
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.54, December 2024

56

Efficient Data Integration in Retail SCM using Inbound

and Outbound Data Interfaces

Sachin More
SME in Supply Chain Management

Smyrna, GA - 30080

ABSTRACT

The modern business landscape is characterized by a diverse

array of IT software systems, each serving specific functions

within the organization. This has resulted in a complex network

of heterogeneous systems spanning across on-premises and

multi-cloud environments including multi-regional data

centers. The prevalent use of microservices architecture adds to

the complexity, presenting challenges in maintaining data

synchronization, communication, and orchestration to ensure a

cohesive operation. These systems must work in concert, akin

to an orchestra, sending and receiving signals to maintain

seamless data and application synchronization ensuring

atomicity of the transactions.

In this Framework, we have proposed several data interface

methodologies and built solutions to ensure Data is

synchronized on a timely basis in preventing losses caused

purely by data discrepancies and assure data quality across the

enterprise application ecosystem. The intent is to save millions

of dollars in losses and create avenues for growth achieved

through aspects of data quality and integrity.

General Terms

Banking, Event sourcing, E-commerce, Enterprise application,

Interfaces, Supply Chain retail, stock management,

Keywords

ERP, CDC, Data sync, inbound, outbound, Real time, Batch

mode, Traces, PUSH, PULL, XML agents, snapshots, RESTful

Web Services

1. INTRODUCTION
In today’s competitive retail world, enterprises are challenged

by the evolution of customer demand and macroeconomic

factors due to inflation, product availability, and competitive

pricing. Adding to the complexity, businesses are operating in

the landscape of heterogeneous systems, as they intend to bring

the best solutions to handle specific business goals. With these

heterogeneous systems in place, it introduces another challenge

of time-bound data synchronization and data accuracy. Every

application in the retail ecosystem brings its own set of

technology, platform, and database complexity making the

problem even bigger. This has resulted in data discrepancies

leading to inaccurate pricing and promotions, and erroneous

perpetual inventory cascading its effect on replenishment

impacting revenue, and customer dissatisfaction in turn

affecting consumer loyalty.

Delays or inaccuracies in the data sync process can result

in customer dissatisfaction and potential loss of business.

Exploring various methods, techniques, and technologies for

data synchronization is vital for optimizing these processes and

ensuring the robust performance of enterprise systems.

This paper attempts to deep dive into several interfacing

techniques and methodologies that can be adopted by

enterprises to address the data inaccuracy problem at the core

depending on the use case with a real-world example.

2. BUSINESS PROCESS
In a typical enterprise business setup, the ecosystem has a series

of applications, which may include both internal and third-

party external platforms. They all need to exchange data and

information to execute the business to meet the desired goal.

The business process in this ecosystem represents users

carrying out certain business functions like the creation of

products, definition of product sales prices, promotions, order

management, etc.

Fig 1 depicts the enterprise application ecosystem for an

omnichannel retail enterprise. As shown below, it is an

ecosystem with a complex web of internal and external systems

that operate on heavy data synchronization to maintain the

business and data integrity ensuring seamless communication

of data and information favorable to the business functions.

Fig 1: Enterprise ecosystem of software systems

The above fig represents the depth of complexity involved in

an enterprise of the supply chain business that represents the

functions from sourcing to the point of sale to inventory

management.

The challenges associated with these heterogeneous systems

are immense and contribute heavily to the day-to-day

operations ensuring smooth execution. Incorrect information or

data delays can cause revenue loss and long-term reputational

challenges for the enterprise.

3. INTERFACE CONCEPTS
To address the data sync challenges, we are first defining what

an interface is and delve deep into each of the types and

methodologies involved.

3.1 Interface Definition
An interface is a point of interaction between two or more

systems, components, or groups that allows them to

communicate effectively and exchange information. Interfaces

are important in technology because they allow different

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.54, December 2024

57

systems to work together seamlessly and ensure compatibility.

It’s an important facet of any application platform as it not only

allows systems to communicate but opens avenues to do more

than what a standard system can offer, simply put, it is an agent

that sits between data producers and consumers. An interface

can be as simple as a database table where a third-party system

drops a piece of information that can be read by the consuming

systems and housed in the core platform for the processes to do

the next set of decision-making or business operations.

Interface is based on the event-sourcing design pattern in

which changes to the state of an application are stored as a

sequence of events. This approach allows the capture of all

changes to an entity's state over time. In other words, event

sourcing is like keeping a diary of everything that happens in a

system. Event stores like Apache Kafka are like digital diaries.

For instance, a retailer can rely on a data partner or a third-

party data provider like WERCS for product attributes about

hazardous material or any other relevant information exchange

specific to certain Product UPCs, these attributes may be used

within the ERP to drive decisions onto their warehouse

management systems like ASRS (Automatic storage and

retrieval system). To transmit this piece of information, the

third-party data provider may use a traditional Secured File

Transfer Protocol (SFTP) and use a flat file format.

An Interface in Java programming language is defined as

an abstract type used to specify the behavior of a class. An

interface in Java is a blueprint of a behavior and contains static

constants and abstract methods. A java interface is

predominantly used to achieve abstraction (information hiding)

and must not be confused with the inbound/outbound data

interfaces [1][2].

3.1.1 Inbound interfaces

Inbound interfaces deal with the incoming data that flows

into the enterprise’s core business apps like CRM or ERP

systems. It is read from the 3rd party system and housed in the

enterprise’s storage platform representing the “Source of truth”

for any decision making by other enterprise services. An

example of inbound data is the purchase transaction done by a

customer at a physical or online store, for which a payment

acknowledgement is expected from the banking system. The

payment transaction is bundled, transmitted to the bank's

centralized server, processed by the incoming interface,

authenticated, and authorized by the approval engine and stored

in the database. The bank would then send a confirmation

message to the sender (store in this case), ensuring transaction

closure [4].

One of the most popular use cases of inbound interfaces is

data migration from legacy application platforms or databases.

This process is popularly known as bootstrap or initialization

mode. Interfaces help take out the complexity behind the new

systems as the inbound interface layer normalizes the data

onboarding process through the abstract orchestration layer. It

greatly normalizes the inbound data layer without having to

worry about how and what goes into the core system during the

migration. Inbound interfaces just do not take care of the data

itself but also the data integrity and data quality ensuring data

completeness before housing it into the business applications.

Inbound interfaces are integral to various applications

across multiple industries. In healthcare, for example, they are

used to manage patient information, appointments, and

charges, ensuring seamless data flow into the electronic health

records systems. In enterprise resource planning (ERP) systems

like SAP, inbound interfaces are used for integrating different

business processes and systems, such as synchronizing

customer data between an ERP system and a Customer

Relationship Management (CRM) system or facilitating the

exchange of procurement data between SAP S/4HANA and

Ariba solutions. Another common use case is in Customer

Relationship Management (CRM) platforms like Salesforce,

where inbound interfaces bring external data into the system to

help establish it as the single source of truth for company data.

These interfaces allow for the efficient and secure transfer of

data, which is essential for maintaining the integrity and

reliability of business operations.

When setting up an inbound interface, it's important to

consider some common pitfalls that can compromise the

system's data security cascading its effect on business

functions. One of the primary issues is the lack of necessary

data quality checks, which can lead to the system accepting

incorrect or malicious data. Another significant concern is the

misconfiguration of network settings, which can result in data

not reaching the intended landing zone or causing network

congestion. It's also crucial to be mindful of capacity

constraints and avoid overloading the interface with too much

data, as this can cause performance issues and potential data

loss [3].

Additionally, failing to implement adequate security

measures, such as encryption and authentication, can leave the

system vulnerable to cyber threats and attacks. To prevent these

issues, thorough testing and monitoring should be conducted to

ensure the interfaces function within the desired framework and

securely transmit the data to its destination.

An important pattern while processing inbound data is a

concept of dead letter queues, even after all validations there

are chances of failures, and such data fragments must be moved

to a separate queue for further analysis without holding up the

ingestion of subsequent data cycles.

Fig 2 represents the example of the Master Data ecosystem,

and the components involved in the inbound interface module.

Fig 2: Example of Inbound data interface

3.1.2 Outbound interfaces

Outbound data interfaces are crucial components in

outgoing data management and integration into the consuming

systems. They facilitate the electronic data transfer from one

system to another, which includes internal to internal or from

an internal to an external application or system.

The primary purpose of the outbound data interface is to

identify the changed data in the source system, prepare and

send it to a target system. This may include transfer of data

between internal systems within the enterprise, external to the

organization or a cloud storage service like a GCP bucket

(Buckets in GCP are basic containers where you can store data

in the cloud) [6]. For example: A retailer might use an EDI

outbound interface to send the Purchase order (Vendor orders)

information outside of its ecosystem to communicate the

replenishment demand for a store or warehouse location. These

interfaces often use standard protocols and formats ensuring

data is securely and efficiently transferred. Common protocols

include HTTP, SFTP, SOAP, and REST APIs, while the

popular data serialization formats include CSV, XML, JSON,

AVRO and/or YAML [7].

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.54, December 2024

58

Organizational data is its intellectual property and must be

secured using state of the art security protocols. One such

example is PGP data encryption key which is generated by the

enterprise and shared with the consumer ahead of time. This

key is then used to decrypt the data packet, ensuring its privacy

before the consumer can use it.

Fig 2: Example of Inbound data interface

4. INTERFACE MODES
Both the inbound and outbound interfaces can be classified

into 2 modes,
1. Batch mode (scheduled updates)

2. Real time mode (instant updates)

4.1 Batch mode

This mode works on a frequency model defined over a

window of operations. The method collects user or background

activities done by a batch service over a period, followed by

batch data preparation and dispatch the data either on an hourly,

daily, or weekly cadence, depending on how frequently the data

updates are needed by the consuming system or application.

For instance, the Point of Sale (POS) system could publish

transactions to the finance IT system once the point-of-sale

register is closed for the day, and hence the frequency is daily.

The finance system could aggregate the store sales on a weekly

basis and publish the reports to the leadership for the

organizational health check [8].

Several techniques can be adopted for batch mode

interfaces like Oracle PL/SQL stored proc that can spool the

data into temp views or flat files scheduled on a cronjob

scheduler to execute at a set time each day; this task records all

the activities within a specific timeframe. These interfaces are

generally designed on top of the change data capture (CDC) or

over window defined on the last and current run time. The

popular terms used for last run and current run time are last

awake and current awake [5].

4.2 Real time mode

As the name suggests, it deals with real time data updates,

the new or modified data is immediately identified, captured,

and communicated to the consuming systems. In real time

mode, the listener is always looking for a modified version of

the data, once it is identified the data extractor service will

capture the data and publish to the consumers.

In real time mode, the data or messages can be published

using two options: either via PUSH or PULL. The PUSH

method publishes one or more messages in real time basis from

the producing data source to the target queue, in which case the

data is available right away for consumption and the consumers

can read it at their ease, whereas in case of the PULL method it

solely depends on the consumer when the data or information

is needed. Consumers can request the information from

producers as and when needed by the application. A PULL

method depicts “data on demand”, in which case the producer

must provide the latest copy of the requested information to the

consumer. It’s a classic use case of the GET HTTP method in

RESTful API, in which case the returning service sends a 200-

response code indicating success. In the response body, the

method returns a representation of a source data.

A real-world example of the PUSH method is a Kafka

messaging queue, where an SDK (Software development kit)

built on top of the application platform could capture new

and/or modified versions of the source data and continue

publishing to the Kafka topic as and when changed data is

captured. The consumer can read the published messages on a

set schedule as per their desired frequency and make necessary

decisions using the provided data. As Kafka maintains offsets

per consumer, it's easy to add more consumers to the topic

without disrupting existing subscribers or the data reliability.

As far as data retention in the Kafka topic is concerned, a

standard shelf life of published messages is a period of 7 days,

after which the data or messages are purged and will not be

available anymore to the consumers [12].
As briefly discussed above, a real-world example of the

PULL method is RESTful API invocation. In a stock trading

platform like Robinhood, an investor could be looking for the

current trade price for a NYSE listed stock. When the user

searches in the app, a request is triggered from the front end

and served by the application server. In this example, a front-

end app is requesting data response by sending a company

symbol to the app server, the request will first be authenticated,

and a response is returned to the end user.
The application server here can be a containerized backend

service like TomEE, JBOSS, WebLogic or could simply be a

serverless microservice built on Spring boot technology. As far

as the actual response is concerned, the server-side code either

fetches the data from the database or computes the price on the

fly before sending the response back to the consumer. The

choice of backend service solely depends on the volume and

workload of the application and is directly proportional to the

average number of users and requests per user.

The PULL method is a classic representation of real time

mode and PUSH is meant to be a good use case for outbound

batch mode. However, in some cases the PUSH can also be

used in real time mode, where a producer publishes the

information right after it is captured by the CDC process.

PUSH mechanism is commonly used in OLAP (Online

analytical processing) systems where there is no rush for real

time data, and an end of day snapshot should serve the purpose,

as the data is mostly used in generating reports or KPIs. PULL

is more appropriate for OLTP applications as the decision must

be made immediately based on the state of the data at the time

of transaction processing, it would mean a binary decision of

success or failure.

To conclude, both PUSH and PULL extraction methods

can be used in both inbound or outbound data interfaces, where

a source (internal or external) publishes the information using

PUSH protocol and the target system may consume the data

using PULL option.

Note: Every piece of information published using a PUSH

process should be complemented by a data PULL and vice

versa in case of the opposite. Webhook is a popular REST API

communication design pattern used in implementing the PUSH

method. It involves inverting the role of consumer and producer

in an API exchange. In this pattern the consumer registers an

API endpoint with the producer of data, whenever the producer

has new information, it invokes the registered API endpoint and

sends the data to the server of the consumer (instead of

consumer pulling for new information at regular intervals)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.54, December 2024

59

5. MANAGEMENT TECHNIQUES
There are several data management techniques used in the

inbound and outbound interfaces, and the orchestration layer,

we will discuss those in detail in the section below,

To send or receive a new or modified version of data, there

must be an information identifier that can be used to distinguish

between the various CRUD (Create, Read, Update, Delete)

operations. For instance, if the customer address is modified for

a customer id on a certain date, then the record must be flagged

using an indicator or a metadata for the record to be captured to

distinguish among the others. Ultimately the new customer

address must be sent over to the consuming application.

We will discuss 2 common industry practices in this section,

1. Trace management - Metadata of the internal events

(CRUD operation)

2. Timestamp based Window

5.1 Trace management (Metadata)

One of the popular methods that is widely used in data

exchange is trace management, as the term indicates its a trace

of the data that is either created, modified, or deleted. Using

this reference metadata, the data extractors can prepare the

inbound or outbound data and publish it to the targeted

application queues. The systems can use simple numerical

representation techniques for each of the DML operations in a

transaction, for example:

1- Create

2- Modify and

3- Delete or any other representation that suits the custom

design and development practice that may fit the need.

In a standard outbound data interface, whether you are

publishing the data to a Kafka topic or a traditional batch

processing mode that uses flat files like .csv/.txt or even EDI,

trace metadata play an important role by taking out the burden

of identifying changed data thereby saving a roundtrip for the

extraction process. You may then decide whether a full data

load or a delta load is desired by the consumer. Delta extract is

an efficient way to manage outbound processes as it only

targets to capture a true change without having to churn through

the entire data set (In database, read operations can be costly,

as it may scan the entire dataset blocks to produce an output).

For large enterprises like Dollar General, McDonald’s or

Walmart, churning through the massive transactional data to

find the deltas can be an expensive operation which may slow

down the OLTP systems. A trace managed solution design will

significantly help in avoiding an expensive CPU operation and

do the needful. As software systems landscape and data

repository grow, it’s essential for enterprises to ensure the

efficient utilization of system resources, particularly CPU and

memory.

Traces can be created using multiple methods, and the 2

most popular ones are,

1. System triggers (Implicit)

2. Exclusive trace generation

5.1.1 System triggers (Implicit)
Databases like Oracle or MS SQL Server have built in

features like DB table triggers that are invoked on every DML

operation and can be used to keep track of the changed data.

Triggers can help in effectively capturing traces of the modified

data without putting any overhead on the transaction or

database. In an ongoing transaction, DB triggers are seamlessly

executed without consuming any additional resources and are

popular choices; provided are coded with all the right

considerations. The choice of whether to use row or statement

level triggers depends on the individual use case.

In a RDBMS or NoSQL database, traces could simply be

an additional set of a DB tables with only required pieces of

information in it, just like any DB metadata views, for example:

a trace could be just built with rowid or primary key column (s)

with an indicator for type of DML operation. Traces should

contain only bare minimum information necessary to identify

the changed data but must include key details necessary for the

data preparation process, which will be complemented by the

extractor in producing the required output for the outbound

queue.

P.S: Triggers are nothing, but database stored procedures

executed by the core DB service when an event occurs. For

instance, an INSERT statement internally creates a ROWID

and stores the information in the available block provided by

the server's OS. Even though it appears implicit for the DB

user, Oracle executes it explicitly as part of its core process.

5.1.2 Exclusive trace generation

The second method of exclusive trace creation is embedded

as part of the main transaction; as soon as the primary DML

operations are complete, the trace is generated being the last

step of the transaction that captures metadata of the changed

data (CDC). In some cases, it could cause an overhead to the

main transaction and depends on the size of the transaction.

This exclusive trace generation method is widely used in most

of the master data management systems, in contrast large

transactions involving hundreds of steps could use the inbuilt

implicit triggering mechanism to avoid the overhead.

An example below represents how traces can be used in a

retail price modification scenario. Fig1 shows the current retail

price for a Coca-Cola item sold in Smyrna, GA store as of

7/31/2024.

Price

List

Location Item Price Priority Last

change

100101 Smyrna
Store

Coca-Cola $2.50 100 7/31/2024

Table 1: Snapshot of the retail price data as of 7/31/2024

As of 8/17/2024, the price is likely to change and an

additional new item (Ginger Ale) to be sold in the same store,

Price

List

Location Item Price Priority Last

change

100101 Smyrna,

GA

Coca-

Cola

$2.75 100 8/16/2024

100101 Smyrna,

GA

Ginger

Ale

$2.65 100 8/16/2024

Table 2: New version of retail price data as of 8/17/2024

See the trace output below,

Price List Item Operation Last change

100101 Coca-Cola 2 8/16/2024

100101 Ginger Ale 1 8/16/2024

Based on the information captured by the trace process, the

outbound routines can detect the changes, prepare the output

data, extract the required information, and post it to the

consumers either in a pub/sub data layer, Kafka topic, or using

an ETL tool.

If your enterprise is dealing with large datasets, trace

management could add a small amount of overhead on top of

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.54, December 2024

60

the standard storage requirement, approximately 10-15% of

additional storage, even though it's not a big portion compared

to the benefit it provides. You must ensure there is a single-

entry point that is generating the trace. One of the best practices

used in trace generation is having a dedicated database schema

or a hibernate library, enabling a modular approach per

function in a central GIT code repository.

The choice of whether to use a trace or not is determined

by the size of the datastore and could vary case to case. As

discussed, if the dataset used is between light and medium, then

this is an option to consider. For large to very large datasets,

there are other approaches that we will discuss in the section

below [9].

5.2 Timestamp based

Another common way to manage outbound data interfaces

is by using dates or timestamps. This data preparation is driven

by a piece of data that acts as metadata within the original data

set, for example: a dedicated column in the dataset to indicate

the last modified date and time. This can be managed as part of

the database or standard data structures like JSON, XML, etc.

The idea behind this method is to determine whether the state

of the data has changed from the last time it was read. It is a

window of operations that takes place between a dynamically

defined start and end time. Based on the selection criteria

defined in the window, the changed data is captured, prepared,

and transmitted out or could be simply dropped into a GCP or

Azure cloud bucket.

Managing data transfer using date and time stamps is

another popular technique that helps avoid the additional

storage requirement compared to trace as the identifier stays as

part of the original dataset. For large datasets with hundreds of

thousands or millions of transactions like customer orders, this

technique is very useful. Imagine a database like Oracle that

manages an online transaction processing platform (OLTP)

with a heavy transaction workload, by using the proposed

approach it can reduce the cost of a full table scan in the

outbound process.

This technique is also popularly used in user-interactive

applications that may be supporting a back-office operation or

a B2C, in which user activities are tracked and communicated

back to the database through app servers, a typical 3 tier client-

server architecture and is just not limited to outbound

interfaces. A web user interface written in ReactJS, or native

JavaScript/HTML may be using data structure collection like

JDOM to interact with servers through SOAP or REST web

service to store or retrieve the information.

JDOM (Java Document Object Model) is a Java-based

document processing model that represents XML documents in

a way that is easy to read, manipulate, and output. Unlike

traditional XML parsers, JDOM is designed specifically for the

Java programming language, providing a more intuitive and

efficient approach to handling XML data in Java applications.

6. CONCLUSION
This study has demonstrated that interfacing techniques

play a pivotal role in maintaining data synchronization and

ensuring a decoupled architecture for the core applications.

This approach safeguards business applications from becoming

overwhelmed due to data pull requests from consumers. While

there are additional concepts and aspects related to inbound and

outbound interface management, the focus of this paper is

intentionally limited to key methodologies and concepts.

One noteworthy concept that is not discussed in detail is the

utilization of ETL (Extract, Transform, Load) tools such as

Datastage and MuleSoft. These tools offer robust capabilities

for data integration and transformation tasks. They enable the

seamless extraction of data from various sources, the

transformation of the data to conform to specific business

requirements, and the subsequent loading of the transformed

data into target systems.

In addition to ETL tools, other concepts that could have

been explored further include: Data warehousing, Data

Governance, Data virtualization, and Data retention policies.

By delving deeper into these concepts, we would gain a

more comprehensive understanding of the inbound and

outbound interface management landscape. However, the

scope of this paper is deliberately focused on the core concepts

and key methodologies, leaving room for future research and

exploration of additional topics.

7. REFERENCES
[1] W. Xiaojin, S. Shucai, X. Yehua, J. Tao and L. Hongkun,

"Research on Data Standardization and Unified Data

Interface Based on Digital Station System," 2022 IEEE

5th Advanced Information Management, Communicates,

Electronic and Automation Control Conference (IMCEC),

Chongqing, China, 2022, pp. 1372-1376, doi:

10.1109/IMCEC55388.2022.10019942.

[2] A. Singh, A. Fisher, C. Allwardt and R. B. Melton, "A

Data Exchange Interface for a Standards-Based Data

Integration Platform," 2020 IEEE Power & Energy

Society Innovative Smart Grid Technologies Conference

(ISGT), Washington, DC, USA, 2020, pp. 1-5, doi:

10.1109/ISGT45199.2020.9087646.

[3] R. B. Melton, K. P. Schneider, E. Lightner, T. E.

Mcdermott, P. Sharma, Y. Zhang, et al., "Leveraging

Standards to Create an Open Platform for the

Development of Advanced Distribution Applications",

IEEE Access, vol. 6, pp. 37361-37370, 2018

[4] L. Gifre, M. Ruiz and L. Velasco, "Interfaces for

Monitoring and Data Analytics Systems," 2019 21st

International Conference on Transparent Optical

Networks (ICTON), Angers, France, 2019, pp. 1-4, doi:

10.1109/ICTON.2019.8840489.

[5] J. Sreemathy, I. Joseph V., S. Nisha, C. Prabha I. and G.

Priya R.M., "Data Integration in ETL Using TALEND,"

2020 6th International Conference on Advanced

Computing and Communication Systems (ICACCS),

Coimbatore, India, 2020, pp. 1444-1448, doi:

10.1109/ICACCS48705.2020.9074186.

[6] P. S. Diouf, A. Boly and S. Ndiaye, "Variety of data in the

ETL processes in the cloud migration and validation: State

of the art", 2018 IEEE International Conference on

Innovative Research and Development (ICIRD), pp. 1-5,

2018.

[7] L. Munoz, J. Mazon and J. Trujillo, ETL Process

Modeling Conceptual for Data Warehouse: A

Systematical Mapping Study, vol. 2016, June 2011.

[8] T. Mi, R. Aseltine and S. Rajasekaran, "Data Integration

on Multiple Data Sets," 2008 IEEE International

Conference on Bioinformatics and Biomedicine,

Philadelphia, PA, USA, 2008, pp. 443-446, doi:

10.1109/BIBM.2008.48.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.54, December 2024

61

[9] A. McCallum, K. Nigam, and L. Ungar. Efficient

clustering of high-dimensional data sets with application

to reference matching. Proceedings of the Sixth ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 169-178, 2000.

[10] Y. Zhao and G. Karypis. Evaluation of hierarchical

clustering algorithms for document datasets. CIKM 02:

Proceedings of the eleventh international conference on

Information and knowledge management, pages 515-524,

2002.

[11] R. Shree, T. Choudhury, S. C. Gupta and P. Kumar,

"KAFKA: The modern platform for data management and

analysis in big data domain," 2017 2nd International

Conference on Telecommunication and Networks (TEL-

NET), Noida, India, 2017, pp. 1-5, doi: 10.1109/TEL-

NET.2017.83435

IJCATM : www.ijcaonline.org

