations (8) and (9).

𝐿𝛼 = |𝑄1 × 𝑌𝛼 − 𝑦|, 𝐿𝛽 = |𝑄2 × 𝑌𝛽 − 𝑦|, 𝐿𝛽 = |𝑄2 × 𝑌𝛽 − 𝑦|

(8)

𝑌1 = 𝑌𝛼(𝑡) − 𝐵1 × 𝐿𝛼 , 𝑌2 = 𝑌𝛽(𝑡) − 𝐵2 × 𝐿2, 𝑌3 = 𝑌𝛿(𝑡) −

𝐵3 × 𝐿𝛿 (9)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.56, December 2024

42

𝑌(𝑡 + 1) = 𝑌1 + 𝑌2 + 𝑌3/3 (10)

The parameters 𝑏 and 𝑄 are utilized to locate and attack prey,

managing both exploration and exploitation. The parameter 𝑎,

which decreases from 2 to 0, is designed to maintain a balance

between exploration and exploitation, grey wolves spread out

to search for prey, and when ∣𝐵∣> 1and when ∣𝐵∣<1, they

converge to initiate an attack. Incorporating randomness is

beneficial in avoiding entrapment in local minima

4.4 Enhanced GWO

 The current GWO algorithm provides an optimal solution that

avoids local optima, yet there remains room for improvement

in balancing exploration and exploitation. To enhance this, the

Enhanced Grey Wolf Optimization (EGWO) method is

introduced as a more effective algorithm. The EGWO

algorithm incorporates several advancements aimed at

improving both convergence rate and efficiency. In this

method, the parameter a, which is a random vector within the

range of [0, 1], is essential for maintaining the balance between

exploration and exploitation. Adaptive values for the a

parameter are used to ensure continuous exploration, thereby

preventing the algorithm from becoming trapped in local

optima and addressing issues related to accuracy. This

parameter is critical for optimizing the solution vectors and can

also be adjusted to control the algorithm's convergence rate. In

emulating the hunting behavior of grey wolves, it is assumed

that the fittest wolf, α, has the best knowledge of the prey's

likely location, leading to the retention of only the most optimal

solution. The global optimum is reached with the help of the

population's best overall solution. The EGWO algorithm is

specifically designed to improve performance in terms of

accuracy, convergence rate, and avoiding premature

convergence. The hunting mechanism is described using

Equations (11–13).

𝐿𝛼 = |𝑄1 × 𝑌𝛼 − 𝑌| (11

𝑌1 = 𝑌𝛼(𝑡) − 𝐵1 × 𝐿𝛼 (12

𝑌(𝑡 + 1) = 𝑌1 (13)

Below is a description of the suggested EGWO algorithm for

task scheduling optimization issue.

 Algorithm 1: The Enhanced Grey Wolf Optimizer (EGWO)

for task scheduling

1. Initialize grey wolf positions (task allocations) and evaluate

their fitness using Equations (1) and (2).

2. Identify α, β, and δ wolves (top three solutions).

3. Repeat until termination condition is met:

 a. For each grey wolf:

 i. Update position using α, β, and δ wolves' positions

(refer to Equations (6), (7), (8), and (10)).

 ii. Apply dynamic adaptation to balance exploration and

exploitation.

 iii. Recalculate fitness and update position if improved.

 b. Update α, β, and δ wolves.

4 Return the best solution found (optimal task scheduling

configuration).

5. EXPERIMENTAL CONFIGURATION

AND RESULT EVALUATION

To assess the performance of our proposed EGWO algorithm

in comparison to PSO WOA and RFOAOA previous task

scheduling method referenced in , we conduct a series of

experiments in this section. The focus of the evaluation is on

task makespan and energy consumption within a mobile edge

computing (MEC) environment. In this scenario, various

mobile devices generate distinct applications, each comprising

multiple tasks that must be processed by edge resources. It is

assumed that three MEC servers are connected to several

mobile devices. Our simulations involve four sets of tasks, with

totals of 300, 600, 900, 1200 and 1500 tasks. To account for

inherent variability, the job lengths are randomly generated.

The simulations are executed using Python 3.12 on a windows

PC equipped with an intel Core i7 processor to validate the

performance of our proposed approach.

5.1 Results

Table 1 shows the makespan results for different task sizes

ALGORITHMS

 Task

300 600 900 1200 1500

WOA 95 180 301 379 499

PSO 90 177 300 379 498

RFOAOA 87 170 294 370 498

EGW 81 165 290 361 481

 Fig 3 Comparison of Average Makespan

Table 2 shows the energy consumption results for different

task

ALGORIT

HMS

 Task

300 600 900 1200 1500

WOA
4.61×1
04

1.8×10
4

4.59×1
04

7.79×1
04

1.37×1
05

PSO
4.60×1

04

1.75×1

04

4.56×1

04

7.71×1

04

1.32×1

05

RFOAOA
4.59×1
04

1.75×1
04

4.47×1
04

7.69×1
04

1.29×1
05

EGW
4.49×

103

1.75×

104

4.46×

104

7.62×

104

1.21×

105

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.56, December 2024

43

Fig 4 Comparison of Total Energy Consumption

5.1.2 Discussion of Results
Figure 3 compares the makespan performance of various task

scheduling algorithms, including the proposed enhanced

(EGWO), (WOA), (PSO), and (RFOAOA). In mobile edge

computing (MEC) environments, where the timely processing

of tasks is critical to maintaining quality of service (QoS) and

ensuring a positive user experience, the makespan defined as

the total time needed to complete all scheduled tasks serves as

a vital performance metric. The results clearly show that the

EGWO algorithm consistently achieves a shorter makespan

across all task sets, ranging from 300 to 1500 tasks, when

compared to the other algorithms. Notably, for the maximum

load of 1500 tasks, the EGWO reduces the makespan to 481-

time units, outperforming WOA, PSO, and RFOAOA, which

register makespans of 499-, 498-, and 498-time units,

respectively. This superior performance of EGWO can be

largely attributed to its enhanced exploration and exploitation

mechanisms, which effectively prevent premature convergence

to suboptimal solutions. By dynamically adjusting the hunting

strategy of the grey wolves within the algorithm, EGWO

navigates the search space more efficiently, leading to better

task allocation and faster task completion times. This makes

EGWO particularly well-suited for real-time applications in

MEC environments, where low latency is crucial. Furthermore,

the EGWO’s ability to maintain a low makespan as the number

of tasks increases highlights its robustness and adaptability, key

characteristics that are essential in the dynamic and resource-

constrained environments typical of MEC. The consistent

reduction in makespan directly enhances system performance,

ensuring that end-user applications run smoothly without

unnecessary delays.

Figure 4 presents a comparison of energy consumption among

the EGWO, WOA, PSO, and RFOAOA algorithms across the

same range of tasks. In MEC, where edge devices typically

operate under strict power constraints, energy efficiency is a

critical concern. Reducing energy consumption not only

prolongs the operational life of edge resources but also supports

the overall sustainability of the computing infrastructure. The

EGWO algorithm shows a clear advantage in terms of energy

consumption across all task scenarios. For example, when

scheduling 1500 tasks, the EGWO algorithm reduces energy

consumption to 1.21×10⁵ units, significantly outperforming

WOA, PSO, and RFOAOA, which consume 1.37×10⁵,

1.32×10⁵, and 1.29×10⁵ units, respectively. This reduction in

energy consumption can be credited to the EGWO’s efficient

resource allocation strategy, which actively identifies and

deactivates underutilized virtual machines (VMs), thereby

conserving energy. Additionally, the EGWO’s improved

convergence properties ensure that tasks are scheduled in a way

that minimizes unnecessary energy use, avoiding the overhead

associated with prolonged task processing and idle resource

usage. The results suggest that the EGWO not only excels in

reducing makespan but also significantly lowers the energy

consumption of MEC systems. This dual optimization of time

and energy is crucial for deploying scalable, efficient, and eco-

friendly edge computing solutions, by minimizing both

makespan and energy consumption, the EGWO enhances the

overall operational efficiency of MEC environments, making it

a highly effective tool for modern computing infrastructures

that require both high performance and sustainability.

6. CONCLUSION
In this paper, we proposed an enhanced (EGWO) algorithm

designed to address the critical challenges of task scheduling in

mobile edge computing (MEC) environments. Our primary

objective was to minimize both makespan and energy

consumption, two pivotal factors that directly influence the

efficiency and sustainability of MEC systems. Through

comprehensive simulations, we demonstrated that the EGWO

outperforms several established optimization algorithms,

including (WOA), (PSO), and (RFOAOA). The results

revealed that the EGWO consistently achieves a lower

makespan across various task loads, thereby ensuring faster

task completion times and enhanced quality of service (QoS).

This reduction in makespan is particularly significant in real-

time applications, where low latency is crucial for maintaining

seamless user experiences.

7. CONFLICT OF INTEREST
There is no conflict of interest. All authors have agreed to its

submission.

8. ACKNOWLEDGEMENT
This study is supported by the Universiti Putra Malaysia and

the Ministry of Higher Education Malaysia under grant

Number: (FRGS/1/2023/ICT11/UPM/02/3). We are sincerely

grateful for the facilities and funding provided, which were

essential for the completion and publication of this study.

9. REFERENCES
[1] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, and L. Guo,

“Computation offloading in mobile edge computing

networks: A survey,” J. Netw. Comput. Appl., vol. 202, no.

April, p. 103366, 2022, doi: 10.1016/j.jnca.2022.103366.

[2] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili,

“Collaborative mobile edge computing in 5G networks:

New paradigms, scenarios, and challenges,” IEEE

Commun. Mag., vol. 55, no. 4, pp. 54–61, 2017, doi:

10.1109/MCOM.2017.1600863.

[3] M. E. C. Networks, “A Survey of Energy Optimization

Approaches for Computational Task Offloading and

Resource Allocation in,” 2023.

[4] A. Mahjoubi, K. J. Grinnemo, and J. Taheri, “An Efficient

Simulated Annealing-based Task Scheduling Technique

for Task Offloading in a Mobile Edge Architecture,” Proc.

2022 IEEE Conf. Cloud Netw. 2022, CloudNet 2022, pp.

159–167, 2022, doi:

10.1109/CloudNet55617.2022.9978900.

[5] A. Muhamad and M. Hussin, “Governing Resource

Failures through Reinforcement Learning Scheduling in

Fog/Edge Computing: A Review,” 2024 IEEE Int. Conf.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.56, December 2024

44

Autom. Control Intell. Syst. I2CACIS 2024 - Proc., no.

June, pp. 256–261, 2024, doi:

10.1109/I2CACIS61270.2024.10649846.

[6] Y. Siriwardhana, P. Porambage, M. Liyanage, and M.

Ylianttila, “A Survey on Mobile Augmented Reality with

5G Mobile Edge Computing: Architectures, Applications,

and Technical Aspects,” IEEE Commun. Surv. Tutorials,

vol. 23, no. 2, pp. 1160–1192, 2021, doi:

10.1109/COMST.2021.3061981.

[7] M. Sharma, A. Tomar, and A. Hazra, “Edge Computing

for Industry 5.0: Fundamental, Applications, and

Research Challenges,” IEEE Internet Things J., vol. 11,

no. 11, pp. 19070–19093, 2024, doi:

10.1109/JIOT.2024.3359297.

[8] S. M. Altowaijri, “Workflow Scheduling and Offloading

for Servicebased Applications in Hybrid Fog-Cloud

Computing,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no.

12, pp. 726–735, 2021, doi:

10.14569/IJACSA.2021.0121290.

[9] M. B. Gawali and S. K. Shinde, “Task scheduling and

resource allocation in cloud computing using a heuristic

approach,” J. Cloud Comput., vol. 7, no. 1, 2018, doi:

10.1186/s13677-018-0105-8.

[10] K. K. Mishra, “Grey Wolf Optimization,” Nature-Inspired

Algorithms, pp. 131–143, 2022, doi:

10.1201/9781003313649-6.

[11] D. Gabi et al., “Dynamic scheduling of heterogeneous

resources across mobile edge-cloud continuum using fruit

fly-based simulated annealing optimization scheme,”

Neural Comput. Appl., vol. 34, no. 16, pp. 14085–14105,

2022, doi: 10.1007/s00521-022-07260-y.

[12] Z. Tang, W. Jia, X. Zhou, W. Yang, and Y. You,

“Representation and Reinforcement Learning for Task

Scheduling in Edge Computing,” IEEE Trans. Big Data,

vol. 8, no. 3, pp. 795–808, 2022, doi:

10.1109/TBDATA.2020.2990558.

[13] L. Gu, J. Cai, D. Zeng, Y. Zhang, H. Jin, and W. Dai,

“Energy efficient task allocation and energy scheduling in

green energy powered edge computing,” Futur. Gener.

Comput. Syst., vol. 95, pp. 89–99, 2019, doi:

10.1016/j.future.2018.12.062.

[14] Y. Kim, C. Song, H. Han, H. Jung, and S. Kang,

“Collaborative Task Scheduling for IoT-Assisted Edge

Computing,” IEEE Access, vol. 8, pp. 216593–216606,

2020, doi: 10.1109/ACCESS.2020.3041872.

[15] Q. Zhang, X. Lin, Y. Hao, and J. Cao, “Energy-Aware

Scheduling in Edge Computing Based on Energy

Internet,” IEEE Access, vol. 8, pp. 229052–229065, 2020,

doi: 10.1109/ACCESS.2020.3044932.

[16] J. Li et al., “Multiobjective Oriented Task Scheduling in

Heterogeneous Mobile Edge Computing Networks,”

IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 8955–8966,

2022, doi: 10.1109/TVT.2022.3174906.

[17] J. Wang and D. Li, “Task scheduling based on a hybrid

heuristic algorithm for smart production line with fog

computing,” Sensors (Switzerland), vol. 19, no. 5, 2019,

doi: 10.3390/s19051023.

[18] N. Issa, Z. Alaa, and I. Abed, “Solving Suggested

Problems using Grey Wolf Optimization,” 2022, doi:

10.4108/eai.7-9-2021.2314893.

IJCATM : www.ijcaonline.org

