
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.53, November 2024

64

Emergent Issues in Developing an Automated Feedback

System for Programming Assignment

Bolanle Abimbola
Dept. of Computer

Science
Babcock University
Ilisan,Ogun State

Nigeria

Agbaje M.O.
Dept. of Computer

Science
Babcock University
Ilisan,Ogun State

Nigeria

Akande Oyebola
Dept. of Computer

Science
Babcock University
Ilisan,Ogun State

Nigeria

Izang A.A.
Dept. of Computer

Science
Babcock University
Ilisan,Ogun State

Nigeria

ABSTRACT
Learning programming has been a painstaking task for many

learners, with the traditional method of teaching and feedback

providing limited assistance to students and minimal

improvement in their skills. Automated feedback systems have

been developed to improve programming education by using

technology to analyze students' code, identify the mistakes or

the areas for improvement and provide personalized feedback.

This paper focuses on the potential advantages and

disadvantages of deploying automated feedback systems in

programming courses. We examine diverse automated

feedback methods including static code analysis, test case

evaluation, and intelligent tutoring systems. Furthermore, we

look at the effect of these systems on student learning

outcomes, participation, and motivation. Additionally, we

make recommendations on how automated suggestions can be

included in programming courses curriculum and indicate

further research which is of vital importance in this changing

area.

General Terms

Software Engineering, Programming Education, Personalized

Feedback

Keywords
Automated Feedback, Learning , Programming

1. INTRODUCTION
Programming skills are of utmost importance in the era of

technology and are more than essential in areas like computer

science, software engineering, data science, or computational

science. Effective programming education is key to the

development of students' skills necessary for the realization of

meeting the growing need for programmers and the creation of

new technologies in the technical sphere, [1]. Nevertheless,

getting into programming might turn out to be difficult,

especially for beginners. Conventional forms of code

instruction and elemental reviews, for instance, in-person code

reviews and manual grading by tutors may take a lot of time

involving the tutor, and they hardly offer immediate assistance

and support [2]. In addition, traditional feedback methods

become less and less scalable with an increase in class size.

Automated feedback systems have been identified as a way to

solve problems and make programming education better. These

systems perform a checking function using technology [3]. The

system detects in the students' code submissions, errors,

inefficiencies, or areas requiring them to improve on as they

provide personalized feedback to help them improve their

programming skills. Automated feedback can for instance be

delivered in real-time which means that immediate assistance

can be given during learning at the exact moment when it is

necessary without this in any sense involving constant manual

intervention from teachers. This paper looks at the possible

advantages and difficulties of having the automation of the

feedback system in programming classes. We provide an

overview of specific techniques of automatic feedback

available, for example, curly braces check-ups, test case

evaluation, and tutoring systems which are intelligent.

Additionally, we address the issue of the influence of

automated feedback on students' learning results, activity, and

motivation. Besides that, we suggest the best practices for the

inclusion of the automated feedback into the programming

curricula and we also propose the directions for future research

in this field which is developing rapidly.

2. RELATED WORKS

2.1 Approaches to Automated Feedback
2.1.1. Static Code Analysis

Static code analysis is a formal process that does not require

code execution but only analyzes its source code. This way we

can use the scan to mark syntax errors, code style issues, and

possible logical or semantic errors based on the predefined

rules or patterns. Static code analysis tools might be used to

give some syntax checks against such coding conventions as

variable naming, code structure, potential security weaknesses

and other criteria [4]. One of the benefits of static code analysis

lies in its ability to detect problems in the consortium coding

when it is running. This can assist students in identifying and

correcting errors more effectively, which will in turn help them

save time and effort. Besides that, this type of analysis can be

embedded in the Integrated Development Environments (IDEs)

or editors, which allows continuous learning of best practices

as the students make their own code. On the other hand, static

code analysis has its limits when it comes to catching runtime

errors or assessing the functionality emulated by the program

design. It relies on predetermined rules and patterns which may

prove ineffective in the cases not of the pre-existing scenarios.

In addition, the efficiency of static code analysis can be affected

by the complexity of the programming language and the quality

of the analysis rules.

2.1.2. Test Case Evaluation

Test case evaluation involves executing the student's code

against a variety of predefined test cases and comparing the

outcome with the anticipated results. Applying this strategy to

program debugging can assist in error identification regarding

functionality and evaluate the accuracy of program output. Test

case evaluation can be very helpful when students are working

on programming assignments or projects that involve solving

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.53, November 2024

65

problems or developing algorithms[5]. It gives a clear

indication of the functionality of a program. By showing

students a comparison between the program's output and the

expected results, they learn how to identify in which area their

code differs from the wanted reaction. Furthermore, test case

evaluation can be automated, which will enable for mass and

quick feedback delivery.

On the other hand, test case evaluation is unable to identify

problems which are caused due to the code structure,

readability, or speed. The main objective is the proper

functioning of the program without paying attention to other

factors that can affect the programming, such as choosing the

right algorithm or code style. Also, it is a time-consuming and

challenging task to create comprehensive and representative

test cases, especially for complex programming assignments

[6]

2. 1. 3 Intelligent Tutoring Systems

Intelligent tutoring systems (ITS) are complex, supporting

systems based on the principles of artificial intelligence,

machine learning, and educational psychology, which provide

students with individualized and self-adjusting feedback. The

primary purpose of these systems is to build a model of the

learner's current understanding, to find their strengths and

weaknesses, and to offer specific feedback and tutorial support

[7].ITS may utilize strategies such as knowledge tracing which

captures a student’s command level of individual skills or

concepts and hence, it may tailor the feedback and instruction

in a way that suits the student's role. Besides, ITS can

implement natural language processing to analyze and offer

feedback on students' code comments or explanations, thus

providing more holistic feedback on programming concepts

and problem-solving strategies .On the list of ITS valuable

features is the fact that they can deliver highly personalized and

adaptive feedback that reflects the specific requirements of

each learner and the rate of his progress. Through all these

processes, the student's knowledge model will be made, and it

will be updated as their performance improves. For the student

model such education is a challenging task that necessitates a

lot of research and development. These learning systems

should not only combine the domain rules, learning strategies

and artificial intelligence methods but should be capable of

correct and useful feedback.

2.2 Benefits of automated feedback system

2.2.1 Immediate and Personalized Feedback
Automated systems have tailored feedback to many students

which helps in improving their comprehension speed.

Automatic feedback is a change of the past method of feedback

which required the time taken for manual grading and

scheduling as opposed to that when a student is working on a

programming assignment or project [8]. Immediate feedback is

key to effective learning because it allows students to discover

and solve errors or mistakes immediately before these issues

become fixed or result in more misconceptions. With the

feedback given to them on the spot when they encounter a

problem or work incorrectly, students can revise their

performance, allowing for faster progress and correction of

inadequate understanding [9].

Moreover, an automated feedback system can be used for

personalized feedback using a student's source code submission

or achievement as a starting point. This individualized

feedback talks about individual errors, inefficiencies, or areas

for improvement which will provide the student with targeted

guidance and support based on his/her unique needs and

learning progress.

2.2.2 Scalability and Efficiency

Quality and speed of feedback to students can be greatly

improved upon through the implementation of automated

systems. Automated feedback systems also help when dealing

with large classes or online learning environments due to their

scalability and efficiency. The ways by which feedback can be

given by other students or by instructors apart from manual

code reviews or grading becomes subjective, hence, the time

required to carry them out grows along with the number of

students [3]. The automated feedback system can analyze and

provide feedback to a large number of code submissions

quickly and efficiently without the need for manual

intervention. This scalability allows mentors to give every

student effective feedback in a much larger population than

would be possible without automation, while dramatically

reducing the workload and the overall time required for manual

grading and feedback processes. By the same token, automatic

feedback systems could integrate the delivery of feedback by

removing repetition between teachers and students, hence,

students receive their feedback continuously throughout their

learning experience. This efficiency can be a factor of a more

effective and interesting learning experience for the students as

they will be able to get prompt advice and support when they

need it.

2.2.3 Improved Learning Outcomes

Feedback systems with immediate, personalized, and

consistent feedback between the personalized feedback and

programming courses learning outcomes can enhance student

learning outcomes in programming courses. Early feedback is

really a detect and correct human mistakes since such problems

are easier to trace and brush away. With that, students won’t

eventually be faced with bigger problems that can be more

difficult to sort out. Timely and targeted feedback can enhance

student performance and make them understand and memorize

programming concepts and skills better [10]. Automated

feedback systems are a tool to reinforce what is right in terms

of the coding and to aid students develop a greater grasp of the

theories of the programming principles for they must fully

understand the theories besides knowing the implementation

solely of code [3]. In addition, an automated feedback system

may adapt delivery modes to multiple styles and preferences of

learning, including providing alternative feedback options such

as visual aids, the code embed options, or interactive examples.

The diversity in the presentation of feedback can provide for

different learning needs and therefore, will contribute to the

overall effectiveness of the feedback process [11].

2.2.4 Increased Engagement and Motivation

Automated feedback could be a motivation boosting factor

leading to enhanced student engagement in coding courses. The

immediate and personalized feedback gives the students a

chance to stay actively engaged with the learning process since

after encountering challenges or errors prompt assistance and

guidance is provided to them [12].

Timely feedback can help students to avoid discouragement

and frustration, as they can quickly identify and solve

problems, instead of facing roadblocks that may lead to

disengagement or demotivation. Furthermore, the aid of such

feedback systems can lead to a heightened sense of autonomy

and independent learning. Students can get hints and directions

without constantly demanding an instructor's presence[13].

Moreover, feedback systems could also build in gamification

activities either represented in form of level up, achievements

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.53, November 2024

66

or leaderboards to help with goal achievement and increase the

desire to learn. Students may find the feeling of

accomplishment by receiving constructive feedback on their

progress and skills [14].

2.3 Challenges and Limitations of Automated

Feedback Systems

2.3.1 Technical Complexities

Along with automatic feedback systems for programming

instruction which raise their own set of technical issues such

systems need to be able to read and analyze a variety of

programming languages, as well as cope with different coding

styles and conventions, and spot the errors, inefficiencies, or

the opportunities for improvement. Indeed, A particularity

consists of automated feedback systems which undergo

complicated algorithms and heuristics by bursting out relevant

feedback. Creating these algorithms and making sure that they

work well and the same as before for any programming task is

an enormous difficulty, and it requires doing tests and solving

problems a lot of times [15].

Additionally, integrating automated feedback systems with

existing programming tools, such as Furthermore, combining

automated feedback system with existing programming tools

like IDEs or learning management systems may have some

technical barriers. It is very important to make sure that the

software can be integrated and compatible with many different

programs and environments so that the students can have a

smooth and efficient feedback process.

2.3.2 Interpreting and Addressing Feedback

Although automatically given feedback systems are aimed to

offer meaningful and clear guidance, they may put other

students in a position of having to understand the provided

feedback, which can be a challenge for some learners,

especially those that are in the beginner stage. The interactions

may be boring or utilizing technical wording that cannot be

easily understood by students who do not have any

programming background [16]. Besides, the feedback and the

consideration of the proposed improvements may be linked to

the need for a more profound understanding of computer

programming concepts or problem-solving strategies. One of

the obstacles that students may face is that the feedback may

not be clear enough for them to turn into practical revisions and

improvements in their code. Hence, students may end up

getting frustrated or get stuck or they may lose their progress.

For this purpose, the need to give the students the requisite

training as well as guidance on how to interpret and properly

apply the automated feedback is vital. This may be done by

incorporating the explanations or examples within the feedback

system, providing additional tutorial materials, or introducing

the possibility for the student to interact with the human

instructor and get guidance.

2.3.3 Pedagogical Considerations
The introduction of automated feedback systems into

programming education raises some pedagogical issues.

Though these systems allow students to get instant feedback

and guidance, it has to be ensured that they are following

acceptable pedagogical principles and really help the learners

acquire different skills.

One of the major points to keep in mind is the delicate balance

between automated feedback and human interaction. Though

the automation system can do a good job of helping students

with specific assignments and feedback on programming tasks,

humans are still the ones who play a major role in making sure

that the students understand the big picture, are good at solving

problems by themselves, and get the personal mentoring and

training they need [17].The feedback given by the automated

systems should be designed and structured in a way that

promotes deep learning and not shallow and formulaic ways of

programming. The feedback is required to induce critical

thinking, problem-solving, as well as a conceptual

understanding of programming principles rather than only

normative syntax or code implementations [18].

2.3.4 Integration with Curricula
Introducing feedback systems in the existing curriculum of

programming can be a daunting task. This is achieved by the

skillful adjustment of the feedback system's capabilities and

outputs to the learning objectives, course content, and

instructional approaches of the curriculum. The process of

making the integration with effectiveness is the teachers,

curriculum developers, and the creators of the automatic

feedback developers to be attached. The feedback system

should be the one that is specifically made for the programming

theories, problem-solving tactics, and the programming

practices that are the subjects in the course[19]. Besides, the

teachers might have to change their teaching techniques and

course structure to be able to use the advantages of the

automated feedback system. This might be that of redefining

assignments, changing the assessment schemes, or introducing

other new instructional strategies that would be in the line with

the automated feedback which would be a part of the whole

learning process.

3. BEST PRACTICES AND

RECOMMENDATIONS

3.1 Combining Automated Feedback with Human

Instruction

The integration of Automated Feedback with Human

Instruction is a significant advancement in education and will

indeed help to improve the learning experience of student.

While the feedback systems that are automated have many

advantages, it is important to understand their limits and the

significance of combining them with human instruction and

guidance. Automated systems should be deemed as tools to

complement rather than fully depend on human instructors and

their knowledge.

Human teachers are important in that they can provide

individualized supervision, enhance comprehension of general

concepts, and promote the development of critical thinking

skills and solve unresolved issues. They can make the

information given by the automated systems more realistic,

explain what is unclear and give the students some more

examples, and also answer the complex questions or the

students' misunderstandings that may occur [17].

Through incorporating automated feedback systems together

with human instruction, instructors will be able to draw on the

strengths of both methods. Automatic systems can give

immediate and widespread feedback on pinpoint programming

jobs or assignments whilst human teachers can work on the

next level of understanding, that is, personalized instruction

and supporting students through the complex and more

challenging tasks of the program.

3.2 Providing Meaningful and Actionable Feedback

In order to make feedback systems automatically efficient, the

feedback should be meaningful, actionable and align well with

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.53, November 2024

67

individual learning goals of students. The feedback should not

only identify errors but should also be very direct and explicit

in communicating how these errors may be resolved and

avoided. The effective feedback should be constructive one, the

one that will make students aware of their mistakes and offer

them suggestions for improvement. In such an endeavor; it

should be combined with the bigger topic which includes

programming concepts and emphasis on problem-solving

strategies which then should deepen the understanding of the

underlying principles [20]. Also, the feedback ought to be

shown in a language that is comprehensible and can be

understood by least the variable learners. Through the use of

unambiguous words, visual tools, and interactive examples,

students can understand and use the feedback in their

programming works.

3.3 Fostering a Supportive Learning Environment

Feedback systems via automation should be supplemented by

engagement in building a friendly and cohesive atmosphere for

student learning. Programming can be a difficult task, and

students can encounter problems, obstacles, and feelings of

failure, particularly when they get negative feedback. It is even

more crucial that the feedback, either automated or person-

based, is considered a chance for improvement and growth.

Teachers and learning materials of the course should be in line

with growth mindset since it is perfectly normal to make

mistakes while learning something new and that sticking with

it and learning from essential feedback are the keys to

programming skills mastery [21].

Furthermore, when designing the collaborative and safe

learning environment, educators might be able to curtail the

new unfavorable effects. Through the promotion of peer

support, organizing group discussions, and giving the students

a chance to share their experiences and strategies, a community

is created and a more positive attitude to feedback and

continuous improvement is nurtured.

3.4 Continuously Evaluating and Improving Feedback

Systems

The evaluation and continual improvement of automated

feedback systems is imperative to guarantee their effectiveness

and pedagogical relevance in a changing educational

environment where students develop more digital skills. This is

a process that requires regular examination of the quality and

the influence of the feedback that is given, and also the

collection of input from instructors and students on their

experiences with the system.

Data-driven methods, including student performance and

engagement metric analysis, can help to determine the

performance of the feedback system. It is also obvious that they

will help to determine areas of improvement. Another part of

this research is getting qualitative feedback from the students

who use the platform and their instructors so mistakes,

problems and development areas will be revealed [22].

On the basis of these assessments, the feedback system will be

improved upon and readjusted. Such could include the

improvement of algorithms in providing more reliable and

relevant suggestions, the enhancement of the user interface and

how feedback is presented, and the integration of new functions

and capabilities that fit the learning styles of students and

engage them more with the platforms. Omitting an ongoing

assessment and renovation of automated feedback tools

becomes a prerequisite, not only for their ability to have a

lasting impact on the progress of programming education but

also for keeping the related field abreast of the latest trends.

3.5 Integration with Emerging Technologies

The innovation in technology is a continuous process, so

further research should be done about the integration of

automated feedback systems with new technologies that can

make programming education better. Furthermore, the

incorporation of virtual or augmented reality environments will

deliver immersive and interactive learning opportunities for

students as they will have a chance to merely understand the

code and manipulate it in a new and fascinating way.

Furthermore, integration of natural and conversational AI

assistants or chatbots will bring about a more natural way for

students to interact with automated feedback systems. These AI

assistants could be the ones to engage in conversational

exchanges, giving feedback and guidance in a more human-like

way, which could in turn improve the understanding and

relevance of the feedback.

The integration of automated feedback systems with various

online coding platforms, collaborative development

environments, and cloud-based programming tools, is also a

central concern. These integrations can help provide real-time

feedback and collaboration allowing students to have useful

support or guidance while working on coding projects or

participating in coding challenges and hackathons.

Therefore, research should also look at the use of automated

feedback systems in the context of the new programming

paradigms such as low-code or no-code development

environments that aim to make programming more accessible

to non-technical users. The development of automated

feedback systems, together with new paradigms, is able to

widen the footprint and impact of educational programming

which will help more learners to acquire coding skills and thus

contribute to technology development.

4. CONCLUSION

Emerging technologies such as automated feedback systems

provide a way forward in learner-centered programming

education by making feedback more timely, personalized, and

even scalable. Although these systems may involve some

technical difficulties and pedagogical issues, the best practices

like combining human and automated feedback can help to

achieve maximum effect. As new technologies are being

developed, focusing not only on intelligent tutoring systems,

personalized learning pathways, and ethics will be important to

grasp the maximum benefits of automated feedback in

programming education. Although this adoption of cutting-

edge technologies is not always easy for teachers to embrace,

refining the use of these tools is one sure way of creating

engaging and compelling learning experiences that prepare

students for the "technology everywhere" era.

5. REFERENCES

[1] Zinovieva, I., Artemchuk, V., Iatsyshyn, A.V., Popov, O.,

Kovach, V., Iatsyshyn, A.V., Romanenko, Y., and

Radchenko, O.: ‘The use of online coding platforms as

additional distance tools in programming education’, in

Editor (Ed.)^(Eds.): ‘Book The use of online coding

platforms as additional distance tools in programming

education’ (IOP Publishing, 2021, edn.), pp. 012029.

[2] Buhr, S.P.: ‘21st Century Physics Homework: A Mixed-

Methods Approach Evaluating How an Individualized

Online Homework Platform Can Provide Quality

Feedback and Help Physics Students Engage in Self-

Regulated Learning’, University of South Carolina, 2020.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.53, November 2024

68

[3] Messer, M., Brown, N.C., Kölling, M., and Shi, M.:

‘Automated grading and feedback tools for programming

education: A systematic review’, ACM Transactions on

Computing Education, 2024, 24, (1), pp. 1-43.

[4] Mehrpour, S., and LaToza, T.D.: ‘Can static analysis tools

find more defects? a qualitative study of design rule

violations found by code review’, Empirical Software

Engineering, 2023, 28, (1), pp. 5.

[5] Paiva, J.C., Leal, J.P., and Figueira, Á.: ‘Automated

assessment in computer science education: A state-of-the-

art review’, ACM Transactions on Computing Education

(TOCE), 2022, 22, (3), pp. 1-40.

[6] Pan, R., Bagherzadeh, M., Ghaleb, T.A., and Briand, L.:

‘Test case selection and prioritization using machine

learning: a systematic literature review’, Empirical

Software Engineering, 2022, 27, (2), pp. 29.

[7] Mousavinasab, E., Zarifsanaiey, N., R. Niakan Kalhori, S.,

Rakhshan, M., Keikha, L., and Ghazi Saeedi, M.:

‘Intelligent tutoring systems: a systematic review of

characteristics, applications, and evaluation methods’,

Interactive Learning Environments, 2021, 29, (1), pp. 142-

163.

[8] Leinonen, J., Denny, P., and Whalley, J.: ‘A comparison

of immediate and scheduled feedback in introductory

programming projects’, in Editor (Ed.)^(Eds.): ‘Book A

comparison of immediate and scheduled feedback in

introductory programming projects’ (2022, edn.), pp. 885-

891.

[9] Alibali, M.W., Brown, S.A., and Menendez, D.:

‘Understanding strategy change: Contextual, individual,

and metacognitive factors’, Advances in child

development and behavior, 2019, 56, pp. 227-256.

[10] Goodman, B.E., Barker, M.K., and Cooke, J.E.: ‘Best

practices in active and student-centered learning in

physiology classes’, Advances in Physiology Education,

2018, 42, (3), pp. 417-423.

[11] Tai, J., Ajjawi, R., Boud, D., Dawson, P., and Panadero,

E.: ‘Developing evaluative judgement: enabling students

to make decisions about the quality of work’, Higher

education, 2018, 76, pp. 467-481.

[12] Almusaed, A., Almssad, A., Yitmen, I., and Homod, R.Z.:

‘Enhancing student engagement: Harnessing “AIED”’s

power in hybrid education—A review analysis’,

Education Sciences, 2023, 13, (7), pp. 632.

[13] Lee, S.M.: ‘Factors affecting the quality of online learning

in a task‐based college course’, Foreign Language Annals,

2022, 55, (1), pp. 116-134.

[14] Schunk, D.H.: ‘Self-regulation of self-efficacy and

attributions in academic settings’: ‘Self-regulation of

learning and performance’ (Routledge, 2023), pp. 75-99.

[15] Keuning, H., Jeuring, J., and Heeren, B.: ‘A systematic

literature review of automated feedback generation for

programming exercises’, ACM Transactions on

Computing Education (TOCE), 2018, 19, (1), pp. 1-43.

[16] Lai, C., Hu, X., and Lyu, B.: ‘Understanding the nature of

learners’ out-of-class language learning experience with

technology’, Computer assisted language learning, 2018,

31, (1-2), pp. 114-143.

[17] Keuning, H., Jeuring, J., and Heeren, B.: ‘Towards a

systematic review of automated feedback generation for

programming exercises’, in Editor (Ed.)^(Eds.): ‘Book

Towards a systematic review of automated feedback

generation for programming exercises’ (2016, edn.), pp.

41-46.

[18] Wang, X.-M., and Hwang, G.-J.: ‘A problem posing-

based practicing strategy for facilitating students’

computer programming skills in the team-based learning

mode’, Educational Technology Research and

Development, 2017, 65, pp. 1655-1671.

[19] Loksa, D., Ko, A.J., Jernigan, W., Oleson, A., Mendez,

C.J., and Burnett, M.M.: ‘Programming, problem solving,

and self-awareness: Effects of explicit guidance’, in Editor

(Ed.)^(Eds.): ‘Book Programming, problem solving, and

self-awareness: Effects of explicit guidance’ (2016, edn.),

pp. 1449-1461.

[20] Renkl, A., and Atkinson, R.K.: ‘Structuring the transition

from example study to problem solving in cognitive skill

acquisition: A cognitive load perspective’: ‘Cognitive

Load Theory’ (Routledge, 2016), pp. 15-22.

[21] Zeeb, H., Ostertag, J., and Renkl, A.: ‘Towards a growth

mindset culture in the classroom: Implementation of a

lesson-integrated mindset training’, Education Research

International, 2020, 2020, pp.1-13.

[22] Sentance, S., and Csizmadia, A.: ‘Computing in the

curriculum: Challenges and strategies from ateacher’s

perspective’, Education and information technologies,

2017, 22, pp. 469-495.

IJCATM : www.ijcaonline.org

