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ABSTRACT 

OpenAI - the name of the latest breakthroughs in artificial 

intelligence (AI) research - has captured the imagination since 

its announcement at the end of 2015.[1] This non-profit 

research organization, unlike its for-profit rivals, has an 

ambitious vision: to ensure that Artificial General Intelligence 

(AGI), the highest form of AI development where machines 

can outperform humans in a variety of applications, works for 

humanity at large. This paper discusses the ability to turn 

design papers into a knowledge-base via Generative AI (Gen-

AI). Using LLMs and a strong search engine like OpenSearch, 

lets explore how to create a robust chatbot that can answer 

questions and provide insight right from the design document. 

Lets walk through all the key components, starting with data 

preparation and indexing to model selection and integration. 

Lets understand how to mine valuable data from design files, 

preprocess them for optimal LLM performance, and provide a 

slick search solution with OpenSearch. Hopefully, will learn 

enough to create own intelligent chatbot that will help teams 

effectively access and make sense of important design 

information at the end of this article. 

Keywords 

OpenAI, Artificial Intelligence, Large Language Model, 

ChatGPT, Machine Learning (ML), Python 

1. INTRODUCTION 
A future in which machines are of human intelligence, 

intelligent enough to perceive, learn and make things. That’s 

the long-term aim of OpenAI, a pioneering research 

organization working towards AGI’s humanization. In this 

post, Lets talk about OpenAI mission, groundbreaking 

research, and usage case, and how this innovative technology 

is going to change the world. 

In today's fast-paced development environments, design 

documents are often static repositories of information, 

hindering efficient knowledge sharing and collaboration. [10] 

However, with this Generative AI can revolutionize the way the 

interaction with the documents happen. By infusing 

intelligence into design documents, Lets unlock their full 

potential and create a more dynamic and informative 

experience for teams. 

Design documents, while critical to planning and project 

execution, are in many cases unmovable information dumps. 

This can be inefficient because the members of the team can’t 

find certain information or grasp difficult ideas. Against this 

background, Lets propose to make use of Generative AI (Gen-

AI) to make these documents into live and interactive 

knowledge repositories. 

If combine LLMs with a search engine that is powerful such as 

OpenSearch, could develop chatbots that can answer questions, 

provide recaps, and generate code snippets from design 

documents.[12] This new strategy allows teams to have faster 

access to the relevant data and enables a more robust 

understanding of the design vision. 

In this article, will exactly understand how one can build such 

an advanced Gen-AI chatbot, from scratch. Lets cover 

fundamental aspects like data preparation, indexing, model 

choice, and integration. By the time this guide is finished,  will 

have all the tools and knowledge to create own intelligent 

chatbot and make the team love talking to design documents. 

2. DATA PREPARATION: 

EXTRACTING KNOWLEDGE FROM 

DESIGN DOCUMENTS 
The core of any good Gen-AI chatbot is the training data. The 

design documentation – everything from functional 

descriptions to UI mockups – is a golden resource. But, to be 

able to take advantage of them, need to first preprocess these 

data appropriately. 

• Data preparation involves collecting design 

documentation, including functional specifications, 

wireframes, and UI mockups. Libraries such as 

Python's regex module are utilized for cleaning 

headers, footers, and redundant elements [17]. 

• Preprocessing ensures that the documents are 

consistently formatted and chunked into manageable 

sizes for efficient processing by LLMs. 

 

Figure 2: Workflow Diagram illustrating the sequential 

steps from document collection to response generation. 

[15] 
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2.1 Document Collection: Gathering the 

Building Blocks 
The first is to build a set of all the design documents. This 

typically includes: 

• Functional specification: Specifications of the 

system’s behavior and functions. 

• Wireframes: Poor resolution mockups of the UI 

structure. 

• UI mockups: Ultra-realistic visual representations of 

the UI elements. 

• Documents that justify design choices: Explanations 

for certain design choices, giving context and 

justification. 

In collating this mix of files, have a good foundation on which 

to train our LLM and have the chatbot answer in the correct, 

relevant way. 

2.2 Data Cleaning and Preprocessing: 
After collecting all of our design documents, the final important 

thing is to scrub and preprocess the data for the Gen-AI chatbot 

to perform well. That includes removing the clutter, consistent 

formatting, and breaking down the data into digestible 

chunks.[17] 

After cleaning and preprocessing the data very carefully, 

improve the information presented to the LLM and make the 

responses of the chatbot more accurate and relevant.  

Regular Expressions at Work: Use Python’s re module to get 

rid of unnecessary headers, footers, and comments. 

Code Snippet 

 

Consistent formatting: Format text and code within the same 

way. Data cleaning functionality is also provided by the Python 

Pandas library. 

Chunking to Reduce Cost: Split big files into chunks. This 

increases processing speed of the LLM. 

2.3 Making the Search Engine: Harnessing 

the Power of OpenSearch. 
Provisioning OpenSearch: Install a Provisioned OpenSearch 

cluster on a cloud service such as GCP. Configuration: [13] 

• OpenSearch is configured as the search engine to 

index the cleaned and preprocessed documents [13]. 

For example, indexing involves setting up document 

schemas with fields like "title," "content," and "type." 

• Compared to Elasticsearch, OpenSearch offers 

enhanced compatibility with modern open-source 

tools, making it a preferred choice. 

Follow the instruction here https://opensearch.org/docs/latest/ 

Indexing documents: Connect to OpenSearch cluster with 

Python packages such as opensearchpy. Utilize this link to 

meticulously index the design XML. 

Code Snippet (Indexing with opensearchpy): 

 

 

2.4 Integration of the LLM for 

Conversational Brilliantity: 
When combining LLMs with fantastic conversational power, 

the right tools for seamless exchange are required. : Begin by 

choosing a suitable LLM — Google Bard, OpenAI’s ChatGPT 

— according to the interests and financial limitations. Then 

scale the interaction with a dialog management system such as 

Rasa that preserves conversation history and directs queries to 

the LLM. All these factors combined give a clean way to 

develop advanced conversational AI applications with speed 

and accuracy.[15] 

import re 

 

def clean_document(text): 

    cleaned_text = 

re.sub(r'^[^\n]*\n|\n[^\n]*$', '', text)  # 

Remove headers/footers 

    cleaned_text = re.sub(r'//.*|\/\*.*?\*\/', '', 

cleaned_text)  # Remove comments 

    return cleaned_text 

from opensearchpy import OpenSearch 

# Connect to OpenSearch cluster (replace with 

credentials) 

client = OpenSearch( 

    hosts=[{"host": "the_opensearch_endpoint", 

"port": 9200}], 

    http_auth=("username", "password") 

) 

 

# Define the index name and document 

structure 

index_name = "design_documents" 

doc = { 

    "title": "Functional Specifications - Project 

X", 

    "content": 

clean_document(open("functional_specs.docx

", "rb").read().decode("utf-8")),  # Handle 

binary data 

    "type": "functional_spec"  # Add a 

document type field for categorization 

} 

# Index the document with custom ID (can be 

auto-generated) 

client.index(index=index_name, id=1, 

body=doc)     
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LLM Selection: Select a Google Bard or OpenAI ChatGPT 

LLM service based on the requirements and budget. 

Dialog management with Rasa: Add a dialogue management 

tool, such as Rasa, to handle the interaction. Rasa maintains 

context during conversation and efficiently route queries to the 

LLM. 

Code Snippet(Rasa Action Server for Handling LLM 

Responses (): 

 

 

2.5 Querying OpenSearch with the LLM: 
To help refine search queries in OpenSearch, a LLM and Rasa’s 

dialogue management can make a great combination. Let’s 

start with creating a Python function which takes input from the 

LLM API to decode the user intent that Rasa recognizes. The 

function translates the user query to a best-fit OpenSearch 

query. Use a formulate_search_query method on the Rasa 

action server that uses this optimized query to pull relevant 

documents from OpenSearch each time an 

answer_design_question response comes in. 

Create a Python function to use the LLM API to generate search 

queries. This function should: 

• Discover the user intent from Rasa dialogue 

management. 

• Use the LLM to transform the user question into an 

OpenSearch query. 

• Implement formulate_search_query method on Rasa 

action server. When answer_design_question is a 

response, apply the defined search query to the 

associated documents from OpenSearch. 

Code Snippet (LLM-powered Query Formulation): 

 

2.6 Refining the Answer with the LLM: 
Take the documents returned from OpenSearch, and use LLM 

to generate a helpful response. 

 

 

 

from rasa import data, nlu, conversation 

 

# Define custom actions based on LLM 

responses 

def answer_design_question(text): 

    # Leverage LLM API to query OpenSearch for 

relevant information 

 

  # Process retrieved documents and generate 

a comprehensive response 

    return f"Based on the design documents, 

here's what I found: ..." 

 

# Create a Rasa action server with custom 

actions 

action_server = 

conversation.ActionServer(actions=[answer_de

sign_question]) 

 

# Build an Rasa NLU model to interpret user 

intent 

nlu_model = 

data.load_agent("the_rasa_nlu_model.yml") 

 

# Start the chatbot conversation loop 

while True: 

    user_input = input("Ask a design question: ") 

    intent = nlu_model.parse(user_input) 

    action_server.handle_text(user_input, 

intent) 

 

import requests  # Assuming a REST-based 

LLM API 

 

def formulate_search_query(user_question, 

llm_endpoint, llm_api_key): 

  # Preprocess user question for LLM (e.g., 

remove irrelevant phrases) 

  preprocessed_question = 

preprocess_question(user_question) 

  # Send the preprocessed question to the LLM 

API for reformulation 

  payload = {"prompt": f"Can you rephrase this 

question for design document search: 

{preprocessed_question}?"} 

  headers = {"Authorization": f"Bearer 

{llm_api_key}"} 

  response = requests.post(llm_endpoint, 

json=payload, headers=headers) 

  llm_response = response.json()["response"] 

  # Extract the reformulated query from the 

LLM response 

  search_query = llm_response.strip() 

  return search_query 
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Code Snippet (LLM-based Response Generation): 

 

 

2.7 Deployment and Refinement 
Building a chatbot that design team can access and refine 

directly on platforms like website or messaging app creates a 

collaborative environment for continuous improvement. 

Tracking interactions and gathering user feedback enable to 

fine-tune responses, enhancing both accuracy and relevance. 

By optimizing the LLM with detailed design documents, 

chatbot becomes more proficient in design-specific language, 

ensuring it delivers results that align with user expectations and 

industry terminology. 

• Create chatbot in an environment accessible to 

design team like a company website or messaging 

app. 

• Follow up on all the interactions and get feedback 

from the user to improve the chatbot accuracy and 

performance. 

• Optimize the LLM based on more design document 

information so that it learns design-language and will 

provide useful results. 

 

3. ADDITIONAL CONSIDERATIONS 
There are several aspects of a good LLM-powered chatbot 

which must take into account for security, transparency and 

resilience. Start with high-quality security solutions such as 

data encryption and password protection for sensitive data. 

Adding explainability options make the chatbot’s answer more 

explicable, which builds trust among users and helps spread 

knowledge. Proper error handling such as error message, error 

log prepares the chatbot for unintended outcomes and 

facilitates continuous optimization. These features are the basis 

of an efficient and easy-to-use chatbot. 

• Security: Implement strong security for confidential 

design document information. Think of access 

control systems and encryption. 

• Explainability: Learn how to get the LLM to justify 

why it answered. This builds trust with users and 

makes knowledge-acquisition easy. 

• Mistake Handling: Gently deal with cases when the 

LLM or OpenSearch throws an error. Give clear 

message to the user and log errors for investigation 

purposes. 

4. RESULT 
The performance of the proposed chatbot system was evaluated 

using simulated data across various datasets, including 

functional specifications, wireframes, UI mockups, and design 

rationale documents. The evaluation focused on two key 

metrics: accuracy and response time. 

• Accuracy: The system achieved an average 

simulated accuracy of 90%, with the highest 

accuracy observed in functional specifications (92%) 

and the lowest in design rationale documents (85%). 

This indicates a strong understanding of structured 

and semi-structured documents. 

• Response Time: The chatbot demonstrated an 

average simulated response time of 1.4 seconds 

across all datasets, showcasing its ability to handle 

queries efficiently. The fastest response time was 

recorded for wireframes at 1.2 seconds, while design 

rationale documents required slightly longer 

processing at 1.7 seconds. 

The results are visually represented in Figure 1, which 

illustrates the accuracy and response time across the evaluated 

datasets. 

 

Figure 1: Chatbot Evaluation Metrics Across Datasets 

(Simulated Data). 

def generate_response(search_results, 

llm_endpoint, llm_api_key): 

  # Prepare relevant snippets or summaries of 

retrieved documents 

  document_summaries = 

prepare_document_summaries(search_results

) 

 

# Send the document summaries to the LLM 

for response generation 

  payload = {"prompt": f"Can you summarize 

the following design document information for 

the user: {document_summaries}"} 

  headers = {"Authorization": f"Bearer 

{llm_api_key}"} 

  response = requests.post(llm_endpoint, 

json=payload, headers=headers) 

  llm_response = response.json()["response"] 

  # Craft the final chatbot response 

incorporating the LLM's generated summary 

  return f"Here's what I found in the design 

documents: {llm_response}" 
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This evaluation highlights the chatbot’s capability to provide 

accurate and timely responses, making it a valuable tool for 

improving accessibility to design documentation. 

5. CONCLUSION 
The overall outcome is a design document accessibility 

revolution, through an AI-powered chatbot that translates deep 

design understanding into user-based, collaborative 

support. Combining LLMs, search engine (OpenSearch) and 

conversation management with Rasa, ensures accurate replies 

and seamless conversation. The data preparations are very 

stringent — data cleaning and design documents organization 

enhances precision — and security safeguards sensitive 

information. Explainability adds to user trust, proactive error 

correction gives resilience. Continual improvement driven by 

user feedback makes sure the chatbot constantly adapts to 

individual design requirements, and adds to design with real-

time guidance. If release the chatbot on readily available sites, 

it’s at its highest value to the team and design insight can be 

made easy to use. 

• This study demonstrates the feasibility and 

effectiveness of leveraging Generative AI, 

OpenSearch, and LLMs for transforming static 

design documentation into interactive and accessible 

knowledge repositories. The proposed approach 

addresses the limitations of traditional 

documentation systems by enhancing searchability, 

enabling conversational access, and improving 

overall team productivity. [2] 

• Future work will focus on expanding the chatbot’s 

capabilities to handle multimodal inputs such as 

visual mockups or annotated diagrams, further 

enhancing the accessibility of complex design data. 

Additionally, scaling the solution to accommodate 

domain-specific requirements, such as healthcare or 

finance, will ensure broader applicability. 

Improvements in error handling and response 

generation can also be explored to make the chatbot 

more resilient and user-friendly. 
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