
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

1

The Development of Polimdo Restfull API to Support

Data Exchange Effectively

Veny Ponggawa
Electrical Dept of Manado State

Polytechnic
Buha, Kairagi Manado

Maksy Sendiang
Electrical Dept of Manado State

Polytechnic
Buha, Kairagi Manado

Jusuf L. Mappadang
Electrical Dept of Manado State

Polytechnic
Buha, Kairagi Manado

ABSTRACT

The rapid growth of interconnected systems in various

domains, including web services, mobile applications, and

cloud-based solutions, has increased the need for efficient data

exchange mechanisms. This paper explores the development of

a RESTful (Representational State Transfer) API designed to

support seamless data exchange between systems in

POLIMDO (Manado State Polytechnic). The REST

architecture, known for its stateless nature, lightweight design,

and scalability, provides an efficient approach for enabling

communication between heterogeneous systems. This study

documents the design, implementation, and evaluation of a

RESTful API tailored to exchange data in JSON format,

focusing on performance, scalability, and security

considerations.

General Terms

Web Development, backend platform

Keywords

RESTful API, data exchange, web services, JSON, scalability,

security, POLIMDO

1. INTRODUCTION
The exchange of data between various systems has become a

critical requirement in the modern digital ecosystem. From

cloud services to mobile applications, APIs (Application

Programming Interfaces) serve as the backbone of

communication, enabling efficient interactions between

software systems. Among the available API design

architectures, RESTful APIs have gained significant traction

due to their simplicity, scalability, and compatibility with a

wide range of platforms.[5]

This paper focuses on the development of a RESTful API that

supports data exchange between multiple systems founded in

Manado State Polytechnic. At the moment, there are some

system or aplications running in Manado State Polytechnic and

all of them run with their own databases and business logic.

There is no data interchange between them. A particular system

is isolated with others.

The aim of this paper is to examine the effectiveness of the

REST architectural style in providing an efficient and scalable

mechanism for data communication. The study also considers

security challenges and solutions, as well as the performance

metrics involved in the exchange of JSON-encoded data.

1.1 Objectives
• To develop a RESTful API for data exchange

between heterogeneous systems in POLIMDO

(Manado State Polytechnic)

• To evaluate the performance, scalability, and security

of the API.

• To provide recommendations for improving API

design based on empirical findings.

2. LITERATURE REVIEW

2.1 REST Architecture and Principles

Roy Fielding's REST architectural style, introduced in 2000

[1], has become a widely adopted standard for web service

design. REST emphasizes statelessness, client-server

communication, cacheability, and uniform interfaces. Several

studies have demonstrated the benefits of REST, particularly

its simplicity, ease of implementation, and ability to handle

large volumes of data exchange.

REST Architecture and Principles focus on designing network-

based applications in a lightweight, scalable, and maintainable

way. REST (Representational State Transfer) is a popular

architectural style for building APIs, especially web services,

due to its simplicity and scalability. Key REST Principles:[2]

o Client-Server Architecture; REST separates the concerns

of the client and the server. The client is responsible for

managing the user interface and user experience, while the

server handles the data and business logic. This separation

allows each side to evolve independently

o REST APIs are stateless, meaning each client request must

contain all the necessary information for the server to fulfill

the request. The server does not store client context

between requests. This improves scalability by removing

the need for session management on the server.

o Responses from RESTful APIs should be explicitly labeled

as cacheable or non-cacheable. If a response is cacheable,

the client can reuse that response for future requests,

reducing the number of calls to the server and improving

efficiency.

o REST allows for a layered system architecture, meaning

that components (such as proxies, gateways, and load

balancers) can be added between the client and the server

without affecting communication. This enhances

scalability and security.

o REST allows servers to temporarily extend client

functionality by transferring executable code, such as

JavaScript. However, this is an optional constraint, and

most RESTful APIs do not use this feature.

2.2 Data Exchange Formats: JSON vs XML
The two most common formats for data exchange over

RESTful APIs are JSON (JavaScript Object Notation) and

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

2

XML (Extensible Markup Language). JSON has emerged as

the preferred format due to its lightweight structure and ease of

use in modern web applications[6]. Prior studies highlight the

efficiency of JSON over XML in terms of data transfer speed,

payload size, and parsing efficiency.

JSON is a lightweight, human-readable format for representing

structured data. It is derived from JavaScript but is language-

independent and can be used by many programming languages.

XML is a markup language that defines a set of rules for

encoding documents in a format that is both human-readable

and machine-readable. It was designed to transport and store

data, with an emphasis on being both self-descriptive and

extensible.

2.3 Security Challenges in RESTful APIs
While RESTful APIs are widely adopted due to their

simplicity, scalability, and performance, they also introduce

several security challenges. Since REST APIs are often

exposed to the internet, they become potential attack vectors

for malicious users. Here are some of the key security

challenges associated with RESTful APIs:

o Lack of Built-in Security Mechanisms; RESTful APIs rely

on external mechanisms such as HTTPS, OAuth, and JWT

(JSON Web Tokens) to provide security features. This can

lead to inconsistent or inadequate security practices if not

properly implemented

o Authentication (verifying user identity) and authorization

(determining access rights) are critical concerns in

RESTful APIs, especially in public-facing APIs. Without

robust mechanisms, APIs may become vulnerable to

unauthorized access and data exposure.

o Insufficient Encryption (HTTPS); using HTTPS

(SSL/TLS) is critical for protecting data exchanged

between clients and servers. Without encryption, sensitive

information (such as passwords, personal data, or API

keys) can be intercepted during transmission, leading to

man-in-the-middle (MITM) attacks. Many REST APIs still

use HTTP without encryption, which exposes them to these

risks.

3. METHODOLOGY

3.1 System Design
The API is designed following REST principles and built

using Node.js and Express, which offer flexibility and

performance advantages. The database used for persistent

storage is MongoDB, chosen for its scalability and ease of

integration with JSON data formats. The API endpoints are

developed to perform CRUD (Create, Read, Update, Delete)

operations on the dataset.[4]

o API Endpoints:

• GET /api/resources – Retrieve all data.

• POST /api/resources – Create a new data entry.

• PUT /api/resources/{id} – Update a specific data

entry.

• DELETE /api/resources/{id} – Delete a data entry.

3.2 Data Exchange Format

In the context of a RESTful API, a Data Exchange Format

refers to the structure and encoding of the data that is

transmitted between the client and the server. It defines how

data is formatted for both requests and responses, enabling

effective communication. JSON was selected as the primary

format due to its compact structure, ease of parsing, and broad

compatibility with most modern programming languages [6].

Other formats like XML, CSV, and YAML can be used

depending on the specific needs of the application

3.3 Security Implementation
The API employs OAuth 2.0 for user authentication and access

control. All communications are secured using HTTPS to

encrypt the data. Additionally, JWT tokens are used to validate

user sessions, ensuring secure and stateless interactions

between the client and server..

3.4 Performance Testing
The performance of the API is tested under various conditions:

o Load Testing: Simulates multiple concurrent users to

evaluate response times and server load.

o Latency and Throughput: Measures the average response

time for data requests and the rate at which data is

exchanged.

o Scalability Testing: Assesses the API’s ability to scale

horizontally by adding additional instances under high

load.

4. RESULTS AND DISCUSSION

4.1 System Design
The aim of the POLIMDO Restful API system was created to

provide efficient and structured access. Used to retrieve some

required data such as lecturer data, course data, research data,

service data and tridharma data at the Manado State

Polytechnic. The API enables effective data management,

including CRUD (Create, Read, Update, Delete) operations and

supports the needs of users such as lecturers, students and

admins.

The scope of this system includes endpoints on the API which

are used to manage lecturer data, research, community service

and has functional and non-functional requirements as follows

• To manage lecturer data; the main function is to use

endpoints to display, add, delete and update lecturer data

• To manage course; the main function is to use endpoints to

display, add, delete and update course data

• To manage research and community service data

• To manage data public access

4.2 System Modelling
System modeling in a RESTful API context involves designing

and representing the various components and interactions of the

system in a way that adheres to REST principles. This includes

defining resources, their relationships, and how clients interact

with these resources through HTTP methods. The modelling

is described as follows

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

3

Fig 1. Use case diagram

The endpoints, is shown in the next table

Table 1. REST API Endpoints

 Routes

Resource
HTTP

Methods
Endpoints

/api/apiResearch

GET
/api/apiResearch

/api/apiResearch/:id

POST /api/apiResearch

PUT /api/apiResearch/:id

DELETE /api/apiResearch/:id

/api/apiService GET
/api/apiService

/api/apiService/:id

/api/apiLecturer GET /api/apiLecturer

/api/apicivilServant GET /api/apicivilServant

/api/apiStudents GET /api/apiStudents

/api/apiSubjects GET //api/apiSubjects

The complete implementation of POLIMDO REST API is

shown into the picture below (can be accessed directly via

https://polimda-api.my.id/)

Figure 2.POLIMDO REST API

5. CONCLUSION
This paper demonstrates the successful development and

implementation of a RESTful API to support efficient data

exchange. Through performance testing and security

evaluation, it was found that the API meets the necessary

requirements for scalability, speed, and security. While REST

remains a robust choice for modern web services, future

https://polimda-api.my.id/api/apiPenelitian/620fa4ce650ef
https://polimda-api.my.id/api/apiPenelitian/620fa4ce650ef
https://polimda-api.my.id/api/apiPenelitian/620fa4ce650ef
https://polimda-api.my.id/

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.52, November 2024

4

iterations could explore hybrid approaches, such as combining

REST with GraphQL for enhanced flexibility.

6. REFERENCES
[1] Fielding, R. T. (2000). Architectural Styles and the Design

of Network-based Software Architectures. Doctoral

dissertation, University of California, Irvine.. .

[2] Richardson, L., & Ruby, S. (2007). RESTful Web Services.

O'Reilly Media..

[3] Koren, M. (2018). Performance Comparison: JSON vs.

XML. Journal of Web Services, 23(1), 45-58Tavel, P.

2007 Modeling and Simulation Design. AK Peters Ltd.

[4] Hardt, D. (2012). The OAuth 2.0 Authorization

Framework. RFC 6749..

[5] Narayan, V. (2020). API Security: Best Practices for

Modern Web Applications. Cybersecurity Journal, 12(3),

70-82..

[6] Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE.

[7] Y.T. Yu, M.F. Lau, "A comparison of MC/DC,

MUMCUT and several other coverage criteria for logical

decisions", Journal of Systems and Software, 2005, in

press.

[8] Spector, A. Z. 1989. Achieving application requirements.

In Distributed Systems, S. Mullender

l

IJCATM : www.ijcaonline.org

