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ABSTRACT 

Compared to traditional multivalued computing systems, 

multivalued quantum computing offers more processing power 

and uniqueness thanks to its combination of theoretical 

computer science and quantum physics. It uses quantum 

mechanics and the collective features of quantum states, such 

as superposition with entanglement, and interference, to 

accomplish some calculations with unprecedented 

computational speed. When dealing with these intricate issues, 

quantum algorithms adopt a novel strategy: they generate 

multidimensional spaces from which the patterns connecting 

distinct data points arise. These algorithms could effectively 

address complex mathematical problems, generate secure 

codes that are difficult to crack, and predict interactions among 

multiple particles in chemical reactions. They also refer to 

memory devices, a general term for integrated circuits that can 

be programmed in a lab to carry out intricate functions. 

Quantum computers outperform traditional Turing machines 

by coherent superposition of states. Large photonic quantum 

processing systems would be possible with the help of quantum 

memories since they would be capable of effectively 

modifying, buffering, and adjusting the timing of photonic 

signals. While qubits can only be used as input states in certain 

types of computers, quantum computing allows for the 

development of new computer types that have higher storage 

capacities despite the slower performance of regular 

programmable read-only memory (PROM). The design of 

multivalued quantum-based PROM is a key concern in order to 

produce affordable, durable, high-capacity, reliable, and 

energy-efficient memory systems. This study presents the 

construction of a multivalued PROM architecture based on 

quantum mechanics, utilizing algorithms for multiple valued 

quantum ternary operations. 

Keywords 
Quantum Logic; Ternary; Parallel Processing; Multivalued; 

Qutrit; QMPROM.   

1. INTRODUCTION 
Quantum computing focuses on developing computer 

technology based on the principles of quantum theory, which 

explains the behavior of matter and energy at atomic and 

subatomic levels [1]. It is well known that there are aspects of 

quantum mechanics that are absent from classical physics. 

These peculiar characteristics include decoherence, which 

asserts that when a coherent (superposed) state interacts with 

its surroundings, it transforms into a classical state devoid of 

superposition, and superposition, which is the ability to exist in 

numerous states [2, 3]. Hence, entanglement: the state in which 

two or more particles can be connected and, if so, alter one 

another's properties must be fully isolated from the outside 

world for a quantum computer to operate with superposed 

states [4, 5]. In a quantum system, it is impossible to predict 

with any degree of precision every property of a particle. In 

theory, given enough time, any issue that a quantum computer 

can answer may also be solved by a classical computer [6]. 

When dealing with these kinds of intricate issues, quantum 

algorithms adopt a novel strategy: they create multidimensional 

spaces where the patterns connecting distinct data points appear 

[7].  Rather than using the more widely used binary system 

(base 2) for calculations, ternary computers use ternary logic, 

or base 3 [8].  

Multivalued quantum computing, or ternary quantum 

computing, differs from other traditional computing systems 

due to its rapid processing speeds and parallel processing 

capabilities [9, 10]. This means that it employs trits rather than 

bits, in contrast to conventional memory, which stores 

information as ternary states (represented by "|2>"s, "|1>"s, and 

"|0>"s). The main goal is to create multivalued quantum-based 

programmable ROMs that offer low-cost, robust, high-density, 

dependable, and energy-efficient memory technologies. One of 

the earliest calculators was made completely of wood and ran 

on balanced ternary, according to Thomas Fowler's 1840 

construction [11]. At Moscow State University in the Soviet 

Union, Nikolay Brusentsov created Setun, the first electronic 

ternary computer, in 1958. Compared to succeeding binary 

computers, Setun provided a number of advantages, including 

lower manufacture and energy costs. In 1970, Brusentsov 

improved the model and called it Setun-70 [12]. The binary 

machine-based ternary computer emulator Ternac was first 

released in the United States in 1973. Furthermore, another 

ternary computer, the QTC-1, was created in Canada [13]. Key 

elements of photonics-based quantum technologies include 

single-photon detectors, frequency converters, photon sources, 

quantum random number generators, and quantum memory 

[14, 15]. The ability to store and recover the quantum state of a 

single photon is the main subject of this essay on quantum 

memory. The diverse approaches to quantum memory cover a 

broad spectrum of electromagnetic interactions and present the 

most recent developments in quantum control of optical signals 

[16, 17]. Certain principles are evident when it comes to 

memory parameters: a greater cost per bit of stored information 

results from lowering access time, whereas a lower cost is 

associated with increased memory capacity [18]. A memory 

system's capacity, sometimes known as memory volume, is the 

total number of locations within it. Capacity can be measured 

in bits, bytes, or words; therefore, it is crucial to define the 

length of a word in terms of bits or bytes [19, 20]. The time 

elapsed between submitting a memory access request and 

getting the relevant data is known as memory access time. A 

memory unit's access time affects its speed, which is measured 

as the amount of time it takes to retrieve a single unit of data; 

quicker memory has shorter access times [21]. Memory cycle 

time is another term for the smallest amount of time needed 

between successive access requests to the same memory 

address. Memory transfer rate, expressed in bits per second or 

bytes per second, indicates how quickly data can be read from 

or written to the designated memory [22]. PROM and 
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programmable logic are often categorized within the same 

circuit type. The architecture of Programmable Logic Devices 

(PLDs) provides greater flexibility compared to PROM 

architecture, which tends to reach its limitations when 

numerous inputs are connected to multiple outputs. Data or 

programs can be written only once, but once written, they can 

be read as often as needed [23, 24].  

A PROM chip, which has non-volatile memory and can hold 

up to 4 megabytes (MB) of data per chip, is mostly employed 

during a modern computer's startup procedure [25]. 

Unrestricted access to any place and time across the entire 

address space is made possible by random memory. Regardless 

of the sequence of all prior accesses, the access is possible 

separately. An address may be accessed in any sequence. In a 

random-access memory, access is provided by separate 

hardware circuits at each place. Address decoding results in the 

activation of these circuits [26]. A programmable OR gate 

array, which may be conditionally reversed to generate an 

output, is connected to a static AND gate array in 

programmable read-only memory. While the idea of a PROM 

and ROM are similar, a PROM does not create all of the 

minterms and does not offer complete variable decoding [27, 

28]. PROM devices use arrays of transistor cells configured in 

a "fixed-OR, programmable-AND" fashion to generate "sum of 

products" binary logic equations for each output based on the 

inputs and either synchronous or asynchronous feedback from 

the outputs. To translate basic code into the commands required 

by a device programmer for design implementation, system 

designers can use development software. Developing memory 

technologies that are low-cost, resilient, high-density, 

dependable, and energy-efficient is a major problem in the 

development of multivalued quantum-based PROMs. 

2. LITERATURE STUDY 
In this section, the basics of quantum technology, multivalued 

basic gate operations with the algorithms, and quantum ternary-

based storage PROM are discussed in detail. 

2.1 Multivalued Quantum Computing 
In ternary quantum computing, one qubit is employed as an 

output and two qubits as inputs. Qutrit states are the name given 

to these basis states, which are represented by 3 × 1 vectors 

[29]: 

 
The following formula, which is the linear superposition of the 

previously mentioned base states, defines a qutrit in a ternary 

quantum system: 

 
Here α, β, and γ are the complex values that represent the 

probability values of the basis states, and ψ is the wave 

function, and ψ is the wave function. 

2.2 Quantum Ternary Gates 

2.2.1 Quantum Ternary Shift gates 
Commonly utilized are six triple permutation matrices, which 

are also known as quantum triple shift gates. Zero is the 

primary state. The numerals 0, 1, and 2, respectively, are in the 

columns. The qutrit levels shift by 1 when transformed by Z 

(+1). The qutrit states are shifted by two when Z (+2) is 

transformed. Transform Z (01) trades |0> and |1>, Transform Z 

(02) exchanges |0> and |2>, and Transform Z (12) swaps the 

qutrit values |1> and |2>. 

 

Fig 1:  1-qutrit ternary permutation transformations 

These transformations are depicted in Figure 1, and the 

operations of 1-qutrit ternary shift gates are given in Table 1. 

Table 1. 1-qutrit Ternary Shift Gates Operations 

A |0> |1> |2> 

Z (0) = A |0> |1> |2> 

Z (+1) = A+1 |1> |2> |0> 

Z (+2) = A+2 |2> |0> |1> 

Z (12) = 2A |0> |2> |1> 

Z (01) = 2A+1 |1> |0> |2> 

Z (02) = 2A+2 |2> |1> |0> 

2.2.2 Quantum Ternary Toffoli gates 
Another quantum ternary gate is the ternary Toffoli gate [30]. 

Its inputs are A, B, and C, with C serving as the controlled 

input, while A and B act as the controlling inputs. The outputs 

are P = A and Q = B. Figure 2 displays the symbol for the 

generalized 3-qutrit ternary permutation/shift operations. 

R = Z transforms of C; if A = X1 and B = X2 

C                          ;    otherwise 

The ternary Toffoli gate has the following outputs: P, Q, and R. 

Inputs A and B correspond to X1 and X2, then outputs P and Q 

are equivalent to A and B, while output R represents the Z 

transform of C, where Z = {+1, +2, 01, 02, 12}. If this condition 

is not met, the input C and output R are the same. The Toffoli 

gate for a single regulated input is depicted in Figure 3. In this 

case, the gate will only open if bit 2 is the controlled bit. 

2.2.3 Quantum Ternary C2NOT gates 
Multi-qutrit control operations are feasible in ternary logic. A 

revised definition of 3-qutrit C2 NOT was provided by [31], and 

it is utilized to implement the ternary midterm simplification 

rules. 

 
Here the target input is C and the control inputs are A and B. 

The (+1) action of the supplied input will be provided in this 

case by the last NOT (C). Figure 4 displays the symbol for the 

ternary C2 NOT gate. 

 
 

Fig 2: 3-qutrit ternary 

Permutation Operations 

Fig 3:  Ternary 1-bit 

Controlled Operation 

 
Fig 4:  Ternary 3-qutrit C2 NOT gate 

2.3 Ternary Quantum Basic Logic Gates 
Functions with ternary logic are ones whose relevance 

increases when a third value is familiar with the binary logic. 

Here, the ternary levels for fundamental logic gates are 

represented by the numbers 0, 1, and 2, which stand for false, 

undefined, and true, respectively. The following definitions 

[32, 33] apply to the fundamental operations of ternary logic: 
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Where |x>, |y>= {|0>, |1>, |2>} 

The minimal value of the AND logic gate's inputs determines 

the value of the gate's output. Similar to this, the output value 

of an OR logic gate is determined by the highest input value.  

2.3.1 Quantum Ternary OR Operations  
YOR = max (X, Y) is the definition of the quantum OR 

operation, where inputs of X and Y represent from the set {|0>, 

|1>, |2>}. The shifting operations of (+1) and (+2) shifting are 

necessary for the Quantum Ternary OR operation. When two 

inputs govern two (+1) operations, while two additional (+1) 

operations remain uncontrolled. Every input controls two (+2) 

procedures. Additionally, in order to obtain the anticipated 

outcome that was previously displayed in Table 2, a two-input 

controlled C2NOT gate is required. 

 

Figure 5:  Ternary Quantum OR Gate 

 Figure 5 shows that the inputs B and A, respectively, control 

the first (+2) and second (+2) operations, which will only open 

if the input is |2>. Both A and B inputs control the following 

(+1), and they will only open if both inputs are |2>. There is no 

control over the next two (+1). Once more, two inputs govern 

the following (+1), which will only open if |2> is present in 

both inputs. And only in the event that A, B!= 0 && A!= B will 

the last XOR gate open. 

Table 2. Quantum Ternary OR Operations 

A |0> |0> |0> |1> |1> |1> |2> |2> |2> 

B |0> |1> |2> |0> |1> |2> |0> |1> |2> 

(1) +12 |0> |0> |2> |0> |0> |2> |0> |0> |2> 

(2) +2 |0> |0> |2> |0> |0> |2> |2> |2> |1> 

(1) +1 |0> |0> |2> |0> |0> |2> |2> |2> |0> 

A +1 |1> |1> |1> |2> |2> |2> |0> |0> |0> 

B +1 |1> |2> |0> |1> |2> |0> |1> |2> |0> 

(1) +1 

+1 
|0> |0> |2> |0> |1> |2> |2> |2> |0> 

C2NOT |0> |1> |2> |1> |1> |2> |2> |2> |0> 

 

2.3.1.1 Algorithm of Ternary Quantum OR Gate 

Algorithm 1: Multiple-Valued Quantum-Based OR Gate  

Input: A, B; Output: |0>, |1>, |2>  

1. Begin  

2. Procedure DO_Quant_T-OR( | A >, | B >) 

3. | M > <- perform_PlusTwoOp( | B >, | 0 > ); 

4. | N > <- perform_PlusTwoOp( | A >, | M > ); 

5. | O > <- perform_PlusOneOp2( | A >, | B >, | N > ); 

6.       | A1 > <- perform_PlusOneOp( | A > ); 

7.       | B1 > <- perform_PlusOneOp( | B > ); 

8. | P > <- perform_PlusOneOp2( | A1 >, | B1 >, | O >); 

9.  | Q > <- perform_C2NOTOp( | A1 >, | B1 >, | P > ); 

10. end procedure 

11. Procedure perform_PlusTwoOp2( | A >, | B >, | C > ) 

12.       if the value of | A > and | B > both are | 2 > 

13.                  if the value of | C > is | 0 > 

14.                            return | 2 > 

15.                  else if the value of | C > is | 1 > 

16.                            return | 0 > 

17.                  else return | 1 > 

18.        else return | C > 

19.  end procedure 

20. Procedure perform_PlusTwoOp( | A >, | B >) 

21.        if the value of | A >  is| 2 > 

22.                  if the value of | B > is | 0 > 

23.                            return | 2 > 

24.                  else if the value of | B > is | 1 > 

25.                            return | 0 > 

26.                  else return | 1 > 

27.        else return | B > 

28.  end procedure 

29. Procedure perform_PlusOneOp2( | A >, | B >, | C > ) 

30.       if the value of | A > and | B > both are | 1 > 

31.                  if the value of | C > is | 0 > 

32.                            return | 1 > 

33.                  else if the value of | C > is | 1 > 

34.                            return | 2 > 

35.                  else return | 0 > 

36.        else return | C > 

37.  end procedure 

38. Procedure perform_C2NOTOp( | A >, | B >, | C > ) 

39.        if the value of |A> and |B> both are not 

equal and not equal|0> 

40.                  if the value of | C > is | 0 > 

41.                            return | 1 > 

42.                  else if the value of | C > is | 1 > 

43.                            return | 2 > 

44.                  else return | 0 > 

45.        else return | C > 

46.  end procedure 

47. End 

2.3.2 Quantum Ternary OR Operations 

YAND = min (X, Y) is the definition of the quantum AND 

operation, where inputs of X and Y represent from the set {|0>, 

|1>, |2>}. Shifting operations such as (+1) and (+2) shifting are 

necessary for the Quantum Ternary AND operation. In this 

case, both inputs control one (+2) action, which will only open 

if the value of both inputs is |2>. The next step is to employ a 

C2NOT gate that will only function if the A and B inputs satisfy 

the requirements A!=B and A, B!= 0. Both inputs control the 

next (+1) procedure, which will only open if the value of both 

inputs is |1>. As a result, the anticipated results are displayed 

in Table 3. This is the schematic diagram for the Quantum 

Ternary AND function is illustrated in Figure 6. Shifting 

operations such as (+1) and  

Figure 6: Ternary Quantum AND Gate 

(+2) shifting are necessary for the Quantum Ternary AND 

operation. In this case, both inputs control one (+2) action, 

which will only open if the value of both inputs is |2>. The next 

step is to use a C2NOT gate, the gate will operate only if the A 

and B inputs meet the conditions A ≠ B and A, B≠ 0. 
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Table 3. Quantum Ternary AND Operations 

A B +2 C2 

NOT 

Output 

(+1) 

|0> |0> |0> |0> |0> 

|0> |1> |0> |0> |0> 

|0> |2> |0> |0> |0> 

|1> |0> |0> |0> |0> 

|1> |1> |0> |0> |1> 

|1> |2> |0> |1> |1> 

|2> |0> |0> |0> |0> 

|2> |1> |0> |1> |1> 

|2> |2> |2> |2> |2> 

2.3.2.1 Algorithm of Ternary Quantum AND Gate 

Algorithm 2: Multiple-Valued Quantum-Based AND Gate  

Input: A, B ; Output: |0>, |1>, |2>  

1. Begin  

2. Procedure DO_Quant_T-AND( | A >, | B >) 

3.  | M > <- perform_PlusTwoOp2( | A >, | B >, | 0 > ); 

4.  | N > <- perform_C2NOTOp( | A >, | B >, | M > ); 

5.  | Q > <- perform_PlusOneOp1( | A >, | B >, | N > ); 

6.  end procedure 

7. Procedure perform_PlusTwoOp2( | A >, | B >, | C > ) 

8.       if the value of | A > and | B > both are | 2 > 

9.                  if the value of | C > is | 0 > 

10.                            return | 2 > 

11.                  else if the value of | C > is | 1 > 

12.                            return | 0 > 

13.                  else return | 1 > 

14.        else return | C > 

15.  end procedure 

16. Procedure perform_PlusOneOp1( | A >, | B >, | C > ) 

17.       if the value of | A > and | B > both are | 1 > 

18.                  if the value of | C > is | 0 > 

19.                            return | 1 > 

20.                  else if the value of | C > is | 1 > 

21.                            return | 2 > 

22.                  else return | 0 > 

23.        else return | C > 

24.  end procedure 

25. End 

3. MULTIVALUED PROGRAMMABLE 

READ ONLY MEMORY (MPROM) 
The parallel execution along with the rapid processing 

capabilities of multivalued quantum computing set it apart from 

other traditional systems for computation. Multivalued 

Quantum Programmable Read-Only Memory is shortened to 

MQPROM. It describes memory chips that integrate 

multivalued quantum OR and multivalued quantum decoder 

functionalities onto a single integrated circuit (IC) to store 

permanent or semi-permanent data [34, 35]. Multivalued 

quantum PROM's components are non-volatile; they continue 

to exist even after the computer is powered down. Figure 7 

illustrates a block schematic of a multivalued PROM. There are 

k lines for input and n lines for output in it. The multivalued 

PROM is initially a combinational circuit that has multiple 

ternary OR gates equivalent to the unit's outputs and multiple 

ternary AND gates interconnected for the multivalued decoder. 

 

Figure 7: 3k-to-m PROM Block 

The output functions in PROM (n output lines with k input 

lines) will be computed by adding the minterms. With k input 

variables, 3k several addresses are possible. Since a multivalued 

PROM has 3k distinct addresses, each of which can be used to 

select an output word, the unit is said to store 3k distinct words. 

The address value supplied to input determines a word 

accessible at the output lines at any given time. Consequently, 

the number of words (3k) and bits per word (n) that make up a 

ternary PROM. The PROM circuit will be referred to as a 9-to-

2 multivalued quantum PROM with output (n) = 2 and input 

(k) = 2. The function outputs, |F1> and |F2>, are respectively 

in the sum of minterms form, ∑ (0, 1, 2, 3) and ∑ (4, 5, 6, 7, 8). 

 

Figure 8: General Form of the Circuit Diagram of 9:2 

QMPROM 

Consider the general block diagram (Figure 8) for a 

multivalued quantum 9:2 PROM. Nine words total, divided 

into two input sequences (|A>, |B> = |0> or |1> or |2>), make 

up the unit. This suggests that the unit stores nine different 

word sequences, each of which may be transmitted to one of 

the two output lines (|F1> and |F2>).  

3.1 Fundamental Component Structure of 

QMPROM 

3.1.1 Multivalued Quantum 2:9 Decoder: 
A ternary decoder is a combinational circuit with "n" lines of 

inputs and up to 3n lines of output. When the decoder is 

enabled, among these outputs, active high will be one 

depending on the combination of inputs present. When the 

decoder is activated, as shown in Table 4, its outputs are just 

the minterms of 'n' input variable lines. Figure 9 depicts the 

block structure of a 1:3 ternary decoder, which accepts an input 

A and generates three outputs D0, D1 and D2. 

 
Figure 9: Block diagram of 

ternary 1:3 decoder 

Table 4: Ternary 

1:3 Decoder 

A D

0 

D

1 

D

2 

0 2 0 0 

1 0 2 0 

2 0 0 2 
 

The shifting operations needed for the Quantum Ternary 1:3 

decoder operation consist solely of (+2) shifting. In this 

scenario, three (+2) operations are input-controlled and three 

(+2) operations are not. Figure 10 illustrates the circuit diagram 

for the Quantum Ternary 1:3 decoder operation. 
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Figure 10: Quantum ternary 1:3 Decoder 

From Figure 10, the 2nd (+2), 4th (+2), and 6th (+2) operations 

are controlled by the input that originally came from input A, 

followed by three uncontrolled (+2) operations, which will 

open only if the input is |2>. For A = 0, the 1st (+2) will produce 

an output of 2, which will open the 1st controlled (+2) and will 

provide the output of 2. Thus, |D0> will open. Others will 

remain closed as they will not produce the output of 2. For A = 

1, the 1st (+2) will produce an output of 0, and the 2nd 

uncontrolled (+2) will produce an output of 2, which will open 

the 2nd controlled (+2) and will provide the output  

 

Figure 11: Quantum ternary 2:9 Decoder 

of 2. Thus, |D1> will open. Others will remain closed as they 

will not produce the output of 2. For A = 2, the 1st uncontrolled 

(+2) will produce an output of 1, the 2nd  uncontrolled (+2) will 

produce an output of 0, and the 3rd uncontrolled (+2) will 

produce an output of 2, which will open the 3rd controlled (+2) 

and will provide the output of 2. Thus, |D2> will open. Others 

will remain closed as they will not produce the output of 2. 

Table 5 illustrates all of the execution. Nine multivalued 

quantum AND (D_0 to D_8) procedures and two multivalued 

1:3 decoders were implemented in the design of the 

multivalued quantum 2:9 decoder, a combinational logic circuit 

demonstrated in Figure 11. 

Table 5: Quantum Ternary 1:3 Decoder 

A (1) 

+2 

(3)  

+2 

(5) 

+2 

(2) +2  

[D0] 

(4) +2 

[D1] 

(6) +2 

[D2] 

0 2 1 0 2 0 0 

1 0 2 1 0 2 0 

2 1 0 2 0 0 0 

Two inputs, |A> and |B>, and nine outputs, |D_0> to |D_8>, are 

used for the multivalued Quantum 2:9 decoder. 

4. PROPOSED DESIGN OF MPROM IN 

QUANTUM COMPUTING 
To construct the ternary quantum 9:2 PROM, a 2-to-9 decoder 

is required, along with the minterms of the decoder output 

serving as inputs to the OR gates to generate the intended 

QMPROM outputs F1 and F2 according to the Table 6. The 

following phase describe the design (Figure 12) process of the 

proposed system: 

1. Take |A> and |B>, the two input qubits. The states 

|0>, |1>, and |2> are the three potential states for each. 

Nine combinations of the two input qubits will result 

from each state. 

2. 1:3 ternary decoder is required for each input to select 

alternate combinations of input values. For instance, 

three values can be executed as |A_0>, |A_1>, and 

|A_2> for input |A>. 

3. For inputs A and B, afterward the two 1:3 ternary 

decoder operations, the results will be |A_0>, |A_1>, 

|A_2>, and |B_0>, |B_1>, |B_2>, respectively. 

4. It’s required to execute AND operations on each of 

the step 3 values provided to generate 9 several 

combinations of the 2 input patterns and trigger any 

output line. 

5. Execute ternary OR with (|D_0>, |D_1>), (|D_2>, 

|D_3>), (|D_4>, |D_5>), (|D_6>, |D_7>) from every 

combination of ternary AND in Step 4.   

6. To produce the output F1 of the ternary 9:2 QPROM, 

integrate the qubits from Step 5 alongside the ternary 

OR operation (|D_0>, |D_1>, |D_2>, |D_3>). 

7. Afterward, integrate (|D_4>, |D_5>, |D_6>, |D_7>, 

|D_8>) to produce the other function F2. 

• Working Principle of Multiple-Valued 

QPROM 
[1] Qubits combination |A>, |B>= |0>, |0>, where |A>= 

|A_0>, |A_1>, |A_2> = |2>, |0>, |0> and |B> = |B_0>, 

|B_1>, |B_2>= |2>, |0>, |0>. Consequently, the |A_0> 

and |B_0> are linked to |D_0>; therefore, |D_0> 

produces |2>, while all the rest of the gates generate |0>. 

At this point, the following steps are required to operate 

output functions. 

i. |D_0>, |D_1> = |2>, |0>, the output qubit is |2> 

since the ternary OR will produce its 

maximum on the input qubits. 

ii. |D_2>, |D_3> = |0>, |0>, the output qubit is |0> 

since the ternary OR will produce its 

maximum on the input qubits. 

iii. |D_4>, |D_5> = |0>, |0>, the output qubit is |0> 

since the ternary OR will produce its 

maximum on the input qubits. 

iv. |D_6>, |D_7> = |0>, |0>, the output qubit is |0> 

since the ternary OR will produce its 

maximum on the input qubits.  

v. After combining qubits |2> and |0> from [i] 

and [ii], use these as inputs to the ternary OR 

operations to produce output |2>.  

vi. Again, combining qubit |0> from [iii] with [iv], 

as input to the ternary OR operations to 

produce output |0>.  

vii. Finally, combining qubits |0> from [vii] and 

D8 (|0>) to ternary OR operations to produce 

output |2> (v) for |F1> and |0> (vii) for |F2>.  
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Figure 12: Multivalued Quantum-based 9:2 PROM 

 

[2] Qubits combination |A>, |B>= |0>, |1>, where |A>= 

|A_0>, |A_1>, |A_2> = |2>, |0>, |0> and |B> = |B_0>, 

|B_1>, |B_2>= |0>, |2>, |0>. Consequently, the |A_0> 

and |B_1> are linked to |D_1>; therefore, |D_1> 

produces |2>, while all the rest of the gates generate |0>. 

At this point, the following steps are required to operate 

output functions. Perform OR operations on (|D_0> - 

|D_3>) outputs to obtain the |F1> value. Therefore, max 

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |2>, |0>, |0) 

= |2>, and for |F2> execute OR operations among 

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>, 

|0>, |0>, |0>) = |0>. 

[3] Qubits combination |A>, |B>= |0>, |2>, where |A>= 

|A_0>, |A_1>, |A_2> = |2>, |0>, |0> and |B> = |B_0>, 

|B_1>, |B_2>= |0>, |0>, |2>. Consequently, the |A_0> 

and |B_1> are linked to |D_2>; therefore, |D_2> 

produces |2>, while all the rest of the gates generate |0>. 

At this point, the following steps are required to operate 

output functions. Perform OR operations on (|D_0> - 

|D_3>) outputs to obtain the |F1> value. Therefore, max 

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |2>, |0) 

= |2>, and for |F2> execute OR operations among 

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>, 

|0>, |0>, |0>) = |0>. 

[4] Qubits combination |A>, |B>= |1>, |0>, where |A>= 

|A_0>, |A_1>, |A_2> = |0>, |2>, |0> and |B> = |B_0>, 

|B_1>, |B_2>= |2>, |0>, |0>. Consequently, the |A_1> 

and |B_0> are linked to |D_3>; therefore, |D_3> 

produces |2>, while all the rest of the gates generate |0>. 

At this point, the following steps are required to operate 

output functions. Perform OR operations on (|D_0> - 

|D_3>) outputs to obtain the |F1> value. Therefore, max 

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |2>, |0) 

= |2>, and for |F2> execute OR operations among 

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>, 

|0>, |0>, |0>) = |0>. 

[5] Qubits combination |A>, |B>= |1>, |1>, where |A>= 

|A_0>, |A_1>, |A_2> = |0>, |2>, |0> and |B> = |B_0>, 

|B_1>, |B_2>= |0>, |2>, |0>. Consequently, the |A_1> 

and |B_1> are linked to |D_4>; therefore, |D_4> 

produces |2>, while all the rest of the gates generate |0>. 

At this point, the following steps are required to operate 

output functions. Perform OR operations on (|D_0> - 

|D_3>) outputs to obtain the |F1> value. Therefore, max 

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |0>, |0) 
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= |0>, and for |F2> execute OR operations among 

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|2>, |0>, 

|0>, |0>, |0>) = |2>. 

Table 6: Truth Table of Ternary 9:2 QPROM 

|A> |B> |F1> |F2> 

|0> |0> |2> |0> 

|0> |1> |2> |0> 

|0> |2> |2> |0> 

|1> |0> |2> |0> 

|1> |1> |0> |2> 

|1> |2> |0> |2> 

|2> |0> |0> |2> 

|2> |1> |0> |2> 

|2> |2> |0> |2> 

[6] Qubits combination |A>, |B>= |1>, |2>, where |A>= 

|A_0>, |A_1>, |A_2> = |0>, |2>, |0> and |B> = |B_0>, 

|B_1>, |B_2>= |0>, |0>, |2>. Consequently, the |A_1> 

and |B_2> are linked to |D_5>; therefore, |D_5> 

produces |2>, while all the rest of the gates generate |0>. 

At this point, the following steps are required to operate 

output functions. Perform OR operations on (|D_0> - 

|D_3>) outputs to obtain the |F1> value. Therefore, max 

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |0>, |0) 

= |0>, and for |F2> execute OR operations among 

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |2>, 

|0>, |0>, |0>) = |2>. 

[7] Qubits combination |A>, |B>= |2>, |0>, where |A>= 

|A_0>, |A_1>, |A_2> = |0>, |0>, |2> and |B> = |B_0>, 

|B_1>, |B_2>= |2>, |0>, |0>. Consequently, the |A_2> 

and |B_0> are linked to |D_6>; therefore, |D_6> 

produces |2>, while all the rest of the gates generate |0>. 

At this point, the following steps are required to operate 

output functions. Perform OR operations on (|D_0> - 

|D_3>) outputs to obtain the |F1> value. Therefore, max 

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |0>, |0) 

= |0>, and for |F2> execute OR operations among 

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>, 

|0>, |2>, |0>) = |2>. 

[8] Qubits combination |A>, |B>= |2>, |1>, where |A>= 

|A_0>, |A_1>, |A_2> = |0>, |0>, |2> and |B> = |B_0>, 

|B_1>, |B_2>= |0>, |2>, |0>. Consequently, the |A_2> 

and |B_1> are linked to |D_7>; therefore, |D_7> 

produces |2>, while all the rest of the gates generate |0>. 

At this point, the following steps are required to operate 

output functions. Perform OR operations on (|D_0> - 

|D_3>) outputs to obtain the |F1> value. Therefore, max 

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |0>, |0) 

= |0>, and for |F2> execute OR operations among 

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>, 

|0>, |2>, |0>) = |2>. 

[9] Qubits combination |A>, |B> = |2>, |2>, where |A> = 

|A_0>, |A_1>, |A_2> = |0>, |0>, |2> and |B> = |B_0>, 

|B_1>, |B_2> = |0>, |0>, |2>. Consequently, the |A_2> 

and |B_2> are linked to |D_8>; therefore, |D_8> 

produces |2>, while all the rest of the gates generate |0>. 

At this point, the following steps are required to operate 

output functions. Perform OR operations on (|D_0> - 

|D_3>) outputs to obtain the |F1> value. Therefore, max 

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |0>, |0) 

= |0>, and for |F2> execute OR operations among 

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>, 

|0>, |0>, |2>) = |2>. The quantum-based multiple-valued 

PROM procedure is illustrated by Algorithm 3. 

Algorithm 3: Quantum-based Multivalued Programmable 

Read Only Memory (QMPROM)   

Input: |A>, |B>, Output: |F1>, |F2>; 

The value of inputs and outputs can be |0> or |1> or |2> 

1. Begin  

2. while i = 1 to n do  

3. |P> = DO_ Quant _2to9Decoder ( |Ai>, |Bi> ); // 

Decoder generates |D0> - |D8>  

4. |P0> <- DO _ Quant_TOR( |D0>, |D1> );  

5. |P1> <- DO _ Quant_TOR( |D2>, |D3> );  

6. |P2> <- DO_Quant_TOR( |D4>, |D5> ); 

7. |P3> <- DO_Quant_TOR( |D6>, |D7> ); 

8. |P4> <- DO_Quant_TOR( |P2>, |P3> ); 

9. |F1> <- DO_Quant_TOR( |P0>, |P1> ); 

10. |F2> <- DO_Quant_TOR( |D8>, |P4> ); 

11. end while 

12. Procedure DO_Quant_2To9-Decoder( | A >, | B > ) 

13. | M > <- DO_Quant_1To3-Decoder( | A > ); 

14. | N > <- DO_Quant_1To3-Decoder( | B > ); 

15. | D0 > <- DO_Quant_T-AND( | M[0] >, | N[0] > ); 

16. | D1 > <- DO_Quant_T-AND( | M[0] >, | N[1] > ); 

17. | D2 > <- DO_Quant_T-AND( | M[0] >, | N[2] > ); 

18. | D3 > <- DO_Quant_T-AND( | M[1] >, | N[0] > ); 

19. | D4 > <- DO_Quant_T-AND( | M[1] >, | N[1] > ); 

20. | D5 > <- DO_Quant_T-AND( | M[1] >, | N[2] > ); 

21. | D6 > <- DO_Quant_T-AND( | M[2] >, | N[0] > ); 

22. | D7 > <- DO_Quant_T-AND( | M[2] >, | N[1] > ); 

23. | D8 > <- DO_Quant_T-AND( | M[2] >, | N[2] > ); 

24. end procedure 

25. Procedure DO_Quant_T-1To3-Decoder( | A > ) 

26. | A2 > <- perform_ PlusTwoOp( | A > ); 

27. | D0 > <- perform_ PlusTwoOp( | A2 >, | 0 > ); 

28. | A22 > <- perform_ PlusTwoOp( | A2 > ); 

29. | D1 > <- perform_ PlusTwoOp( | A22 >, | 0 > ); 

30. | A222 > <- perform_ PlusTwoOp( | A22 > ); 

31. | D2 > <- perform_ PlusTwoOp( | A222 >, | 0 > ); 

32. end procedure Procedure DO_Quant_TOR( | A >, | 

B > ) 

33. | M > <- perform_PlusTwoOp( | B >, | 0 > ); 

34. | N > <- perform_PlusTwoOp( | A >, | M > ); 

35. | O > <- perform_PlusOneOp2( | A >, | B >, | N> ); 

36. | A1 > <- perform_PlusOneOp( | A > ); 

37. | B1 > <- perform_PlusOneOp( | B > ); 

38. | P > <- perform_PlusOneOp2( |A1>, | B1 >, |O>); 

39. | Q > <- perform_C2NOTOp( | A1 >, | B1 >, |P> ); 

40.  end procedure 

41. End 

4.1.1.1.1.1.1.1  

5. ANALYSIS OF QMPROM 

5.1 Heat Analysis 

When qubits in quantum operation become separated and begin 

to calculate, they produce heat. There is a thermodynamics law 

in quantum physics, and it applies to qubits in precisely the 

same form. When there is just one qubit in a quantum system, 

then a Hamiltonian [36] matrix is formed as: 𝐻 =  −
1

2
€𝜎                                                       

In a vertical magnetic field, where € is the energy difference 

between the states |↑> = |0> and |↓> = |1>, this might be 

analogous to an electric spin. An atom with two levels, where 

designate its ground and excited states as |0> and |1>, 

respectively, may also be referred to by the same Hamilton 

matrix. The qubit's Gibbs state has the following structure:   

   𝜌 𝛽 =  
1

2 cosh(
𝛽€

2
)

𝑒
𝛽€𝜎

2 =  
1

1+𝑒𝑥𝑝exp(−𝛽€)
 ( |0 > < 0| +
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 𝑒−𝛽€ |1 > < 1| )                                                           

Consequently, a thermal qubit's average energy, 

                   𝐸 =  
1

1+ 𝑒𝑥𝑝𝑒𝑥𝑝 (𝛽€) 
 , 0 < 𝐸 < 1/2€                                           

This is referred as the thermal qubit's thermodynamic energy. 

With an eye toward thermodynamics, its possible to compute 

the von Neumann entropy of the Gibbs state using [36], to 

describe the r.h.s. using the concept of the energy E. 

    𝑆(𝐸) =  −
€−𝐸

€
𝑙𝑜𝑔

€−𝐸

€
− 

𝐸

€
𝑙𝑜𝑔

𝐸

€
, 0 < 𝐸 < 1/2€                                             

Then Sth Energy will,  

                                         𝑆𝑡ℎ (𝐸) = ( 𝑘𝐵 𝑙𝑛2 ) 𝑆(𝐸)                                                                    

Consequently, a single thermal qubit's entropy is, 
𝑑𝑆𝑡ℎ(𝐸)

𝑑𝐸
=  

1

𝑇
  

Furthermore, the n thermal qubit's entropy is, 
𝑑𝑆𝑡ℎ(𝐸)

𝑑𝐸
=  

𝑛

𝑇
                                                                                

Knowing that, 𝛽 =  
1

𝐾𝐵 𝑇
                                                                                     

In this case, T is the starting room and 𝛃 is the inverse 

temperature, kb is the Boltzmann constant. 

𝛽 =  
1

𝐾𝐵 𝑇
 =

1

8.617 𝑋 10^−5 𝑋 300
 = 39 evk-1    

Thus, the thermal qubit's average energy, E  =  
1

1 ± 𝑒39 𝑋 𝜖
 =

 
1

1 ± 𝑒39 𝑥 0.9  = 5.134 x 10-16 

In this case, the electron e will have a value of 1.6 ac, and 𝜖 is 

emissivity with a value 0 to 1 concerning the molecule. Assume 

𝜖 = 0.9 for ideal purposes. 

Now found Sth energy as the qubit entropy in quantum 

mechanics, Sth (E) = (Kb ln 2) S(E) = −𝑘𝐵  
𝜖 − 𝐸

𝜖
𝑙𝑛

𝜖 − 𝐸

𝜖
−

𝑘𝐵
𝐸

𝜖
𝑙𝑛

𝜖𝐸

𝜖
 = 178.275 x 10-20   

The Multivalued Quantum 9-to-2 PROM is an 8-qubit quantum 

operation. For the N qubit gate,  

Sth (E, N) = N (KB ln 2) S(E/ N). If it is 8 qubits, then N = 8. 

Sth ( 𝐸, 𝑁)  =  2.36179 𝑥 10−19  

T = 
𝑑𝐸 𝑥 𝑁

𝑑 𝑆𝑡ℎ (𝐸)
 =  

5.134 𝑥  10−16 𝑥 (8)

2.36179 𝑥 10−19 
 = 18000.59 k  

5.2 Speed Calculation 

The theory and formula to determine the average necessary 

operational time in any quantum computation have been 

proposed by researchers [37, 38]. Equation 10 computes the 

average calculation time required for an operation:                                                          

𝜏 =
ℎ

4𝐸
 

Where τ is the necessary operating time, E is the performing 

system's quantum mechanical average energy, and h is the 

plank's constant. Additionally, it has been demonstrated that the 

following represents the minimal operation time that applies to 

every digital logic gate used in quantum computation:   𝜏 =
ℎ

4𝐸
(1 + 2

𝜃

𝜋
) 

The phase shift modulo π in this case is θ. It considers any 

simple quantum gate that adds an arbitrary phase shift to a 

qubit's state after augmenting it. As many researchers have 

observed [39], a fundamental quantum operation requires a 

fundamental amount of time. For example, a single qubit gate 

operation is required 1µs, a double qubit gate operation is 

required 10µs, and foe movement operations time is required 

20µs. According to these operations, a double qubit gate 

(CNOT, V, and V+) requires roughly 10µs to operate, while a 

single gate operation (NOT) requires 1µs. 10µs are needed for 

a one-bit regulated operation. The C2NOT gate operation 

requires 10 + 10 = 20µs of time. The AND gate operation will 

take 20 + 20 + 20 = 60µs. The multivalued XOR operation 

takes (20 + 20 + 20 + 1) = 61µs to complete. The multivalued 

OR operation requires 81µs to complete (10 + 10 + 20 + 1 + 20 

+ 20). The multivalued NOR operation requires 82µs to 

complete (10 + 10 + 20 + 1 + 20 + 20 + 1) in total. Since some 

of the fundamental quantum gate operations are carried out in 

parallel, required to split the quantum 9-to-2 PROM into 

pipelines to determine the necessary performing time. The 

pipelines are: 1) Decoder; AND; OR; OR, and 2) Decoder; 

AND; OR; OR; OR. 

Considering the third pipeline, which is the largest pipeline for 

processing input to the multivalued quantum 9-to-2 PROM's 

output, to determine the overall amount of performing time 

needed. It is evident that the ternary quantum gate operations 

of AND and OR require 10µs, respectively. The Multivalued 

Quantum 9:2 PROM requires the following time: = (Decoder + 

AND + OR + OR + OR) µs, where the fundamental ternary 

quantum AND operation requires 60µs, the basic ternary 

quantum OR operation requires 81 µs, and the needed time for 

the ternary quantum decoder is 13µs. In conclusion, the ternary 

3:1 multiplexer requires the following time: (13 + 60 + 81 + 81 

+ 81) µs = 316µs. 

6. CONCLUSION 
Quantum computing is still in its early stages, but it promises 

to transform many areas of science and technology. Ternary 

quantum circuits can be more efficient for certain types of 

problems, reducing the number of operations required 

compared to binary systems. This paper presents the 

development of quantum-based PROM logic circuits utilizing 

quantum logic gates, offering a novel pathway in nanoscale 

computing. The QPROM logic circuits introduced here are 

designed to enhance circuit compression by leveraging input-

dependent compression techniques and reducing a certain 

quantity of gates through the additional output state being 

encoded. This quantum ternary-based approach not only 

advances the efficiency and scalability of storage systems but 

also opens new possibilities within the field of quantum 

storage. The ability to process multiple states simultaneously 

means that quantum computers can explore many possible 

solutions simultaneously, rather than sequentially. This 

suggested quantum ternary storage device is poised for 

potential simulation by quantum computers in an approach not 

possible with classical computers. Furthermore, compared to 

conventional or even supercomputers, a quantum computer can 

work several orders of magnitude faster, making the realization 

of quantum storage systems through QPROM a promising and 

practical innovation in quantum computing. As quantum 

technology evolves, improving time management and heat 

control will be crucial for realizing practical, large-scale 

quantum computers. 
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