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ABSTRACT 

Mobile edge computing (MEC) is a fundamental paradigm that 

brings computational resources closer to end users, minimizing 

latency and improving performance for real-time applications. 

Task scheduling optimization is generally a significant 

difficulty in MEC systems because of the dynamic nature of 

edge servers, limited processing resources, and energy 

restrictions. This leads to several problems, such as high energy 

consumption, makespan, extended task execution durations, 

and inefficient resource utilization. An enhanced grey wolf 

optimization method that introduces novel strategies to balance 

the exploration and exploitation processes more successfully 

will be used in this study to address these problems. The 

suggested EGWO algorithm handles the dynamic task 

allocation for maximum usage of resources, which minimizes 

makespan and energy consumption. We undertake 

comprehensive simulations for different workloads and show 

that EGWO consistently performs better than state-of-the-art 

techniques like WOA, PSO, and RFOAOA. EGWO leads to 

significant improvements in energy efficiency and makespan. 

It is, therefore a reliable and scalable solution for scheduling 

tasks in the MEC environment  

Keywords 

Mobile Edge computing, Task Scheduling Energy 

consumption, Makespan, Gray Wolf Optimization. 

1. INTRODUCTION 
Mobile Edge Computing (MEC) is an emerging computing 

paradigm that brings computational resources closer to end-

users by integrating them with network edge devices, such as 

cellular base stations[1]. Unlike traditional Mobile Cloud 

Computing (MCC), where tasks are processed in distant data 

centers, MEC significantly reduces communication delays by 

performing computations at the network's edge. This proximity 

to end-users is crucial for applications requiring low latency 

and high throughput, such as augmented reality, innovative 

healthcare, and industrial IoT [2]. While MEC offers numerous 

advantages, such as reduced latency and improved quality of 

service (QoS), it also presents significant challenges in 

resource management due to the limited computational power, 

storage, and network resources of edge servers[3]. Efficient 

task scheduling in MEC is critical to managing these 

constraints while optimizing performance metrics such as 

latency, energy consumption, and resource utilization[4][5]. 

Task scheduling involves the assignment of computational 

tasks to available resources in a way that ensures minimal 

makespan (total task completion time), reduced energy 

consumption, and low operational costs [6]. 

 
The core problem addressed in this paper is how to efficiently 

schedule tasks in a mobile edge computing environment to 

minimize makespan and energy consumption while dealing 

with edge servers' resource limitations and dynamic nature. 

Traditional algorithms often need help balancing exploration 

and exploitation, leading to suboptimal solutions in complex, 

real-time scenarios. In applications like augmented reality or 

competent healthcare, inefficient task scheduling can lead to 

significant delays, reduced quality of service, and excessive 

energy consumption, making real-time performance untenable 

for end-users[7]. 

 

In this context, traditional scheduling algorithms often need 

help keeping up with MEC environments' dynamic and 

resource-constrained nature. As a result, advanced optimization 

techniques have gained prominence in addressing these 

challenges[8]. Among them, metaheuristic algorithms have 

shown promise due to their ability to solve complex 

optimization problems by mimicking natural processes or 

behaviors. Specifically, the Grey Wolf Optimizer (GWO) 

algorithm, a relatively new metaheuristic approach inspired by 

the social hierarchy and hunting behavior of grey wolves, has 

emerged as a powerful solution [9] 

The GWO algorithm has several key strengths, including a 

reduced number of search parameters, strong global search 

capabilities, and simplicity in implementation. These features 

make GWO particularly well-suited for dynamic and resource-

limited environments like MEC, where computational 

efficiency and scalability are essential [10] However, despite 

its advantages, the standard GWO algorithm faces some 

limitations, such as slow convergence and a tendency to 

become trapped in local optima, especially in complex 

optimization scenarios.[11]. Existing methods such as Whale 

Optimization Algorithm (WOA), Particle Swarm Optimization 

(PSO), and Reinforced Fruit Fly Optimization Algorithm 

(RFOAOA), though effective in various optimization 

problems, often fail to adapt quickly enough to the rapidly 
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changing resource availability and task requirements in MEC 

environments, leading to suboptimal task allocation and high 

energy consumption. 

To address these limitations, this paper introduces an Enhanced 

Grey Wolf Optimization (EGWO) algorithm that incorporates 

new strategies aimed at achieving a more effective balance 

between exploration and exploitation during the optimization 

process. The proposed EGWO algorithm is specifically 

designed to optimize task scheduling in MEC by improving 

resource utilization, reducing makespan, and minimizing 

energy consumption. 

As MEC continues to evolve, with more real-time applications 

being deployed at the edge, solving the task scheduling 

problem efficiently is critical for enabling scalable, low-latency 

services that can meet the increasing demands of users. 

Through extensive simulations, we demonstrate that EGWO 

consistently outperforms existing task scheduling methods, 

including WOA, PSO, and RFOAOA. Our approach not only 

enhances the convergence rate but also ensures that the solution 

avoids premature convergence to local optima. 

Main Contributions: 
i. A task scheduling strategy is developed for edge 

computing environments to optimize both makespan 

and energy consumption. 

ii. An EGWO-based method is introduced to address 

the task scheduling problem, with its performance 

evaluated through Python simulations. The results 

are compared against those obtained from WOA, 

PSO, and RFOAOA. 

The rest of this paper is structured as follows: Section 2 offers 

a review of related work on task scheduling within edge 

computing environments. Section 3 outlines the problem 

formulation, and Section 4 details the developed model. 

Section 5 presents the simulation results, while Section 6 

concludes the paper and suggests directions for future research. 

 

2. RELATED WORKS 
This paper [12] addressed the issue of task scheduling in edge 

computing (EC) through the incorporation of reinforcement 

learning techniques into representation models. The findings 

show that, in terms of energy consumption and service level 

agreement violation (SLAV), the suggested representation 

model in conjunction with a DRL-based algorithm performs 

better than the baseline techniques on average. The author [13] 

examines and determines whether the energy cost minimization 

problem is NP-hard while taking virtual machine migration, 

workload distribution, and green energy scheduling into 

account. A heuristic approach that approximates the ideal 

answer is suggested as a way to deal with computational 

complexity. It is shown through thorough simulations that the 

suggested algorithm may attain near ideal performance and cut 

brown energy usage significantly. The author [14]  suggests a 

cooperative task scheduling method for edge computing 

supported by the Internet of Things. This method takes into 

account the completion of local tasks as well as the time of 

offloaded tasks for each IoT device. In contrast, an edge node 

selects the IoT devices that will carry out the tasks that have 

been offloaded by taking into account variables like energy 

consumption and execution time. The study [15] The approach 

initially assumes a system configuration with a single virtual 

machine (VM) and then extends to provide three heuristics for 

systems with multiple VMs. The proposed method, which 

utilizes immigrated VMs based on the Minimum Energy 

Transferring Attenuation Ratio (METAR), has proven effective 

in reducing overall energy consumption and brown energy 

usage, while simultaneously increasing the utilization of green 

energy, as evidenced by simulation results, the author [16] 

tackles the issue of multi-objective job scheduling in a 6G 

network with MEC support. The next task scheduling problem 

the paper addresses using an improved multi-objective cuckoo 

search (IMOCS) algorithm based on directed acyclic graphs 

(DAG) with the goal of lowering user equipment (UE) energy 

consumption and execution latency. This author [17] examines 

the job scheduling method in the context of fog computing. By 

using a task scheduling method based on a hybrid heuristic 

(HH) algorithm, the study primarily addresses the problem of 

terminal devices with low computing power and high energy 

consumption. This tactic makes it more feasible to process jobs 

for terminal devices more effectively and in real time. In the 

end, the experimental findings show that the suggested method 

performs better than alternative approaches. 

3. SYSTEM MODEL 
Figure 1 depicts the environment at the cloud's edge, structured 

into three layers: the user layer, edge layer, and cloud layer. The 

proposed EGWO algorithm is deployed at the edge layer, 

where it initially verifies the availability of resources on the 

MEC server to ensure they meet user requirements. If the 

resources are insufficient, the request is escalated to the cloud 

layer. Additionally, the MEC server's algorithm processes all 

users’ requests, prioritizing them as needed. The MEC server 

comprises multiple servers, including virtual machines and 

mini datacenters, with the MEC server manager overseeing 

resources like processors and virtual machines (VMs). The user 

layer, at the bottom, sends requests to the nearest MEC server. 

The EGWO algorithm is then utilized to allocate tasks to the 

appropriate virtual machines (VMs) it identifies both 

underutilized and overutilized (VMs), deactivating the 

underutilized ones. This method significantly reduces energy 

consumption and shortens the makespan. 

 

            Fig 1 task scheduling model on edge computing 

3.1 Problem Description   
In an edge computing environment, the set of mobile devices is 

represented as 𝐾 = (𝑘1, 𝑘2, … , 𝑘𝑛), while the set of MEC 

servers is denoted as 𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑚), and the set of virtual 
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machines (VMs) is identified as 𝑉 = (𝑣𝑚1, 𝑣𝑚2, … , 𝑣𝑚𝑝). 

These virtual machines are responsible for processing the tasks 

𝑇 = (𝑡1, 𝑡2, … , 𝑡𝑞) submitted by users. Each task 𝑡𝑖 is 

characterized by its arrival time 𝑎𝑡𝑖, size or length 𝑙𝑒𝑛𝑖 ,  
deadline 𝑑𝑑𝑙𝑖 , and completion time 𝑐𝑡𝑖. A scheduler assigns 

these tasks to the appropriate  𝑣𝑚𝑠  𝑣𝑚𝑗 with the goal of 

optimizing VM resource usage, reducing energy consumption 

𝐸, minimizing and shortening the total task completion time 

(makespan). The aggregate processing time for all tasks 𝑃𝑡𝑜𝑡𝑎𝑙 

can be expressed as the cumulative sum of individual 

processing times 𝑃𝑖𝑗  across all VMs, represented by:. 

𝑃𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑃𝑖𝑗

𝑝

𝑗=1

𝑞

𝑖=1

                                                                    (1) 

To address challenges such as prolonged task execution times, 

inefficient resource usage, and excessive energy consumption, 

we propose an enhanced grey wolf optimization (EGWO) 

approach. This method dynamically adjusts task allocation to 

optimize VM utilization, reduce makespan, and minimize 

energy consumption. The adaptive nature of the EGWO 

continuously improves the task scheduling process, leading to 

enhanced overall system performance in edge computing 

environments. 

3.1.2 Energy Consumption Model 

Energy =𝐸 + (𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑇𝑙𝑎𝑠𝑡 𝑢𝑠𝑒𝑑) × 𝑃ℎ𝑜𝑠𝑡                     (2)                                            

Energy consumption refers to the total energy utilized by the 

system, including the network's edge, sensors, gateway, and 

other components. This energy consumption can be calculated 

using Equation 2. To determine the energy usage of edge 

devices, the power consumption of each host is measured over 

a specific period, where EC represents energy consumption, 

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current time, and 𝑇𝑙𝑎𝑠𝑡 𝑢𝑠𝑒𝑑 represent last 

utilization time, respectively. Once  

the energy is calculated, resource management is carried out 

using the enhanced gray wolf optimization algorithm. 

3.1.3 Maksepan 

The term makespan refers to the total time required to complete 

all computational processes. Therefore, efficient job mapping 

is crucial to achieving a shorter makespan. The makespan, 

denoted as MKS, is calculated as follows. 

Makespan =𝑚𝑎𝑥𝑘 ∈ {1,2, … , 𝑝} (∑ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑗𝑘)
𝑞
𝑗=1  

4. PROPOSED APPROACH  
The GWO algorithm is inspired by the social hunting strategies 

and leadership characteristics of grey wolves, which belong to 

the Canidae family. This algorithm operates in three phases: 

tracking, encircling, and attacking. As illustrated in Fig. 2, grey 

wolves are classified into four distinct types: α, β, δ, and ω. 

These types form a strict hierarchical social structure. The 

Alpha grey wolf holds the dominant position in the pack, 

establishing hunting and sleeping schedules that are adhered to 

by the other, more submissive wolves. The Beta wolf occupies 

the second tier in the hierarchy and aids the alpha in decision-

making, enforcing the alpha's commands among the other 

wolves. When the alpha becomes old or dies, the beta is the 

most likely candidate to take its place. The delta wolf ranks 

third in the hierarchy, submitting to and taking orders from the 

alpha and beta wolves while exerting dominance over the 

omega wolves. The omega wolf is at the lowest level of the 

hierarchy, submitting to all the more dominant wolves above it, 

including the alpha, beta, and delta[18]. An interesting aspect 

of grey wolves' social behavior is their teamwork during hunts, 

which is influenced by this hierarchical structure. The primary 

hunting strategies employed by grey wolves are outlined below 

                             
                                     Fig 2. Hierarchy of grey wolf 

4.1 Mathematical Model 

The fittest wolves, α, β, and δ, are used to mathematically 

describe the social hunting behavior of grey wolves in order to 

find the best possible solution. In this hunting strategy, ω 

wolves follow behind the more dominant wolves. 

4.2 Encircling the pray 

grey wolves hunt by chasing and encircling their victim. It is 

modeled mathematically according to Eq. (4) and (5): 

𝐿 = |𝑄 × 𝑌𝑝(𝑡) − 𝑌(𝑡)                                                       (4)                                                                             

𝑌(𝑡 + 1) = 𝑌𝑝(𝑡) − 𝐵 × 𝐿                                                  (5) 

In this context, 𝑡 represents the current iteration, and  𝑡 + 1 

indicates the subsequent iteration. The prey's position vector is 

indicated by 𝑌𝑝, while the position vector of the grey wolf is 

represented by 𝑌. The coefficient vectors  𝐵 and 𝑄  are 

expressed as follows: 

 

𝐵 = 2 × 𝑏 × 𝑟2 − 𝑏                                                            (6)                                                                                

𝑄 = 2 × 𝑟2                                                                          (7)                                                                

Over the course of the iterations, the components of b reduce 

linearly from 2 to 0, while r1 and r2 are random vectors within 

the range of [0, 1] 

4.3Hunting  

Grey wolves use their α, β, and δ hunting mechanisms to guide 

them as they encircle their prey once they have been roughly 

located. The prey's location is unknown throughout the search 

space, but the α, β, and δ wolves are thought to be aware of it. 

As a result, other agents, also known as lesser gray wolves, 

constantly alter their own positions in accordance with the top 

three options that are retained.  

The hunt is mathematically guided by equation (10), which is 

derived from equations (8) and (9). 

𝐿𝛼 = |𝑄1 × 𝑌𝛼 − 𝑦|, 𝐿𝛽 = |𝑄2 × 𝑌𝛽 − 𝑦|, 𝐿𝛽 = |𝑄2 × 𝑌𝛽 − 𝑦| 

(8)                                     

𝑌1 = 𝑌𝛼(𝑡) − 𝐵1 × 𝐿𝛼 , 𝑌2 = 𝑌𝛽(𝑡) − 𝐵2 × 𝐿2, 𝑌3 = 𝑌𝛿(𝑡) −

𝐵3 × 𝐿𝛿    (9)                      
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𝑌(𝑡 + 1) = 𝑌1 + 𝑌2 + 𝑌3/3                                               (10)                                                                                      

The parameters 𝑏 and 𝑄 are utilized to locate and attack prey, 

managing both exploration and exploitation. The parameter 𝑎, 

which decreases from 2 to 0, is designed to maintain a balance 

between exploration and exploitation, grey wolves spread out 

to search for prey, and when ∣𝐵∣> 1and when ∣𝐵∣<1, they 

converge to initiate an attack. Incorporating randomness is 

beneficial in avoiding entrapment in local minima 

4.4 Enhanced GWO 

 The current GWO algorithm provides an optimal solution that 

avoids local optima, yet there remains room for improvement 

in balancing exploration and exploitation. To enhance this, the 

Enhanced Grey Wolf Optimization (EGWO) method is 

introduced as a more effective algorithm. The EGWO 

algorithm incorporates several advancements aimed at 

improving both convergence rate and efficiency. In this 

method, the parameter a, which is a random vector within the 

range of [0, 1], is essential for maintaining the balance between 

exploration and exploitation. Adaptive values for the a 

parameter are used to ensure continuous exploration, thereby 

preventing the algorithm from becoming trapped in local 

optima and addressing issues related to accuracy. This 

parameter is critical for optimizing the solution vectors and can 

also be adjusted to control the algorithm's convergence rate. In 

emulating the hunting behavior of grey wolves, it is assumed 

that the fittest wolf, α, has the best knowledge of the prey's 

likely location, leading to the retention of only the most optimal 

solution. The global optimum is reached with the help of the 

population's best overall solution. The EGWO algorithm is 

specifically designed to improve performance in terms of 

accuracy, convergence rate, and avoiding premature 

convergence. The hunting mechanism is described using 

Equations (11–13). 

𝐿𝛼 = |𝑄1 × 𝑌𝛼 − 𝑌|                                                              (11                                                                               

𝑌1 = 𝑌𝛼(𝑡) − 𝐵1 × 𝐿𝛼                                                           (12 

                                                               

𝑌(𝑡 + 1) = 𝑌1                                                                     (13)                                                           

Below is a description of the suggested EGWO algorithm for 

task scheduling optimization issue. 

 Algorithm 1: The Enhanced Grey Wolf Optimizer (EGWO) 

for task scheduling 

1.  Initialize grey wolf positions (task allocations) and evaluate 

their fitness using Equations (1) and (2).      

2.  Identify α, β, and δ wolves (top three solutions). 

3.  Repeat until termination condition is met: 

 a.   For each grey wolf: 

        i. Update position using α, β, and δ wolves' positions 

(refer to Equations (6), (7), (8), and (10)). 

        ii. Apply dynamic adaptation to balance exploration and 

exploitation. 

  

        iii. Recalculate fitness and update position if improved. 

  b. Update α, β, and δ wolves. 

4 Return the best solution found (optimal task scheduling 

configuration). 

5. EXPERIMENTAL CONFIGURATION 

AND RESULT EVALUATION 

To assess the performance of our proposed EGWO algorithm 

in comparison to PSO WOA and RFOAOA previous task 

scheduling method referenced in , we conduct a series of 

experiments in this section. The focus of the evaluation is on 

task makespan and energy consumption within a mobile edge 

computing (MEC) environment. In this scenario, various 

mobile devices generate distinct applications, each comprising 

multiple tasks that must be processed by edge resources. It is 

assumed that three MEC servers are connected to several 

mobile devices. Our simulations involve four sets of tasks, with 

totals of 300, 600, 900, 1200 and 1500 tasks. To account for 

inherent variability, the job lengths are randomly generated. 

The simulations are executed using Python 3.12 on a windows 

PC equipped with an intel Core i7 processor to validate the 

performance of our proposed approach. 

5.1 Results 

Table 1 shows the makespan results for different task sizes 

     

ALGORITHMS 

                        Task  

300 600 900 1200 1500 

WOA 95 180 301 379 499 

PSO 90 177 300 379 498 

RFOAOA 87 170 294 370 498 

EGW 81 165 290 361 481 

 

 

                         Fig 3 Comparison of Average Makespan 

Table 2 shows the energy consumption results for different 

task 
     

ALGORIT

HMS 

                        Task  

300 600 900 1200 1500 

WOA 
4.61×1
04 

1.8×10
4 

4.59×1
04 

7.79×1
04 

1.37×1
05 

PSO 
4.60×1

04 

1.75×1

04 

4.56×1

04 

7.71×1

04 

1.32×1

05 

RFOAOA 
4.59×1
04 

1.75×1
04 

4.47×1
04 

7.69×1
04 

1.29×1
05 

EGW 
4.49×

103 

1.75×

104 

4.46×

104 

7.62×

104 

1.21×

105 
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Fig 4 Comparison of Total Energy Consumption 

5.1.2 Discussion of Results 
Figure 3 compares the makespan performance of various task 

scheduling algorithms, including the proposed enhanced 

(EGWO), (WOA), (PSO), and   (RFOAOA). In mobile edge 

computing (MEC) environments, where the timely processing 

of tasks is critical to maintaining quality of service (QoS) and 

ensuring a positive user experience, the makespan defined as 

the total time needed to complete all scheduled tasks serves as 

a vital performance metric. The results clearly show that the 

EGWO algorithm consistently achieves a shorter makespan 

across all task sets, ranging from 300 to 1500 tasks, when 

compared to the other algorithms. Notably, for the maximum 

load of 1500 tasks, the EGWO reduces the makespan to 481-

time units, outperforming WOA, PSO, and RFOAOA, which 

register makespans of 499-, 498-, and 498-time units, 

respectively. This superior performance of EGWO can be 

largely attributed to its enhanced exploration and exploitation 

mechanisms, which effectively prevent premature convergence 

to suboptimal solutions. By dynamically adjusting the hunting 

strategy of the grey wolves within the algorithm, EGWO 

navigates the search space more efficiently, leading to better 

task allocation and faster task completion times. This makes 

EGWO particularly well-suited for real-time applications in 

MEC environments, where low latency is crucial. Furthermore, 

the EGWO’s ability to maintain a low makespan as the number 

of tasks increases highlights its robustness and adaptability, key 

characteristics that are essential in the dynamic and resource-

constrained environments typical of MEC. The consistent 

reduction in makespan directly enhances system performance, 

ensuring that end-user applications run smoothly without 

unnecessary delays. 

Figure 4 presents a comparison of energy consumption among 

the EGWO, WOA, PSO, and RFOAOA algorithms across the 

same range of tasks. In MEC, where edge devices typically 

operate under strict power constraints, energy efficiency is a 

critical concern. Reducing energy consumption not only 

prolongs the operational life of edge resources but also supports 

the overall sustainability of the computing infrastructure. The 

EGWO algorithm shows a clear advantage in terms of energy 

consumption across all task scenarios. For example, when 

scheduling 1500 tasks, the EGWO algorithm reduces energy 

consumption to 1.21×10⁵ units, significantly outperforming 

WOA, PSO, and RFOAOA, which consume 1.37×10⁵, 

1.32×10⁵, and 1.29×10⁵ units, respectively. This reduction in 

energy consumption can be credited to the EGWO’s efficient 

resource allocation strategy, which actively identifies and 

deactivates underutilized virtual machines (VMs), thereby 

conserving energy. Additionally, the EGWO’s improved 

convergence properties ensure that tasks are scheduled in a way 

that minimizes unnecessary energy use, avoiding the overhead 

associated with prolonged task processing and idle resource 

usage. The results suggest that the EGWO not only excels in 

reducing makespan but also significantly lowers the energy 

consumption of MEC systems. This dual optimization of time 

and energy is crucial for deploying scalable, efficient, and eco-

friendly edge computing solutions, by minimizing both 

makespan and energy consumption, the EGWO enhances the 

overall operational efficiency of MEC environments, making it 

a highly effective tool for modern computing infrastructures 

that require both high performance and sustainability. 

6. CONCLUSION 
In this paper, we proposed an enhanced (EGWO) algorithm 

designed to address the critical challenges of task scheduling in 

mobile edge computing (MEC) environments. Our primary 

objective was to minimize both makespan and energy 

consumption, two pivotal factors that directly influence the 

efficiency and sustainability of MEC systems. Through 

comprehensive simulations, we demonstrated that the EGWO 

outperforms several established optimization algorithms, 

including (WOA), (PSO), and (RFOAOA). The results 

revealed that the EGWO consistently achieves a lower 

makespan across various task loads, thereby ensuring faster 

task completion times and enhanced quality of service (QoS). 

This reduction in makespan is particularly significant in real-

time applications, where low latency is crucial for maintaining 

seamless user experiences. 
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