
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

32

QMPROM: Quantum Technology for Multivalued Qubit

Storage using Programmable Read Only Memory

Tamanna Tabassum
Ahsanullah University of Science and Technology,
141 & 142, Love Road, Dhaka-1208, Bangladesh

Fatema Akter
Green University of Bangladesh, Purbachal,

American City, Kanchon 1460, Dhaka, Bangladesh

ABSTRACT

Compared to traditional multivalued computing systems,

multivalued quantum computing offers more processing power

and uniqueness thanks to its combination of theoretical

computer science and quantum physics. It uses quantum

mechanics and the collective features of quantum states, such

as superposition with entanglement, and interference, to

accomplish some calculations with unprecedented

computational speed. When dealing with these intricate issues,

quantum algorithms adopt a novel strategy: they generate

multidimensional spaces from which the patterns connecting

distinct data points arise. These algorithms could effectively

address complex mathematical problems, generate secure

codes that are difficult to crack, and predict interactions among

multiple particles in chemical reactions. They also refer to

memory devices, a general term for integrated circuits that can

be programmed in a lab to carry out intricate functions.

Quantum computers outperform traditional Turing machines

by coherent superposition of states. Large photonic quantum

processing systems would be possible with the help of quantum

memories since they would be capable of effectively

modifying, buffering, and adjusting the timing of photonic

signals. While qubits can only be used as input states in certain

types of computers, quantum computing allows for the

development of new computer types that have higher storage

capacities despite the slower performance of regular

programmable read-only memory (PROM). The design of

multivalued quantum-based PROM is a key concern in order to

produce affordable, durable, high-capacity, reliable, and

energy-efficient memory systems. This study presents the

construction of a multivalued PROM architecture based on

quantum mechanics, utilizing algorithms for multiple valued

quantum ternary operations.

Keywords
Quantum Logic; Ternary; Parallel Processing; Multivalued;

Qutrit; QMPROM.

1. INTRODUCTION
Quantum computing focuses on developing computer

technology based on the principles of quantum theory, which

explains the behavior of matter and energy at atomic and

subatomic levels [1]. It is well known that there are aspects of

quantum mechanics that are absent from classical physics.

These peculiar characteristics include decoherence, which

asserts that when a coherent (superposed) state interacts with

its surroundings, it transforms into a classical state devoid of

superposition, and superposition, which is the ability to exist in

numerous states [2, 3]. Hence, entanglement: the state in which

two or more particles can be connected and, if so, alter one

another's properties must be fully isolated from the outside

world for a quantum computer to operate with superposed

states [4, 5]. In a quantum system, it is impossible to predict

with any degree of precision every property of a particle. In

theory, given enough time, any issue that a quantum computer

can answer may also be solved by a classical computer [6].

When dealing with these kinds of intricate issues, quantum

algorithms adopt a novel strategy: they create multidimensional

spaces where the patterns connecting distinct data points appear

[7]. Rather than using the more widely used binary system

(base 2) for calculations, ternary computers use ternary logic,

or base 3 [8].

Multivalued quantum computing, or ternary quantum

computing, differs from other traditional computing systems

due to its rapid processing speeds and parallel processing

capabilities [9, 10]. This means that it employs trits rather than

bits, in contrast to conventional memory, which stores

information as ternary states (represented by "|2>"s, "|1>"s, and

"|0>"s). The main goal is to create multivalued quantum-based

programmable ROMs that offer low-cost, robust, high-density,

dependable, and energy-efficient memory technologies. One of

the earliest calculators was made completely of wood and ran

on balanced ternary, according to Thomas Fowler's 1840

construction [11]. At Moscow State University in the Soviet

Union, Nikolay Brusentsov created Setun, the first electronic

ternary computer, in 1958. Compared to succeeding binary

computers, Setun provided a number of advantages, including

lower manufacture and energy costs. In 1970, Brusentsov

improved the model and called it Setun-70 [12]. The binary

machine-based ternary computer emulator Ternac was first

released in the United States in 1973. Furthermore, another

ternary computer, the QTC-1, was created in Canada [13]. Key

elements of photonics-based quantum technologies include

single-photon detectors, frequency converters, photon sources,

quantum random number generators, and quantum memory

[14, 15]. The ability to store and recover the quantum state of a

single photon is the main subject of this essay on quantum

memory. The diverse approaches to quantum memory cover a

broad spectrum of electromagnetic interactions and present the

most recent developments in quantum control of optical signals

[16, 17]. Certain principles are evident when it comes to

memory parameters: a greater cost per bit of stored information

results from lowering access time, whereas a lower cost is

associated with increased memory capacity [18]. A memory

system's capacity, sometimes known as memory volume, is the

total number of locations within it. Capacity can be measured

in bits, bytes, or words; therefore, it is crucial to define the

length of a word in terms of bits or bytes [19, 20]. The time

elapsed between submitting a memory access request and

getting the relevant data is known as memory access time. A

memory unit's access time affects its speed, which is measured

as the amount of time it takes to retrieve a single unit of data;

quicker memory has shorter access times [21]. Memory cycle

time is another term for the smallest amount of time needed

between successive access requests to the same memory

address. Memory transfer rate, expressed in bits per second or

bytes per second, indicates how quickly data can be read from

or written to the designated memory [22]. PROM and

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

33

programmable logic are often categorized within the same

circuit type. The architecture of Programmable Logic Devices

(PLDs) provides greater flexibility compared to PROM

architecture, which tends to reach its limitations when

numerous inputs are connected to multiple outputs. Data or

programs can be written only once, but once written, they can

be read as often as needed [23, 24].

A PROM chip, which has non-volatile memory and can hold

up to 4 megabytes (MB) of data per chip, is mostly employed

during a modern computer's startup procedure [25].

Unrestricted access to any place and time across the entire

address space is made possible by random memory. Regardless

of the sequence of all prior accesses, the access is possible

separately. An address may be accessed in any sequence. In a

random-access memory, access is provided by separate

hardware circuits at each place. Address decoding results in the

activation of these circuits [26]. A programmable OR gate

array, which may be conditionally reversed to generate an

output, is connected to a static AND gate array in

programmable read-only memory. While the idea of a PROM

and ROM are similar, a PROM does not create all of the

minterms and does not offer complete variable decoding [27,

28]. PROM devices use arrays of transistor cells configured in

a "fixed-OR, programmable-AND" fashion to generate "sum of

products" binary logic equations for each output based on the

inputs and either synchronous or asynchronous feedback from

the outputs. To translate basic code into the commands required

by a device programmer for design implementation, system

designers can use development software. Developing memory

technologies that are low-cost, resilient, high-density,

dependable, and energy-efficient is a major problem in the

development of multivalued quantum-based PROMs.

2. LITERATURE STUDY
In this section, the basics of quantum technology, multivalued

basic gate operations with the algorithms, and quantum ternary-

based storage PROM are discussed in detail.

2.1 Multivalued Quantum Computing
In ternary quantum computing, one qubit is employed as an

output and two qubits as inputs. Qutrit states are the name given

to these basis states, which are represented by 3 × 1 vectors

[29]:

The following formula, which is the linear superposition of the

previously mentioned base states, defines a qutrit in a ternary

quantum system:

Here α, β, and γ are the complex values that represent the

probability values of the basis states, and ψ is the wave

function, and ψ is the wave function.

2.2 Quantum Ternary Gates

2.2.1 Quantum Ternary Shift gates
Commonly utilized are six triple permutation matrices, which

are also known as quantum triple shift gates. Zero is the

primary state. The numerals 0, 1, and 2, respectively, are in the

columns. The qutrit levels shift by 1 when transformed by Z

(+1). The qutrit states are shifted by two when Z (+2) is

transformed. Transform Z (01) trades |0> and |1>, Transform Z

(02) exchanges |0> and |2>, and Transform Z (12) swaps the

qutrit values |1> and |2>.

Fig 1: 1-qutrit ternary permutation transformations

These transformations are depicted in Figure 1, and the

operations of 1-qutrit ternary shift gates are given in Table 1.

Table 1. 1-qutrit Ternary Shift Gates Operations

A |0> |1> |2>

Z (0) = A |0> |1> |2>

Z (+1) = A+1 |1> |2> |0>

Z (+2) = A+2 |2> |0> |1>

Z (12) = 2A |0> |2> |1>

Z (01) = 2A+1 |1> |0> |2>

Z (02) = 2A+2 |2> |1> |0>

2.2.2 Quantum Ternary Toffoli gates
Another quantum ternary gate is the ternary Toffoli gate [30].

Its inputs are A, B, and C, with C serving as the controlled

input, while A and B act as the controlling inputs. The outputs

are P = A and Q = B. Figure 2 displays the symbol for the

generalized 3-qutrit ternary permutation/shift operations.

R = Z transforms of C; if A = X1 and B = X2

C ; otherwise

The ternary Toffoli gate has the following outputs: P, Q, and R.

Inputs A and B correspond to X1 and X2, then outputs P and Q

are equivalent to A and B, while output R represents the Z

transform of C, where Z = {+1, +2, 01, 02, 12}. If this condition

is not met, the input C and output R are the same. The Toffoli

gate for a single regulated input is depicted in Figure 3. In this

case, the gate will only open if bit 2 is the controlled bit.

2.2.3 Quantum Ternary C2NOT gates
Multi-qutrit control operations are feasible in ternary logic. A

revised definition of 3-qutrit C2 NOT was provided by [31], and

it is utilized to implement the ternary midterm simplification

rules.

Here the target input is C and the control inputs are A and B.

The (+1) action of the supplied input will be provided in this

case by the last NOT (C). Figure 4 displays the symbol for the

ternary C2 NOT gate.

Fig 2: 3-qutrit ternary

Permutation Operations

Fig 3: Ternary 1-bit

Controlled Operation

Fig 4: Ternary 3-qutrit C2 NOT gate

2.3 Ternary Quantum Basic Logic Gates
Functions with ternary logic are ones whose relevance

increases when a third value is familiar with the binary logic.

Here, the ternary levels for fundamental logic gates are

represented by the numbers 0, 1, and 2, which stand for false,

undefined, and true, respectively. The following definitions

[32, 33] apply to the fundamental operations of ternary logic:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

34

Where |x>, |y>= {|0>, |1>, |2>}

The minimal value of the AND logic gate's inputs determines

the value of the gate's output. Similar to this, the output value

of an OR logic gate is determined by the highest input value.

2.3.1 Quantum Ternary OR Operations
YOR = max (X, Y) is the definition of the quantum OR

operation, where inputs of X and Y represent from the set {|0>,

|1>, |2>}. The shifting operations of (+1) and (+2) shifting are

necessary for the Quantum Ternary OR operation. When two

inputs govern two (+1) operations, while two additional (+1)

operations remain uncontrolled. Every input controls two (+2)

procedures. Additionally, in order to obtain the anticipated

outcome that was previously displayed in Table 2, a two-input

controlled C2NOT gate is required.

Figure 5: Ternary Quantum OR Gate

 Figure 5 shows that the inputs B and A, respectively, control

the first (+2) and second (+2) operations, which will only open

if the input is |2>. Both A and B inputs control the following

(+1), and they will only open if both inputs are |2>. There is no

control over the next two (+1). Once more, two inputs govern

the following (+1), which will only open if |2> is present in

both inputs. And only in the event that A, B!= 0 && A!= B will

the last XOR gate open.

Table 2. Quantum Ternary OR Operations

A |0> |0> |0> |1> |1> |1> |2> |2> |2>

B |0> |1> |2> |0> |1> |2> |0> |1> |2>

(1) +12 |0> |0> |2> |0> |0> |2> |0> |0> |2>

(2) +2 |0> |0> |2> |0> |0> |2> |2> |2> |1>

(1) +1 |0> |0> |2> |0> |0> |2> |2> |2> |0>

A +1 |1> |1> |1> |2> |2> |2> |0> |0> |0>

B +1 |1> |2> |0> |1> |2> |0> |1> |2> |0>

(1) +1

+1
|0> |0> |2> |0> |1> |2> |2> |2> |0>

C2NOT |0> |1> |2> |1> |1> |2> |2> |2> |0>

2.3.1.1 Algorithm of Ternary Quantum OR Gate

Algorithm 1: Multiple-Valued Quantum-Based OR Gate

Input: A, B; Output: |0>, |1>, |2>

1. Begin

2. Procedure DO_Quant_T-OR(| A >, | B >)

3. | M > <- perform_PlusTwoOp(| B >, | 0 >);

4. | N > <- perform_PlusTwoOp(| A >, | M >);

5. | O > <- perform_PlusOneOp2(| A >, | B >, | N >);

6. | A1 > <- perform_PlusOneOp(| A >);

7. | B1 > <- perform_PlusOneOp(| B >);

8. | P > <- perform_PlusOneOp2(| A1 >, | B1 >, | O >);

9. | Q > <- perform_C2NOTOp(| A1 >, | B1 >, | P >);

10. end procedure

11. Procedure perform_PlusTwoOp2(| A >, | B >, | C >)

12. if the value of | A > and | B > both are | 2 >

13. if the value of | C > is | 0 >

14. return | 2 >

15. else if the value of | C > is | 1 >

16. return | 0 >

17. else return | 1 >

18. else return | C >

19. end procedure

20. Procedure perform_PlusTwoOp(| A >, | B >)

21. if the value of | A > is| 2 >

22. if the value of | B > is | 0 >

23. return | 2 >

24. else if the value of | B > is | 1 >

25. return | 0 >

26. else return | 1 >

27. else return | B >

28. end procedure

29. Procedure perform_PlusOneOp2(| A >, | B >, | C >)

30. if the value of | A > and | B > both are | 1 >

31. if the value of | C > is | 0 >

32. return | 1 >

33. else if the value of | C > is | 1 >

34. return | 2 >

35. else return | 0 >

36. else return | C >

37. end procedure

38. Procedure perform_C2NOTOp(| A >, | B >, | C >)

39. if the value of |A> and |B> both are not

equal and not equal|0>

40. if the value of | C > is | 0 >

41. return | 1 >

42. else if the value of | C > is | 1 >

43. return | 2 >

44. else return | 0 >

45. else return | C >

46. end procedure

47. End

2.3.2 Quantum Ternary OR Operations

YAND = min (X, Y) is the definition of the quantum AND

operation, where inputs of X and Y represent from the set {|0>,

|1>, |2>}. Shifting operations such as (+1) and (+2) shifting are

necessary for the Quantum Ternary AND operation. In this

case, both inputs control one (+2) action, which will only open

if the value of both inputs is |2>. The next step is to employ a

C2NOT gate that will only function if the A and B inputs satisfy

the requirements A!=B and A, B!= 0. Both inputs control the

next (+1) procedure, which will only open if the value of both

inputs is |1>. As a result, the anticipated results are displayed

in Table 3. This is the schematic diagram for the Quantum

Ternary AND function is illustrated in Figure 6. Shifting

operations such as (+1) and

Figure 6: Ternary Quantum AND Gate

(+2) shifting are necessary for the Quantum Ternary AND

operation. In this case, both inputs control one (+2) action,

which will only open if the value of both inputs is |2>. The next

step is to use a C2NOT gate, the gate will operate only if the A

and B inputs meet the conditions A ≠ B and A, B≠ 0.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

35

Table 3. Quantum Ternary AND Operations

A B +2 C2

NOT

Output

(+1)

|0> |0> |0> |0> |0>

|0> |1> |0> |0> |0>

|0> |2> |0> |0> |0>

|1> |0> |0> |0> |0>

|1> |1> |0> |0> |1>

|1> |2> |0> |1> |1>

|2> |0> |0> |0> |0>

|2> |1> |0> |1> |1>

|2> |2> |2> |2> |2>

2.3.2.1 Algorithm of Ternary Quantum AND Gate

Algorithm 2: Multiple-Valued Quantum-Based AND Gate

Input: A, B ; Output: |0>, |1>, |2>

1. Begin

2. Procedure DO_Quant_T-AND(| A >, | B >)

3. | M > <- perform_PlusTwoOp2(| A >, | B >, | 0 >);

4. | N > <- perform_C2NOTOp(| A >, | B >, | M >);

5. | Q > <- perform_PlusOneOp1(| A >, | B >, | N >);

6. end procedure

7. Procedure perform_PlusTwoOp2(| A >, | B >, | C >)

8. if the value of | A > and | B > both are | 2 >

9. if the value of | C > is | 0 >

10. return | 2 >

11. else if the value of | C > is | 1 >

12. return | 0 >

13. else return | 1 >

14. else return | C >

15. end procedure

16. Procedure perform_PlusOneOp1(| A >, | B >, | C >)

17. if the value of | A > and | B > both are | 1 >

18. if the value of | C > is | 0 >

19. return | 1 >

20. else if the value of | C > is | 1 >

21. return | 2 >

22. else return | 0 >

23. else return | C >

24. end procedure

25. End

3. MULTIVALUED PROGRAMMABLE

READ ONLY MEMORY (MPROM)
The parallel execution along with the rapid processing

capabilities of multivalued quantum computing set it apart from

other traditional systems for computation. Multivalued

Quantum Programmable Read-Only Memory is shortened to

MQPROM. It describes memory chips that integrate

multivalued quantum OR and multivalued quantum decoder

functionalities onto a single integrated circuit (IC) to store

permanent or semi-permanent data [34, 35]. Multivalued

quantum PROM's components are non-volatile; they continue

to exist even after the computer is powered down. Figure 7

illustrates a block schematic of a multivalued PROM. There are

k lines for input and n lines for output in it. The multivalued

PROM is initially a combinational circuit that has multiple

ternary OR gates equivalent to the unit's outputs and multiple

ternary AND gates interconnected for the multivalued decoder.

Figure 7: 3k-to-m PROM Block

The output functions in PROM (n output lines with k input

lines) will be computed by adding the minterms. With k input

variables, 3k several addresses are possible. Since a multivalued

PROM has 3k distinct addresses, each of which can be used to

select an output word, the unit is said to store 3k distinct words.

The address value supplied to input determines a word

accessible at the output lines at any given time. Consequently,

the number of words (3k) and bits per word (n) that make up a

ternary PROM. The PROM circuit will be referred to as a 9-to-

2 multivalued quantum PROM with output (n) = 2 and input

(k) = 2. The function outputs, |F1> and |F2>, are respectively

in the sum of minterms form, ∑ (0, 1, 2, 3) and ∑ (4, 5, 6, 7, 8).

Figure 8: General Form of the Circuit Diagram of 9:2

QMPROM

Consider the general block diagram (Figure 8) for a

multivalued quantum 9:2 PROM. Nine words total, divided

into two input sequences (|A>, |B> = |0> or |1> or |2>), make

up the unit. This suggests that the unit stores nine different

word sequences, each of which may be transmitted to one of

the two output lines (|F1> and |F2>).

3.1 Fundamental Component Structure of

QMPROM

3.1.1 Multivalued Quantum 2:9 Decoder:
A ternary decoder is a combinational circuit with "n" lines of

inputs and up to 3n lines of output. When the decoder is

enabled, among these outputs, active high will be one

depending on the combination of inputs present. When the

decoder is activated, as shown in Table 4, its outputs are just

the minterms of 'n' input variable lines. Figure 9 depicts the

block structure of a 1:3 ternary decoder, which accepts an input

A and generates three outputs D0, D1 and D2.

Figure 9: Block diagram of

ternary 1:3 decoder

Table 4: Ternary

1:3 Decoder

A D

0

D

1

D

2

0 2 0 0

1 0 2 0

2 0 0 2

The shifting operations needed for the Quantum Ternary 1:3

decoder operation consist solely of (+2) shifting. In this

scenario, three (+2) operations are input-controlled and three

(+2) operations are not. Figure 10 illustrates the circuit diagram

for the Quantum Ternary 1:3 decoder operation.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

36

Figure 10: Quantum ternary 1:3 Decoder

From Figure 10, the 2nd (+2), 4th (+2), and 6th (+2) operations

are controlled by the input that originally came from input A,

followed by three uncontrolled (+2) operations, which will

open only if the input is |2>. For A = 0, the 1st (+2) will produce

an output of 2, which will open the 1st controlled (+2) and will

provide the output of 2. Thus, |D0> will open. Others will

remain closed as they will not produce the output of 2. For A =

1, the 1st (+2) will produce an output of 0, and the 2nd

uncontrolled (+2) will produce an output of 2, which will open

the 2nd controlled (+2) and will provide the output

Figure 11: Quantum ternary 2:9 Decoder

of 2. Thus, |D1> will open. Others will remain closed as they

will not produce the output of 2. For A = 2, the 1st uncontrolled

(+2) will produce an output of 1, the 2nd uncontrolled (+2) will

produce an output of 0, and the 3rd uncontrolled (+2) will

produce an output of 2, which will open the 3rd controlled (+2)

and will provide the output of 2. Thus, |D2> will open. Others

will remain closed as they will not produce the output of 2.

Table 5 illustrates all of the execution. Nine multivalued

quantum AND (D_0 to D_8) procedures and two multivalued

1:3 decoders were implemented in the design of the

multivalued quantum 2:9 decoder, a combinational logic circuit

demonstrated in Figure 11.

Table 5: Quantum Ternary 1:3 Decoder

A (1)

+2

(3)

+2

(5)

+2

(2) +2

[D0]

(4) +2

[D1]

(6) +2

[D2]

0 2 1 0 2 0 0

1 0 2 1 0 2 0

2 1 0 2 0 0 0

Two inputs, |A> and |B>, and nine outputs, |D_0> to |D_8>, are

used for the multivalued Quantum 2:9 decoder.

4. PROPOSED DESIGN OF MPROM IN

QUANTUM COMPUTING
To construct the ternary quantum 9:2 PROM, a 2-to-9 decoder

is required, along with the minterms of the decoder output

serving as inputs to the OR gates to generate the intended

QMPROM outputs F1 and F2 according to the Table 6. The

following phase describe the design (Figure 12) process of the

proposed system:

1. Take |A> and |B>, the two input qubits. The states

|0>, |1>, and |2> are the three potential states for each.

Nine combinations of the two input qubits will result

from each state.

2. 1:3 ternary decoder is required for each input to select

alternate combinations of input values. For instance,

three values can be executed as |A_0>, |A_1>, and

|A_2> for input |A>.

3. For inputs A and B, afterward the two 1:3 ternary

decoder operations, the results will be |A_0>, |A_1>,

|A_2>, and |B_0>, |B_1>, |B_2>, respectively.

4. It’s required to execute AND operations on each of

the step 3 values provided to generate 9 several

combinations of the 2 input patterns and trigger any

output line.

5. Execute ternary OR with (|D_0>, |D_1>), (|D_2>,

|D_3>), (|D_4>, |D_5>), (|D_6>, |D_7>) from every

combination of ternary AND in Step 4.

6. To produce the output F1 of the ternary 9:2 QPROM,

integrate the qubits from Step 5 alongside the ternary

OR operation (|D_0>, |D_1>, |D_2>, |D_3>).

7. Afterward, integrate (|D_4>, |D_5>, |D_6>, |D_7>,

|D_8>) to produce the other function F2.

• Working Principle of Multiple-Valued

QPROM
[1] Qubits combination |A>, |B>= |0>, |0>, where |A>=

|A_0>, |A_1>, |A_2> = |2>, |0>, |0> and |B> = |B_0>,

|B_1>, |B_2>= |2>, |0>, |0>. Consequently, the |A_0>

and |B_0> are linked to |D_0>; therefore, |D_0>

produces |2>, while all the rest of the gates generate |0>.

At this point, the following steps are required to operate

output functions.

i. |D_0>, |D_1> = |2>, |0>, the output qubit is |2>

since the ternary OR will produce its

maximum on the input qubits.

ii. |D_2>, |D_3> = |0>, |0>, the output qubit is |0>

since the ternary OR will produce its

maximum on the input qubits.

iii. |D_4>, |D_5> = |0>, |0>, the output qubit is |0>

since the ternary OR will produce its

maximum on the input qubits.

iv. |D_6>, |D_7> = |0>, |0>, the output qubit is |0>

since the ternary OR will produce its

maximum on the input qubits.

v. After combining qubits |2> and |0> from [i]

and [ii], use these as inputs to the ternary OR

operations to produce output |2>.

vi. Again, combining qubit |0> from [iii] with [iv],

as input to the ternary OR operations to

produce output |0>.

vii. Finally, combining qubits |0> from [vii] and

D8 (|0>) to ternary OR operations to produce

output |2> (v) for |F1> and |0> (vii) for |F2>.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

37

Figure 12: Multivalued Quantum-based 9:2 PROM

[2] Qubits combination |A>, |B>= |0>, |1>, where |A>=

|A_0>, |A_1>, |A_2> = |2>, |0>, |0> and |B> = |B_0>,

|B_1>, |B_2>= |0>, |2>, |0>. Consequently, the |A_0>

and |B_1> are linked to |D_1>; therefore, |D_1>

produces |2>, while all the rest of the gates generate |0>.

At this point, the following steps are required to operate

output functions. Perform OR operations on (|D_0> -

|D_3>) outputs to obtain the |F1> value. Therefore, max

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |2>, |0>, |0)

= |2>, and for |F2> execute OR operations among

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>,

|0>, |0>, |0>) = |0>.

[3] Qubits combination |A>, |B>= |0>, |2>, where |A>=

|A_0>, |A_1>, |A_2> = |2>, |0>, |0> and |B> = |B_0>,

|B_1>, |B_2>= |0>, |0>, |2>. Consequently, the |A_0>

and |B_1> are linked to |D_2>; therefore, |D_2>

produces |2>, while all the rest of the gates generate |0>.

At this point, the following steps are required to operate

output functions. Perform OR operations on (|D_0> -

|D_3>) outputs to obtain the |F1> value. Therefore, max

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |2>, |0)

= |2>, and for |F2> execute OR operations among

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>,

|0>, |0>, |0>) = |0>.

[4] Qubits combination |A>, |B>= |1>, |0>, where |A>=

|A_0>, |A_1>, |A_2> = |0>, |2>, |0> and |B> = |B_0>,

|B_1>, |B_2>= |2>, |0>, |0>. Consequently, the |A_1>

and |B_0> are linked to |D_3>; therefore, |D_3>

produces |2>, while all the rest of the gates generate |0>.

At this point, the following steps are required to operate

output functions. Perform OR operations on (|D_0> -

|D_3>) outputs to obtain the |F1> value. Therefore, max

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |2>, |0)

= |2>, and for |F2> execute OR operations among

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>,

|0>, |0>, |0>) = |0>.

[5] Qubits combination |A>, |B>= |1>, |1>, where |A>=

|A_0>, |A_1>, |A_2> = |0>, |2>, |0> and |B> = |B_0>,

|B_1>, |B_2>= |0>, |2>, |0>. Consequently, the |A_1>

and |B_1> are linked to |D_4>; therefore, |D_4>

produces |2>, while all the rest of the gates generate |0>.

At this point, the following steps are required to operate

output functions. Perform OR operations on (|D_0> -

|D_3>) outputs to obtain the |F1> value. Therefore, max

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |0>, |0)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

38

= |0>, and for |F2> execute OR operations among

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|2>, |0>,

|0>, |0>, |0>) = |2>.

Table 6: Truth Table of Ternary 9:2 QPROM

|A> |B> |F1> |F2>

|0> |0> |2> |0>

|0> |1> |2> |0>

|0> |2> |2> |0>

|1> |0> |2> |0>

|1> |1> |0> |2>

|1> |2> |0> |2>

|2> |0> |0> |2>

|2> |1> |0> |2>

|2> |2> |0> |2>

[6] Qubits combination |A>, |B>= |1>, |2>, where |A>=

|A_0>, |A_1>, |A_2> = |0>, |2>, |0> and |B> = |B_0>,

|B_1>, |B_2>= |0>, |0>, |2>. Consequently, the |A_1>

and |B_2> are linked to |D_5>; therefore, |D_5>

produces |2>, while all the rest of the gates generate |0>.

At this point, the following steps are required to operate

output functions. Perform OR operations on (|D_0> -

|D_3>) outputs to obtain the |F1> value. Therefore, max

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |0>, |0)

= |0>, and for |F2> execute OR operations among

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |2>,

|0>, |0>, |0>) = |2>.

[7] Qubits combination |A>, |B>= |2>, |0>, where |A>=

|A_0>, |A_1>, |A_2> = |0>, |0>, |2> and |B> = |B_0>,

|B_1>, |B_2>= |2>, |0>, |0>. Consequently, the |A_2>

and |B_0> are linked to |D_6>; therefore, |D_6>

produces |2>, while all the rest of the gates generate |0>.

At this point, the following steps are required to operate

output functions. Perform OR operations on (|D_0> -

|D_3>) outputs to obtain the |F1> value. Therefore, max

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |0>, |0)

= |0>, and for |F2> execute OR operations among

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>,

|0>, |2>, |0>) = |2>.

[8] Qubits combination |A>, |B>= |2>, |1>, where |A>=

|A_0>, |A_1>, |A_2> = |0>, |0>, |2> and |B> = |B_0>,

|B_1>, |B_2>= |0>, |2>, |0>. Consequently, the |A_2>

and |B_1> are linked to |D_7>; therefore, |D_7>

produces |2>, while all the rest of the gates generate |0>.

At this point, the following steps are required to operate

output functions. Perform OR operations on (|D_0> -

|D_3>) outputs to obtain the |F1> value. Therefore, max

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |0>, |0)

= |0>, and for |F2> execute OR operations among

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>,

|0>, |2>, |0>) = |2>.

[9] Qubits combination |A>, |B> = |2>, |2>, where |A> =

|A_0>, |A_1>, |A_2> = |0>, |0>, |2> and |B> = |B_0>,

|B_1>, |B_2> = |0>, |0>, |2>. Consequently, the |A_2>

and |B_2> are linked to |D_8>; therefore, |D_8>

produces |2>, while all the rest of the gates generate |0>.

At this point, the following steps are required to operate

output functions. Perform OR operations on (|D_0> -

|D_3>) outputs to obtain the |F1> value. Therefore, max

(|D_0>, |D_1>, |D_2>, |D_3>) = max (|0>, |0>, |0>, |0)

= |0>, and for |F2> execute OR operations among

(|D_4>, |D_5>, |D_6>, |D_7>, |D_8>) = max (|0>, |0>,

|0>, |0>, |2>) = |2>. The quantum-based multiple-valued

PROM procedure is illustrated by Algorithm 3.

Algorithm 3: Quantum-based Multivalued Programmable

Read Only Memory (QMPROM)

Input: |A>, |B>, Output: |F1>, |F2>;

The value of inputs and outputs can be |0> or |1> or |2>

1. Begin

2. while i = 1 to n do

3. |P> = DO_ Quant _2to9Decoder (|Ai>, |Bi>); //

Decoder generates |D0> - |D8>

4. |P0> <- DO _ Quant_TOR(|D0>, |D1>);

5. |P1> <- DO _ Quant_TOR(|D2>, |D3>);

6. |P2> <- DO_Quant_TOR(|D4>, |D5>);

7. |P3> <- DO_Quant_TOR(|D6>, |D7>);

8. |P4> <- DO_Quant_TOR(|P2>, |P3>);

9. |F1> <- DO_Quant_TOR(|P0>, |P1>);

10. |F2> <- DO_Quant_TOR(|D8>, |P4>);

11. end while

12. Procedure DO_Quant_2To9-Decoder(| A >, | B >)

13. | M > <- DO_Quant_1To3-Decoder(| A >);

14. | N > <- DO_Quant_1To3-Decoder(| B >);

15. | D0 > <- DO_Quant_T-AND(| M[0] >, | N[0] >);

16. | D1 > <- DO_Quant_T-AND(| M[0] >, | N[1] >);

17. | D2 > <- DO_Quant_T-AND(| M[0] >, | N[2] >);

18. | D3 > <- DO_Quant_T-AND(| M[1] >, | N[0] >);

19. | D4 > <- DO_Quant_T-AND(| M[1] >, | N[1] >);

20. | D5 > <- DO_Quant_T-AND(| M[1] >, | N[2] >);

21. | D6 > <- DO_Quant_T-AND(| M[2] >, | N[0] >);

22. | D7 > <- DO_Quant_T-AND(| M[2] >, | N[1] >);

23. | D8 > <- DO_Quant_T-AND(| M[2] >, | N[2] >);

24. end procedure

25. Procedure DO_Quant_T-1To3-Decoder(| A >)

26. | A2 > <- perform_ PlusTwoOp(| A >);

27. | D0 > <- perform_ PlusTwoOp(| A2 >, | 0 >);

28. | A22 > <- perform_ PlusTwoOp(| A2 >);

29. | D1 > <- perform_ PlusTwoOp(| A22 >, | 0 >);

30. | A222 > <- perform_ PlusTwoOp(| A22 >);

31. | D2 > <- perform_ PlusTwoOp(| A222 >, | 0 >);

32. end procedure Procedure DO_Quant_TOR(| A >, |

B >)

33. | M > <- perform_PlusTwoOp(| B >, | 0 >);

34. | N > <- perform_PlusTwoOp(| A >, | M >);

35. | O > <- perform_PlusOneOp2(| A >, | B >, | N>);

36. | A1 > <- perform_PlusOneOp(| A >);

37. | B1 > <- perform_PlusOneOp(| B >);

38. | P > <- perform_PlusOneOp2(|A1>, | B1 >, |O>);

39. | Q > <- perform_C2NOTOp(| A1 >, | B1 >, |P>);

40. end procedure

41. End

4.1.1.1.1.1.1.1

5. ANALYSIS OF QMPROM

5.1 Heat Analysis

When qubits in quantum operation become separated and begin

to calculate, they produce heat. There is a thermodynamics law

in quantum physics, and it applies to qubits in precisely the

same form. When there is just one qubit in a quantum system,

then a Hamiltonian [36] matrix is formed as: 𝐻 = −
1

2
€𝜎

In a vertical magnetic field, where € is the energy difference

between the states |↑> = |0> and |↓> = |1>, this might be

analogous to an electric spin. An atom with two levels, where

designate its ground and excited states as |0> and |1>,

respectively, may also be referred to by the same Hamilton

matrix. The qubit's Gibbs state has the following structure:

 𝜌 𝛽 =
1

2 cosh(
𝛽€

2
)

𝑒
𝛽€𝜎

2 =
1

1+𝑒𝑥𝑝exp(−𝛽€)
 (|0 > < 0| +

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

39

 𝑒−𝛽€ |1 > < 1|)

Consequently, a thermal qubit's average energy,

 𝐸 =
1

1+ 𝑒𝑥𝑝𝑒𝑥𝑝 (𝛽€)
 , 0 < 𝐸 < 1/2€

This is referred as the thermal qubit's thermodynamic energy.

With an eye toward thermodynamics, its possible to compute

the von Neumann entropy of the Gibbs state using [36], to

describe the r.h.s. using the concept of the energy E.

 𝑆(𝐸) = −
€−𝐸

€
𝑙𝑜𝑔

€−𝐸

€
−

𝐸

€
𝑙𝑜𝑔

𝐸

€
, 0 < 𝐸 < 1/2€

Then Sth Energy will,

 𝑆𝑡ℎ (𝐸) = (𝑘𝐵 𝑙𝑛2) 𝑆(𝐸)

Consequently, a single thermal qubit's entropy is,
𝑑𝑆𝑡ℎ(𝐸)

𝑑𝐸
=

1

𝑇

Furthermore, the n thermal qubit's entropy is,
𝑑𝑆𝑡ℎ(𝐸)

𝑑𝐸
=

𝑛

𝑇

Knowing that, 𝛽 =
1

𝐾𝐵 𝑇

In this case, T is the starting room and 𝛃 is the inverse

temperature, kb is the Boltzmann constant.

𝛽 =
1

𝐾𝐵 𝑇
 =

1

8.617 𝑋 10^−5 𝑋 300
 = 39 evk-1

Thus, the thermal qubit's average energy, E =
1

1 ± 𝑒39 𝑋 𝜖
 =

1

1 ± 𝑒39 𝑥 0.9 = 5.134 x 10-16

In this case, the electron e will have a value of 1.6 ac, and 𝜖 is

emissivity with a value 0 to 1 concerning the molecule. Assume

𝜖 = 0.9 for ideal purposes.

Now found Sth energy as the qubit entropy in quantum

mechanics, Sth (E) = (Kb ln 2) S(E) = −𝑘𝐵
𝜖 − 𝐸

𝜖
𝑙𝑛

𝜖 − 𝐸

𝜖
−

𝑘𝐵
𝐸

𝜖
𝑙𝑛

𝜖𝐸

𝜖
 = 178.275 x 10-20

The Multivalued Quantum 9-to-2 PROM is an 8-qubit quantum

operation. For the N qubit gate,

Sth (E, N) = N (KB ln 2) S(E/ N). If it is 8 qubits, then N = 8.

Sth (𝐸, 𝑁) = 2.36179 𝑥 10−19

T =
𝑑𝐸 𝑥 𝑁

𝑑 𝑆𝑡ℎ (𝐸)
 =

5.134 𝑥 10−16 𝑥 (8)

2.36179 𝑥 10−19
 = 18000.59 k

5.2 Speed Calculation

The theory and formula to determine the average necessary

operational time in any quantum computation have been

proposed by researchers [37, 38]. Equation 10 computes the

average calculation time required for an operation:

𝜏 =
ℎ

4𝐸

Where τ is the necessary operating time, E is the performing

system's quantum mechanical average energy, and h is the

plank's constant. Additionally, it has been demonstrated that the

following represents the minimal operation time that applies to

every digital logic gate used in quantum computation: 𝜏 =
ℎ

4𝐸
(1 + 2

𝜃

𝜋
)

The phase shift modulo π in this case is θ. It considers any

simple quantum gate that adds an arbitrary phase shift to a

qubit's state after augmenting it. As many researchers have

observed [39], a fundamental quantum operation requires a

fundamental amount of time. For example, a single qubit gate

operation is required 1µs, a double qubit gate operation is

required 10µs, and foe movement operations time is required

20µs. According to these operations, a double qubit gate

(CNOT, V, and V+) requires roughly 10µs to operate, while a

single gate operation (NOT) requires 1µs. 10µs are needed for

a one-bit regulated operation. The C2NOT gate operation

requires 10 + 10 = 20µs of time. The AND gate operation will

take 20 + 20 + 20 = 60µs. The multivalued XOR operation

takes (20 + 20 + 20 + 1) = 61µs to complete. The multivalued

OR operation requires 81µs to complete (10 + 10 + 20 + 1 + 20

+ 20). The multivalued NOR operation requires 82µs to

complete (10 + 10 + 20 + 1 + 20 + 20 + 1) in total. Since some

of the fundamental quantum gate operations are carried out in

parallel, required to split the quantum 9-to-2 PROM into

pipelines to determine the necessary performing time. The

pipelines are: 1) Decoder; AND; OR; OR, and 2) Decoder;

AND; OR; OR; OR.

Considering the third pipeline, which is the largest pipeline for

processing input to the multivalued quantum 9-to-2 PROM's

output, to determine the overall amount of performing time

needed. It is evident that the ternary quantum gate operations

of AND and OR require 10µs, respectively. The Multivalued

Quantum 9:2 PROM requires the following time: = (Decoder +

AND + OR + OR + OR) µs, where the fundamental ternary

quantum AND operation requires 60µs, the basic ternary

quantum OR operation requires 81 µs, and the needed time for

the ternary quantum decoder is 13µs. In conclusion, the ternary

3:1 multiplexer requires the following time: (13 + 60 + 81 + 81

+ 81) µs = 316µs.

6. CONCLUSION
Quantum computing is still in its early stages, but it promises

to transform many areas of science and technology. Ternary

quantum circuits can be more efficient for certain types of

problems, reducing the number of operations required

compared to binary systems. This paper presents the

development of quantum-based PROM logic circuits utilizing

quantum logic gates, offering a novel pathway in nanoscale

computing. The QPROM logic circuits introduced here are

designed to enhance circuit compression by leveraging input-

dependent compression techniques and reducing a certain

quantity of gates through the additional output state being

encoded. This quantum ternary-based approach not only

advances the efficiency and scalability of storage systems but

also opens new possibilities within the field of quantum

storage. The ability to process multiple states simultaneously

means that quantum computers can explore many possible

solutions simultaneously, rather than sequentially. This

suggested quantum ternary storage device is poised for

potential simulation by quantum computers in an approach not

possible with classical computers. Furthermore, compared to

conventional or even supercomputers, a quantum computer can

work several orders of magnitude faster, making the realization

of quantum storage systems through QPROM a promising and

practical innovation in quantum computing. As quantum

technology evolves, improving time management and heat

control will be crucial for realizing practical, large-scale

quantum computers.

6. REFERENCES
[1] Schleich, Wolfgang P., et al. "Quantum technology: from

research to application." Applied Physics B, 122 2016, 1-

31.

[2] Marella, Surya Teja, and Hemanth Sai Kumar Parisa.

"Introduction to quantum computing." Quantum

Computing and Communications, 2020.

[3] Horowitz, Mark, and Emily Grumbling, eds. "Quantum

computing: progress and prospects." 2019.

[4] Joos, Erich, et al. “Decoherence and the appearance of a

classical world in quantum theory.” Springer Science &

Business Media, 2013.

[5] Knight, P. L., and B. M. Garraway. "Quantum

superpositions in dissipative environments: Decoherence

and deconstruction." Quantum Dynamics of Simple

Systems. CRC Press, 2020. 199-238.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

40

[6] Preskill, John. "Simulating quantum field theory with a

quantum computer." arXiv preprint arXiv:1811.10085,

2018.

[7] Weigold, Manuela, et al. "Encoding patterns for quantum

algorithms." IET Quantum Communication 2.4 2021:

141-152.

[8] Dhande, A. P., V. T. Ingole, and V. R. Ghiye. "Ternary

digital system: Concepts and applications." 2014.

[9] Khan, Mozammel HA, and Marek A. Perkowski.

"Quantum ternary parallel adder/subtractor with partially-

look-ahead carry." Journal of Systems Architecture 53.7.

2007: 453-464.

[10] Asadi, Mohammad-Ali, Mohammad Mosleh, and Majid

Haghparast. "Towards designing quantum reversible

ternary multipliers." Quantum Information

Processing 20.7. 2021: 226.

[11] Glusker, Mark, David M. Hogan, and Pamela Vass. "The

ternary calculating machine of Thomas Fowler." IEEE

Annals of the History of Computing 27.3. 2005: 4-22.

[12] Brusentsov, Nikolay Petrovich, and José Ramil Alvarez.

"Ternary computers: The setun and the setun 70." IFIP

Conference on Perspectives on Soviet and Russian

Computing. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2006.

[13] Heung, Alex, and H. T. Mouftah.

"Depletion/enhancement CMOS for a lower power family

of three-valued logic circuits." IEEE Journal of Solid-

State Circuits 20.2. 1985: 609-616.

[14] Pelucchi, Emanuele, et al. "The potential and global

outlook of integrated photonics for quantum

technologies." Nature Reviews Physics 4.3. 2022: 194-

208.

[15] Uppu, Ravitej, et al. "Single-photon quantum hardware:

towards scalable photonic quantum technology with a

quantum advantage." arXiv preprint arXiv:2103.01110.

2021.

[16] Heshami, K., England, D.G., Humphreys, P.C., Bustard,

P.J., Acosta, V.M., Nunn, J. and Sussman, B.J., 2016.

Quantum memories: emerging applications and recent

advances. Journal of modern optics, 63(20), pp.2005-

2028.

[17] Gerhold, M. and Joseph, J., Army Science Planning

Strategy Meeting on Integrated Nanophotonics.

[18] Meena, Jagan Singh, et al. "Overview of emerging

nonvolatile memory technologies." Nanoscale research

letters 9. 2014: 1-33.

[19] Baddeley, Alan. "Working memory." Memory.

Routledge, 2020. 71-111.

[20] Brady, Timothy F., Talia Konkle, and George A. Alvarez.

"A review of visual memory capacity: Beyond individual

items and toward structured representations." Journal of

vision 11.5 (2011): 4-4.

[21] Dragojević, Aleksandar, et al. "{FaRM}: Fast remote

memory." 11th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 14). 2014.

[22] Snehi, Jyoti. “Computer peripherals and interfacing.”

Firewall Media, 2006.

[23] Barkalov, Alexander, and Larysa Titarenko. “Logic

synthesis for FSM-based control units.” Vol. 53. Berlin:

Springer, 2009.

[24] Kulinich, O., et al. "Modern elementary base of digital

systems design." 2023.

[25] Proebster, Walter E. “Digital memory and storage.”

Springer-Verlag, 2013.

[26] Pricer, W. David, et al. "80.1 Integrated Circuits (RAM,

ROM)." 2000.

[27] Currie, Edward H. “Mixed-Signal Embedded Systems

Design.” Springer International Publishing, 2021.

[28] Ielmini, Daniele, and Giacomo Pedretti. "Device and

circuit architectures for in‐memory

computing." Advanced Intelligent Systems 2.7 2020:

2000040.

[29] Ilyas, Muhammad, Shawn Cui, and Marek Perkowski.

"Ternary logic design in topological quantum

computing." Journal of Physics A: Mathematical and

Theoretical 55.30 2022: 305302.

[30] Haghparast, Majid, Robert Wille, and Asma Taheri

Monfared. "Towards quantum reversible ternary coded

decimal adder." Quantum Information Processing 16

2017: 1-25.

[31] Mandal, Sudhindu Bikash, Amlan Chakrabarti, and

Susmita Sur-Kolay. "Synthesis techniques for ternary

quantum logic." 2011 41st IEEE International Symposium

on Multiple-Valued Logic. IEEE, 2011.

[32] Lin, Sheng, Yong-Bin Kim, and Fabrizio Lombardi.

"CNTFET-based design of ternary logic gates and

arithmetic circuits." IEEE transactions on

nanotechnology 10.2 2009: 217-225.

[33] Heung, Alex, and H. T. Mouftah.

"Depletion/enhancement CMOS for a lower power family

of three-valued logic circuits." IEEE Journal of Solid-

State Circuits 20.2 1985: 609-616.

[34] Hidary, Jack D., and Jack D. Hidary. “Quantum

computing: an applied approach.” Vol. 1. Cham: Springer,

2019.

[35] Sandhie, Zarin Tasnim, Farid Uddin Ahmed, and Masud

H. Chowdhury. "Background and Future of Multiple

Valued Logic." Beyond Binary Memory Circuits:

Multiple-Valued Logic. Cham: Springer International

Publishing, 2022. 1-13.

[36] Diósi, Lajos.”A short course in quantum information

theory: an approach from theoretical physics.” Vol. 827.

Springer, 2011.

[37] Levitin, Lev B., Tommaso Toffoli, and Zachary Walton.

"Operation time of quantum gates." arXiv preprint quant-

ph/0210076. 2002.

[38] Isailovic, Nemanja, et al. "Interconnection networks for

scalable quantum computers." ACM SIGARCH Computer

Architecture News 34.2 2006: 366-377.

[39] Thaker, Darshan D., et al. "Quantum memory hierarchies:

Efficient designs to match available parallelism in

quantum computing." ACM SIGARCH Computer

Architecture News 34.2 2006: 378-390.

IJCATM : www.ijcaonline.org

