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ABSTRACT 

Effective task allocation and workload balancing are critical 

challenges in garment production, particularly in systems that 

involve hanger transportation for moving garments between 

workstations. This paper presents a novel method for 

optimizing assembly line balancing by integrating the Shuffled 

Frog Leaping Algorithm (SFLA) with a task grouping strategy 

based on skill level, machine type, and precedence constraints, 

within a Master-Slave control framework for hanger 

transportation systems (HTS). The Master controller leverages 

SFLA to globally optimize task assignments aiming to 

minimize the number of stations, balance workloads, and 

reduce idle time, while ensuring task precedence and grouping 

requirements are met. Meanwhile, Slave controllers execute 

tasks locally and provide real-time feedback, facilitating 

dynamic adjustments based on system conditions. Simulations 

based on real-world garment assembly data demonstrate that 

the SFLA-based method significantly improves task allocation 

efficiency, reduces the number of stations, and enhances 

throughput compared to traditional approaches. This method 

increases the flexibility and adaptability of garment production 

lines, offering a robust solution for complex, dynamic 

manufacturing environments. 
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1. INTRODUCTION 

The garment production industry faces numerous challenges, 

particularly when managing complex and dynamic assembly 

lines that process different garment types and styles. Hanger 

Transportation Systems (HTS) are widely used to automate the 

movement of garments between workstations, such as cutting, 

sewing, and finishing. However, optimizing task assignments, 

balancing workloads across workstations, and minimizing 

bottlenecks in such systems remain significant challenges. 

Inefficient task assignments can lead to unbalanced lines, 

increased cycle times, idle workstations, and delays in 

production. To address these issues, effective line balancing 

and task optimization techniques are essential. Traditional 

methods for scheduling and balancing often struggle in 

dynamic environments, where factors like garment flow, 

worker availability, and machine performance fluctuate 

rapidly. Metaheuristic optimization algorithms such as Genetic 

Algorithms (GA), Particle Swarm Optimization (PSO), and 

Ant Colony Optimization (ACO) have shown promise in 

solving such complex problems due to their ability to explore 

large solution spaces and avoid local optima. Studies by Zhang 

et al. [1] and Wong et al. [2] have demonstrated the 

effectiveness of these algorithms in improving workload 

balancing and throughput in garment production systems. 

Additionally, hybrid metaheuristics, such as those developed 

by Hamta et al. [3] and Li et al. [4], address flexible operation 

times and sequence-dependent setup times, critical factors for 

efficient garment assembly lines. Moreover, Boysen et al. [5]  

have emphasized that modern assembly lines require 

optimization models that account for fluctuating production 

demands and complex precedence constraints. 

The Shuffled Frog Leaping Algorithm (SFLA) has emerged as 

a powerful metaheuristic for optimization problems that 

involve both local and global search components. Initially 

proposed by Eusuff and Lansey [6], SFLA has been 

successfully applied to various engineering optimization 

problems, including water distribution networks, project 

scheduling, and machine layout optimization. SFLA’s ability 

to combine local search (within memeplexes) and global 

exploration (via shuffling) makes it well-suited for complex, 

multi-objective optimization problems such as line balancing 

and task assignment.  

Despite the effectiveness of SFLA in other domains, its 

application to HTS and garment production remains relatively 

unexplored. This paper proposes a novel approach to line 

balancing and task optimization in HTS by integrating the 

SFLA within a Master-Slave control framework. In this system, 

the Master controller uses SFLA to globally optimize task 

assignments while Slave controllers execute these tasks and 

provide real-time feedback for dynamic adjustments. The 

primary goal is to achieve balanced workloads across 

workstations, reduce cycle times, and improve overall system 

throughput. The proposed approach is evaluated through 

simulations of a garment assembly line. The results 

demonstrate that the integration of SFLA with the Master-Slave 

control system leads to significant improvements in line 

balancing and task optimization, ultimately enhancing the 

flexibility and efficiency of garment production processes. This 

work contributes to the growing body of research on applying 

metaheuristic algorithms to industrial automation and offers 

practical insights for optimizing HTS in real-world garment 

factories 

The remaining paper is organized as follows: Section 2 details 

the methodology used, including the application of the SFLA 

for task allocation and line balancing. The Master-Slave control 

mechanism is explained. Section 3 presents the simulation 

results for a T-shirt production line using Technomatix Plant 

Simulation. Section 4 concludes the paper, highlighting the 
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feasibility of applying SFLA combined with a Master-Slave 

control system to optimize garment production lines. 

2. PROPOSED METHODOLOGY 

2.1 Overview of the Shuffled Frog Leaping 

Algorithm (SFLA) 
The Shuffled Frog Leaping Algorithm (SFLA) is a population-

based metaheuristic algorithm inspired by the natural behavior 

of frogs searching for food in their environment. It combines 

the benefits of both memetic and particle swarm optimization 

strategies by dividing the population into subgroups, known as 

memeplexes, where local search is conducted. After a certain 

number of local iterations, the frogs from different memeplexes 

are shuffled globally to exchange information and avoid local 

optima, thus improving global exploration. The SFLA operates 

with two major processes: 

• Local Search in Memeplexes: Frogs within each 

memeplex perform local optimization by exchanging 

information to improve their current solutions based on 

their relative performance. 

• Global Shuffling: After several rounds of local search, 

frogs are shuffled globally to prevent stagnation and 

diversify the search for better solutions. 

In SFLA, each solution (frog) is represented as a set of decision 

variables that are optimized iteratively. The fitness function 

drives the optimization process, aiming to minimize or 

maximize a target objective depending on the problem. The 

algorithm has proven to be effective for combinatorial 

optimization problems due to its ability to balance exploration 

and exploitation [7-8]. 

2.2 Application to the Assembly Line 

Balancing Problem (ALBP) 
The proposed methodology applies the SFLA to optimize task 

allocation and workload balancing in an Assembly Line 

Balancing Problem (ALBP), specifically in the garment 

production industry. The objective is to minimize the number 

of stations required while respecting cycle time, task 

precedence constraints, and the need to group tasks based on 

skill level and machine requirements. Each workstation 

(station) is assigned to handle a single task, with one or more 

machines depending on the task’s processing time. Tasks with 

long processing times are divided across multiple machines 

when they exceed the cycle time. 

The ALBP is modeled as a combinatorial optimization problem 

where the fitness function evaluates each frog (solution) based 

on the following criteria: 

• Minimizing the number of stations: Solutions using 

fewer stations are prioritized. 

• Minimizing idle time: The total idle time at each station 

is minimized to increase efficiency. 

• Task grouping compliance: Penalties are applied if tasks 

requiring the same skill level or machine type are split 

between stations. 

• Precedence constraint violations: Solutions violating the 

task precedence constraints are penalized to ensure proper 

task sequencing. 

2.3 Task Grouping and Machine Allocation 

Strategy 
A key innovation in the proposed approach is the use of task 

grouping based on shared characteristics such as skill level and 

machine type. Tasks are divided into groups to ensure that tasks 

requiring similar resources are assigned to the same 

workstation, minimizing machine changeovers and improving 

the ease of resource management. 

For each task, the following parameters are considered: 

• Processing time: The amount of time required to 

complete the task. 

• Skill level: The worker expertise required for the task. 

• Machine type: The specific machine or equipment 

needed to execute the task. 

Tasks with long processing times are split across multiple 

machines at the same workstation to ensure that no task exceeds 

the defined cycle time. The SFLA ensures that tasks within the 

same group (i.e., those requiring the same skill level and 

machine type) are prioritized for allocation to the same 

workstation. This strategy reduces overhead and ensures 

smoother transitions between tasks. 

2.4 Fitness Function Definition 
The fitness function is crucial to guiding the SFLA 

optimization process. For each frog (solution), the fitness 

function evaluates how well the solution satisfies the objectives 

of the problem. The fitness function is defined as follows: 

𝑓(𝑥) = 𝜔1𝑁𝑆 + 𝜔2𝐼𝑇 + 𝜔3𝑃𝐺𝑉  (1) 

where: 

- NS = Number of Stations: The total number of stations 
used in the solution. 

- IT = Idle Time: The total idle time across all stations. 

- PGV = Penalty for Group Violations: A penalty applied 
if tasks that should be grouped together (based on skill 
level or machine type) are split between different 
stations. 

- ω1, ω2, and ω4 are positive weighting factors 

By minimizing the fitness function, the algorithm ensures that 

the solution uses the fewest possible stations, minimizes idle 

time, and respects both task groupings and precedence 

constraints. 

2.4.1 Idle Time 

Idle Time refers to the amount of unused time at each 

workstation (station) during a production cycle. Since each 

workstation must complete its assigned tasks within the defined 

Cycle Time (𝐶𝑇), any remaining time after completing the 

task(s) at a station is considered idle time. 

𝐼𝑇 = ∑ (𝐶𝑇 − 𝑃𝑇𝑖)𝑛
𝑖=1   (2) 

where: 

- 𝐶𝑇 is the cycle time, 

- 𝑃𝑇𝑖 is the sum of the processing times for all tasks 

assigned to station 𝑖, 

- 𝑛 is the number of stations. 
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2.4.2 Penalty for Group Violations 

Group Violations occur when tasks that should be grouped 

together (e.g., tasks requiring the same skill level or machine 

type) are split across different stations. Grouping tasks together 

reduces setup time and improves workflow efficiency, so 

violations incur a penalty. 

Approach to Calculate Group Violations: 

✓ Define Groups: Group tasks based on common 

characteristics (e.g., machine type, skill level). 

✓ Identify Violations: For each task group, check whether 

tasks in the group are assigned to the same station. If they 

are split across multiple stations, it counts as a violation. 

✓ Apply Penalty: For each group violation, a predefined 

penalty is applied. 

𝑃𝐺𝑉 = ∑ (𝑃𝑉 ∗ 𝑉𝐺𝑗)𝑚
𝑗=1   (3) 

where: 

- 𝑚 is the number of task groups, 

- 𝑉𝐺𝑗  is the number of violations in group 𝑗, 

- 𝑃𝑉 is a constant penalty applied for each group violation. 

2.5 Master-Slave Control System 

2.5.1 Overview of Master-Slave Control 

The Master-Slave Control System or Decentralized Control 

System is a hierarchical structure widely used in 

manufacturing, where the Master controller is responsible for 

global coordination and optimization, while decentralized 

Slave controllers manage the execution of specific tasks at each 

workstation. This structure allows for global decision-making 

while ensuring localized control, improving system 

adaptability and scalability [9-11]. 

The Master controller is designed to optimize the allocation of 

tasks, manage resources, and respond to changes in real-time, 

while Slave controllers execute tasks at workstations and 

provide feedback, enabling dynamic adjustments to the 

production process. 

2.5.2 Master Controller Functions 

The Master controller employs optimization techniques to 

assign tasks to workstations, ensuring efficient operation and 

resource utilization. Some of its primary functions include: 

• Global Task Assignment: The Master controller uses 

optimization algorithms such as the Shuffled Frog 

Leaping Algorithm (SFLA) to allocate tasks in a way that 

balances workloads, minimizes idle time, and ensures 

tasks are completed in the correct order. 

• Hanger Routing Optimization: It also optimizes the 

routing of hangers between workstations, reducing travel 

time and ensuring smooth transitions. 

• Minimizing Cycle Time: By optimizing task assignments 

and reducing delays, the Master controller minimizes the 

overall cycle time, improving system throughput. 

• Handling Precedence Constraints: The controller 

respects task precedence, ensuring that tasks are 

completed in the correct sequence, preventing bottlenecks. 

2.5.3 Slave Controller Functions 

Each Slave controller is responsible for executing tasks 

assigned by the Master controller and reporting real-time 

updates. The main functions include: 

• Local Task Execution: The Slave controllers execute 

tasks using assigned resources, ensuring efficient 

operation. 

• Real-Time Feedback: Slave controllers monitor task 

progress and provide updates to the Master controller. 

This feedback includes task status, machine performance, 

and any potential disruptions. 

• Dynamic Adjustments: Based on the feedback, the 

Master controller can make adjustments to task 

assignments, resource allocation, or hanger routing to 

adapt to real-time changes. 

2.5.4 Integration of Master-Slave Control with SFLA 

The integration of SFLA within the Master-Slave system 

enhances task optimization and resource allocation in 

production systems. The Master controller uses SFLA to 

globally optimize task assignments, while the Slave controllers 

ensure local task execution. This enables the system to maintain 

flexibility and responsiveness in dynamic manufacturing 

environments. 

• Global Optimization: The Master controller leverages 

SFLA to reduce the number of workstations and optimize 

workload distribution across the system. 

• Local Execution and Feedback: Slave controllers 

provide real-time feedback, allowing dynamic 

adjustments based on current conditions. 

2.6 Overview of Tecnomatix 
Tecnomatix is a suite of digital manufacturing solutions offered 

by Siemens. It focuses on improving production efficiency 

through digital simulations and real-time optimization of 

manufacturing processes. Tecnomatix enables manufacturers 

to simulate, optimize, and validate their manufacturing systems 

and workflows virtually, reducing errors, improving time to 

market, and optimizing resources. It is commonly used for tasks 

such as production planning, process simulation, robotics, and 

ergonomic analysis [12]. 

Tecnomatix Plant Simulation is widely applied in optimizing 

production lines by modeling, simulating, and analyzing 

workflows. It helps manufacturers understand system behavior, 

identify bottlenecks, and evaluate "what-if" scenarios before 

physical implementation. Tecnomatix offers tools like Discrete 

Event Simulation (DES), allowing users to predict the 

performance of their production systems, adjust task 

scheduling, and optimize resource allocation [13-14]. 

In this paper, Tecnomatix Plant Simulation is utilized to model 

and optimize the garment production line by simulating task 

assignments, resource allocation, and hanger transportation 

across workstations. The software allows for detailed analysis 

of different configurations and scenarios, ensuring that cycle 

time constraints are met and minimizing the number of 

workstations. Tecnomatix provides a virtual environment to 

test task groupings, identify bottlenecks, and improve overall 

efficiency in the production process, making it ideal for solving 

the Assembly Line Balancing Problem (ALBP) in garment 

manufacturing. 
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3. SIMULATION RESULTS 

3.1 Problem Formulation 
The Assembly Line Balancing Problem (ALBP) in this paper 

focuses on optimizing task allocation and workload balancing 

for a T-shirt production system in the company TC. The system 

consists of 16 tasks, each with defined processing times, 

machine requirements, skill levels and precedence constraints 

as Table 1 and Fig. 1. The goal is to minimize the number of 

stations while ensuring all tasks are completed within a 

specified Cycle Time (𝐶𝑇). 

Table 1. Task List and Processing Time 

# 𝑇𝑎𝑠𝑘 𝑛𝑎𝑚𝑒 
𝑀𝑎𝑐ℎ𝑖𝑛𝑒 

𝑡𝑦𝑝𝑒 

𝑊𝑜𝑟𝑘𝑒𝑟 

𝑠𝑘𝑖𝑙𝑙 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

𝑡𝑖𝑚𝑒(𝑠𝑒𝑐) 

1 Collar sewing Single-needle C 6.99 

2 
Stitching collar 

edge 
Single-needle C 11.80 

3 
Shoulder 

overlock 

4-thread 

overhanging 
B 14.14 

4 
Shoulder 

topstitch 
Single-needle B 11.88 

5 Collar overlock 
4-thread 

overhanging 
B 30.18 

6 
Attaching back 

neck 
Single-needle B 25.41 

7 
Front neckline 

topstitch 
Single-needle B 24.72 

8 
Back neckline + 

label 
Single-needle B 16.23 

9 Overlock sleeve 
4-thread 

overhanging 
B 29.46 

10 
Armhole 

finishing 
Kansai B 22.25 

11 
Side seam 

overlock 

4-thread 

overhanging 
B 39.27 

12 
Side seam 

topstitch 
Single-needle B 27.89 

13 
Sewing bottom 

rib 
Single-needle C 7.48 

14 
Bottom hem 

overlock 

4-thread 

overhanging 
B 28.07 

15 Sewing cuff Single-needle B 6.13 

16 Cuff overlock 
4-thread 

overhanging 
B 17.44 

 

 

Fig. 1: Precedence constraints 

3.2 Simulation parameters 

• Weighting factors of the fitness function 

The fitness function in this problem evaluates the efficiency of 

task assignments by focusing on minimizing the number of 

workstations while considering idle time and penalties for 

group violations. In the simulation, weighting factors are 

assigned as follows: 𝜔1 = 0.6, 𝜔2 = 0.3, and 𝜔3 = 0.1, where 

𝜔1 prioritizes minimizing the number of workstations, 𝜔2 

targets reducing idle time, and 𝜔3 represents the penalty for 

group violations. Task precedence is treated as a constraint, 

ensuring all task dependencies are maintained. 

• SFLA parameters 

The parameter settings for the SFLA applied in this problem 

are provided in Table 2, outlining key algorithmic parameters 

such as population size, number of memeplexes, maximum 

iterations, and other essential values guiding the optimization 

process. These parameters are carefully selected to strike an 

optimal balance between exploration and exploitation, 

enhancing the algorithm’s ability to effectively explore the 

solution space and optimize task allocation in the Assembly 

Line Balancing Problem. 

Table 2. The SFLA parameter settings 

𝐺 𝑛 𝑚 𝑖𝑡𝑒𝑟 𝐷 

50 100 10 20 ∞ 

•  Termination Criteria 

The termination criteria for the optimization process in this 

study are based on two key factors: stability of the fitness value 

and maximum number of iterations. First, an upper limit on 

iterations is set to prevent the process from running indefinitely 

and to conserve computational resources. The second criterion 

focuses on fitness stability – if the fitness value remains 

constant for a predetermined number of iterations, the 

optimization process is terminated. This implies that further 

improvement is unlikely. These criteria ensure efficient 

resource use while achieving high-quality solutions. 

3.3 Task Assignment Results 
Based on the production plan for one shift of the company, the 

SFLA algorithm returns the result of task distribution across 

groups, as shown in Table 3. The SFLA successfully optimized 

the distribution of tasks into groups, resulting in the allocation 

of tasks to a total of 20 workstations and 28 machines. This 

grouping and assignment ensure that tasks are completed 

efficiently within the shift’s constraints. 

• Group 1 handles Task 3 using 1 workstation and 1 

machine, with a processing time of 14.14 seconds. 

• Group 2 handles Task 4 using 1 workstation and 1 

machine, with a processing time of 11.88 seconds. 

• Group 3 combines Tasks 1 and 2, requiring 1 

workstation and 2 machines, with a combined processing 

time of 18.79 seconds. 

• Group 4 handles Task 5, which is one of the more time-

intensive tasks, using 2 workstations and 2 machines for a 

total of 30.18 seconds. 

• Group 5 combines Tasks 6 and 7, requiring 3 

workstations and 3 machines, with a processing time of 

50.13 seconds. 

• Group 6 is dedicated to Task 8, using 1 workstation and 

1 machine, with a processing time of 16.23 seconds. 

• Group 7 handles Tasks 9 and 10, utilizing 3 workstations 

and 6 machines to process in 51.71 seconds. 
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• Group 8 is assigned to Tasks 11 and 12, the most time-

consuming tasks in the process, requiring 4 workstations 

and 8 machines, with a processing time of 67.16 seconds. 

• Group 9 manages Tasks 13 to 15, using 1 workstation 

and 1 machine, processing in 13.61 seconds. 

• Group 10 combines Tasks 14 to 16, requiring 3 

workstations and 3 machines for a total processing time of 

45.51 seconds. 

Table 3. Task group 

𝐺𝑟𝑜𝑢𝑝 𝑇𝑎𝑠𝑘 
#  

𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

#  

𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

𝑡𝑖𝑚𝑒(𝑠𝑒𝑐) 

1 1-2 1 2 18.79 

2 3 1 1 14.14 

3 4 1 1 11.88 

4 5 2 2 30.18 

5 6-7 3 3 50.13 

6 8 1 1 16.23 

7 9-10 3 6 51.71 

8 11-12 4 8 67.16 

9 13-15 1 1 13.61 

10 14-16 3 3 45.51 

Sum  20 28 319.34 

 

The results in Table 3 illustrate the output of the SFLA 

optimization, where tasks are grouped based on their 

processing times, worker skills, and dependencies, ensuring 

that the production line operates smoothly throughout the shift. 

This optimized grouping minimizes idle time and increases the 

overall efficiency of the production process, aligning with the 

company’s operational goals for the shift. 

Furthermore, the flexibility of the SFLA ensures that the task 

assignments can be adjusted in real-time to respond to any 

unexpected changes in production conditions, such as machine 

downtimes or sudden changes in task priority. This adaptability 

helps maintain the continuity of the production line and 

contributes to higher throughput and reduced cycle times. 

3.4 Simulation Results of Master-Slave 

Control 
Based on the task grouping results as outlined above, a 

simulation model was developed using Technomatix Plant 

Simulation, as shown in Fig. 2. In which, the workstations 

correspond to the groups as shown in Table 4. The Master-

Slave control mechanism was applied to this model to optimize 

task distribution and the flow of garments through the 

production line. 

 

Fig. 2: Simulation model 

 

Table 4. Workstations 

𝐺𝑟𝑜𝑢𝑝 # 𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑊𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

1 1 WS1 

2 1 WS3 

3 1 WS4 

4 2 WS5, WS6 

5 3 WS7, WS8, WS9 

6 1 WS10 

7 3 WS11, WS12, WS13 

8 4 WS14, WS15, WS16, WS17 

9 1 WS2 

10 3 WS18, WS19, WS20 

 

• Simulation Results Before Balancing 

Statistics on the working time and waiting time of the 20 

workstations are provided as shown in Fig. 3. Table 5 contains 

detailed data as well as the number of products entering and 

exiting each workstation. 

 

Fig. 3: Statistical results before balancing 

Table 5. Statistical results before balancing 

𝑊𝑆# 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑁𝑢𝑚𝐼𝑁 𝑁𝑢𝑚𝑂𝑢𝑡 

1 99.99% 0.01% 1725 1724 

2 72.38% 27.62% 1723 1723 

3 75.15% 24.85% 1722 1722 

4 63.10% 36.90% 1721 1721 

5 99.75% 0.25% 1071 1070 

6 59.06% 40.94% 634 634 

7 99.64% 0.36% 644 643 

8 96.85% 3.15% 626 625 

9 62.50% 37.50% 404 403 

10 83.70% 16.30% 1671 1671 

11 99.39% 0.61% 623 622 

12 94.44% 5.56% 592 591 

13 67.83% 32.17% 425 425 

14 99.21% 0.79% 479 478 

15 93.30% 6.70% 451 450 

16 89.30% 10.70% 431 430 

17 48.28% 51.72% 233 232 

18 97.10% 2.90% 692 691 

19 88.45% 11.55% 630 629 

20 33.46% 66.54% 239 238 
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Based on the aforementioned results, the following 

observations can be drawn: The production quantity at each 

workstation within the same group exhibits significant 

disparities, predominantly concentrated at the first workstation 

of the group in the production line. This imbalance leads to 

extended waiting times for subsequent workstations and an 

inequitable distribution of workload across the stations, 

ultimately resulting in a suboptimal utilization of workstation 

productivity. 

• Simulation Results After Balancing 

Statistical results after balancing are provided as shown in Fig. 

4. Table 6. 

 

Fig. 4: Statistical results after balancing 

Table 6. Statistical results after balancing 

𝑊𝑆# 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑁𝑢𝑚𝐼𝑁 𝑁𝑢𝑚𝑂𝑢𝑡 

1 99.99% 0.01% 1725 1724 

2 72.38% 27.62% 1723 1723 

3 75.15% 24.85% 1722 1722 

4 63.10% 36.90% 1721 1721 

5 80.11% 19.89% 861 860 

6 80.07% 19.93% 860 859 

7 88.63% 11.37% 573 572 

8 88.56% 11.44% 573 572 

9 88.50% 11.50% 572 572 

10 85.91% 14.09% 1716 1715 

11 91.18% 8.82% 572 571 

12 91.13% 8.87% 571 570 

13 91.07% 8.93% 571 570 

14 88.67% 11.33% 428 427 

15 88.60% 11.40% 428 427 

16 88.54% 11.46% 428 427 

17 88.50% 11.50% 427 426 

18 79.92% 20.08% 569 569 

19 79.87% 20.13% 569 568 

20 79.81% 20.19% 569 568 

 

From the above results, we can make the following 

observations: 

- The distribution of products to the workstations is 

performed uniformly, reflecting balance and optimization 

in the allocation of workload to each station. This results 

in the optimal utilization of all workstation resources, 

ensuring that no station is either underutilized or 

overburdened. 

- Examining the workload statistics of the workstations 

reveals a more equitable and balanced distribution of tasks 

among them. This indicates that workstations within the 

same group, having similar configurations, will receive 

tasks uniformly. 

• Simulation of Various Incidents 

To further highlight the performance of the balancing 

algorithm, we will simulate two error cases as follows: Error 

Case 1 involves the critical workstation number 10 (where only 

one workstation performs the task in the line), and Error Case 

2 involves workstation 7 in group 5 experiencing a 

malfunction. Both incidents result in a 30-minute halt after 4 

hours of operation, followed by a return to normal operation 

until the end of the shift. The statistical results regarding the 

distribution of the workstations are illustrated in Fig. 5 and 6, 

respectively 

 

Fig. 5: Statistical results of Error Case 1 

 

Fig. 6: Statistical results of Error Case 2 

From the statistical charts of the workstation distribution, we 

can observe that the load remains balanced across the 

workstations. This indicates that when a malfunction occurs 

and is fully resolved, the dynamic load-balancing algorithm 

still demonstrates its effectiveness. 

4. CONCLUSION 
This study demonstrates the effectiveness of integrating the 

Shuffled Frog Leaping Algorithm (SFLA) within a Master-

Slave control system for optimizing task assignment and 

routing in a Hanger Transportation System (HTS) for garment 

production. The simulation results highlight that the primary 

benefit of this approach was in achieving a more balanced 

workload distribution across workstations. This balance led to 
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smoother production flow and improved overall system 

performance. 

The Master-Slave control architecture allowed for dynamic 

adjustments based on real-time feedback from the Slave 

Controllers, which enabled the system to adapt to changing 

conditions and prevent bottlenecks from stalling production. 

This flexibility proved to be a key strength of the system, 

allowing it to maintain high efficiency even when faced with 

unexpected changes in workload or task availability. 

Moving forward, future research can explore the scalability of 

this approach to larger production lines and more complex 

garment assembly processes. Additionally, refining the fitness 

function to focus more heavily on cycle time or other specific 

objectives may further enhance the system’s effectiveness in 

different manufacturing contexts. Overall, this study shows that 

the combination of SFLA and a Master-Slave control system 

offers a flexible and powerful solution for optimizing complex 

production systems like HTS in garment manufacturing. 
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