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ABSTRACT 

Electromagnetic field solvers are pivotal in numerous 

engineering and scientific applications, ranging from antenna 

design to medical imaging. Achieving accurate and efficient 

solutions to complex electromagnetic (EM) field problems 

often necessitates a refined finite element (FE) mesh. This 

study explored using genetic algorithms (GA) as a robust 

optimization tool to enhance the quality of FE meshes for EM 

field simulations. The proposed approach not only automates 

the mesh refinement process but also significantly improves the 

convergence and accuracy of numerical simulations. The initial 

mesh on a problem domain was generated using the Delaunay 

triangulation algorithm (DTA), and the developed mesh was 

then refined using a more flexible GA that could handle regions 

of the problem domain containing several local extrema. The 

aspect ratio and the maximum angle at each node of the 

triangular mesh were used to select the fitness function to be 

optimized in the GA. The GA was tested and validated for 

various test cases covering multiple complex geometry 

applications. The results showed a significant change in the 

quality of the refined meshes, a shift of fitness value ranges 

from (0.1-0.50) to (0.60-1.0), and the ability to handle 

nonconvex regions. Results of mesh refinement and modeling 

EM field solvers were validated and accomplished through a 

series of tests and comparisons of the GA and the DTA mesh 

quality results and by observing the effect of E-fields and H-

fields on the computed results.   
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1. INTRODUCTION 
Accurate modeling of electromagnetic (EM) fields plays a 

pivotal role in diverse scientific and engineering applications, 

particularly in high-frequency simulations such as antenna 

design, microwave circuits, and broader radio frequency (RF) 

applications [1]. The pursuit of solving EM field challenges has 

driven researchers and engineers to explore various numerical 

techniques for accurately predicting electric and magnetic 

problems. Notably, among various numerical methods, the 

Finite Element Method (FEM) has gained significant traction. 

[2]. This prominence is attributed FEM's exceptional versatility 

in handling complex geometries and heterogeneous material 

properties, coupled with its proficiency in tackling a 

comprehensive array of EM problems. Consequently, FEM has 

emerged as an indispensable tool in the rigorous modeling of 

EM phenomena, underscoring its pivotal role in advancing both 

theoretical foundations and practical applications within the 

sphere of EM research. [3].  

The core principle of FEM is the subdivision of a continuous 

problem domain into a finite number of subdomains called 

finite elements (FE) [4]. Mathematically, the discretization 

process involves transforming a continuous problem described 

by partial differential equations (PDEs) into a system of 

algebraic equations, which can be solved more efficiently using 

computational methods. A notable application of this approach 

is the solution of EM problems in steady-state [2], [5], [6]. For 

instance, FEM is employed to solve PDEs that describe the 

distribution of electric potential (V) within a dielectric medium 

[7]. This research explored a new approach to mesh refinement 

for EM field solvers using the properties of GA [8]. Through 

the application of GAs, the study counters the limitations of 

conventional mesh refinement approaches in unstructured 

geometrical domains, thus efficiently adapting to dynamic EM 

simulation needs. This research also sought to enhance 

unstructured triangular meshes' solver accuracy and 

computational efficiency. Besides, its application in solving 

real FEA problems contributes to developing adaptive 

refinement approaches in computational electromagnetics [9]. 

2. THEORETICAL BACKGROUND 
Finite element problems commonly manifest through Poisson's 

and Laplace's equations, as depicted in 1 and 2, depending on 

the presence of free charge within the domain. 

𝛻 ∙ (𝜀𝛻𝑉) = −𝜌     𝑤ℎ𝑒𝑟𝑒  𝜌 ≠  0      (1)  

           𝛻 ∙ (𝜀𝛻𝑉) =  0                              (2)  

where: ρ - volume charge density; ε - electric permittivity of 

the dielectric; V -scalar electric potential. The Laplace equation 

describes scenarios where the electric potential is influenced 

purely by boundary conditions and not by any internal charges. 

FEM discretizes a geometric domain (problem domain) into 

triangles or quadrilaterals in two dimensions (2D) and 

tetrahedral or hexahedra in three dimensions (3D). This 

discretization yields two categories of meshes: a structured 

mesh, characterized by uniform topology among all interior 

vertices, and an unstructured mesh, where vertices can exhibit 

arbitrarily varying local neighborhoods [10], [11]. In a 2D 

domain, each element's potential, V, in equation 3 is a weighted 

sum of a linear combination of the nodal potentials: 

𝑉(𝑥, 𝑦) ≈ ∑ 𝑁𝑗(𝑥, 𝑦)𝑣𝑖  

𝑛

𝑖=1

                       (3)  

Where  𝑁𝑖(𝑥, 𝑦) are interpolation functions associated with the 

element nodes and  𝑣𝑖 are the unknown nodal potentials 
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discretization, the governing PDE (Poisson's or Laplace's 

equation) is converted into a set of algebraic equations using a 

suitable weighted residual approach such as the Galerkin 

method [12], [13]. Using the Galerkin method, Poisson's 

equation yields to equation 4. 

∫ 𝛻 ∙ (𝜀𝛻𝑉)𝑁𝑗 𝑑Ω
.

𝛺

= − ∫ 𝜌𝑁𝑗𝑑Ω
.

𝛺

       (4)  

Applying the divergence theorem and boundary conditions, this 

integral equation is transformed into a system of linear 

algebraic equations represented by equation 5b 

    [𝐾]{𝑉} = {𝐹}                                       (5)  

where: [𝐾] is the global stiffness matrix and encodes the 

material properties (𝜀) and geometry of the domain; {𝑉} is a 

vector of unknown nodal potentials; {𝐹}is the load vector 

representing charge density 𝜌 contribution to the system.  

Developing FE surface meshes is integral for accurately 

simulating real-world objects, especially within EM field 

computational models. Achieving a high precision of these 

meshes directly influences the ability of the model to capture 

the complex and intricate details of physical geometries [5]. 

However, as mesh resolution increases to capture finer details, 

the computational problem also escalates, leading to 

simulations that can become too expensive in terms of time and 

computational resources. This creates a critical need to balance 

accuracy and efficiency, a fundamental concern in the 

application of finite element methods (FEM) to 

electromagnetic problems [14], [15].   

EM problem computations using FEM can be broken down into 

three main steps: preprocessing, analysis, and post-processing 

[2], [15]. Preprocessing involves generating the initial mesh, 

which is a crucial step as the mesh quality significantly affects 

the accuracy and convergence of the subsequent analysis. 

Numerous methods have been developed and presented 

through mesh generation research, some of which have been 

incorporated into commercial EM simulation software [11], 

[13]. These methods include mapping techniques, finite 

quadtree/octree methods [13], Delaunay Triangulation (DT) 

[16], [18], and the Advancing Front Technique (AFT) [19], 

[20], among others. DT and ATF are the most utilized methods. 

In many simulations, DT is preferred because it avoids skinny 

triangles, enhancing the overall mesh quality. On the other 

hand, ATF is known for generating conforming meshes to 

complex boundaries, making it useful in EM simulations where 

precise boundary conditions are critical.  

In modeling EM fields, Maxwell's equations govern the 

behavior of electric and magnetic fields [21], [22]. For static 

EM field problems, these equations are expressed in equation 

6. 

𝛻𝑥𝐸 = 0;  𝛻𝑥𝐻 = 𝐽𝑠;  𝛻. 𝐷 = 𝜌𝑠;  𝛻. 𝐵 = 0       (6) 

The constitutive equations in 6 link the field quantities to the 

material properties as in equation 7. 

𝐷 = 𝜀𝐸,    𝐵 = 𝜇𝐻,       𝐽 = 𝜎𝐸                              (7) 

Where ε is the electrical permittivity of the material, µ is the 

magnetic permeability of the material, and σ is the conductivity 

tensor of the material.  For electrostatic problems, the following 

Maxwell's equations derived from Gauss’s law PDE are solved 

as in equations 8 and 9 

        −(𝜀𝑟𝜀0 𝛻. 𝑉) =  𝜌𝑆                            (8)   

                    −𝛻𝑉 =  𝐸                                              (9)   

Where: 𝜌𝑆  − surface charge density, 𝜀𝑟  – material relative 

permittivity, 𝜀0 – material absolute permittivity, V – electric 

potential. The Dirichlet boundary conditions specify V on the 

boundary and 𝜌𝑠 at the conductor medium. For magnetostatic 

problems, where steady currents generate the magnetic fields, 

Maxwell's equations derived from Ampere’s law PDE are 

solved in 𝛻 × 𝐻 = 𝐽 there exists a magnetic vector potential A, 

such that 𝐵 = 𝛻 × 𝐴. Substituting this into Ampère's law and 

applying the vector identity (1/𝜇. 𝛻 ∗ 𝐴) = 𝐽. Using the 

identity 𝛻 × (𝛻 × 𝐴)  = 𝛻(𝛻 ⋅ 𝐴)  −  𝛻2𝐴 we equation 10 

    −𝛻^2  ⋅  𝐴 =  −𝛻 ⋅  𝛻𝐴 =  𝜇𝐽        (10) 

Dirichlet boundary conditions specify the magnetic potential 

on the boundary. Equations (9) & (10) form the basis of FEM 

for static EM field problems, where the magnetic vector 

potential A is solved within the mesh to determine the magnetic 

field distribution and the electric potential V within the 

dielectric medium. 

Mesh refinement is a technique used in numerical simulations, 

particularly in FEM, to improve the accuracy of the results by 

increasing the density or quality of the computational mesh.  

The quality of these mesh elements is often assessed using 

several geometric criteria, which directly affect the numerical 

consistency and accuracy of the simulation. The key objective 

of mesh refinement is to optimize these criteria by iteratively 

adjusting the positions of mesh vertices [23]. Mathematically, 

the quality 𝑄𝑐 of a mesh element 𝑡 can be expressed as a 

function of its geometric properties, such as edge lengths, 

angles, and area, as shown in equation 11. 

𝑄𝑐 = 𝑓(𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑠, 𝑎𝑛𝑔𝑙𝑒𝑠, 𝑎𝑟𝑒𝑎)    (11)  

For a typical triangular mesh element with vertices (𝑣1, 𝑣2, 𝑣3) 

and the corresponding length of edges (𝑙12, 𝑙23, 𝑙31) the mesh 

quality criteria include: 

i.) Aspect Ratio (AR) is the ratio of the triangle's longest edge 

to the shortest altitude, as depicted in equation 12. 

Minimizing AR leads to more equilateral triangles, which 

are preferred. 

𝐴𝑅 =
𝑙𝑚𝑎𝑥

ℎ𝑚𝑖𝑛
=  

(𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑠) 

(𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑠) 
               (12)  

where:   𝑙𝑚𝑎𝑥 = (𝑙12, 𝑙23, 𝑙31)   𝑎𝑛𝑑    ℎ𝑚𝑖𝑛 =
2∗𝐴𝑟𝑒𝑎

𝑙𝑚𝑎𝑥
      

𝐴𝑟𝑒𝑎 =  
1

2
 |𝑣1 ∗ 𝑣2 + 𝑣2 ∗ 𝑣3 + 𝑣3 ∗ 𝑣1|           

ii.) Minimum Angle (𝜃𝑚𝑖𝑛). This ensures that the minimum 

internal angle is maximized to avoid degenerate triangles, 

i.e., where one angle approaches 0𝜊 as demonstrated in 

equation 13. 

             𝜃𝑚𝑖𝑛 = (𝜃1 𝜃2 𝜃3 )                          (13)  

The dot product of the vectors formed by the triangle's edges 

can be used to calculate each angle. Where 𝑒𝑗 𝑎𝑛𝑑 𝑒𝑘   are 

vectors representing the edges of the triangle at the vertex 

opposite 𝜃𝑖  

 

𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃𝑖 =  
𝑒𝑗 ∙ 𝑒𝑘

|𝑒𝑗| |𝑒𝑘|
  

iii.) Circumradius (𝑅𝐶) to Shortest Edge Ratio: Minimizing the 

ratio of the circumradius to the shortest edge prevents 
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overly thin triangles: 
𝑅𝑐

𝑙𝑚𝑖𝑛
=  

𝑐𝑖𝑟𝑐𝑢𝑚𝑟𝑎𝑑𝑖𝑜𝑢𝑠

𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑒𝑑𝑔𝑒
 . where  𝑅𝑐 =

  
𝑙12𝑙23𝑙31

4∙𝐴𝑟𝑒𝑎
  𝑎𝑛𝑑  𝑙𝑚𝑖𝑛 = (𝑙12𝑙23𝑙31), thus equation 14 

     
𝑅𝑐

𝑙𝑚𝑖𝑛
=    

𝑙12𝑙23𝑙31

4 ∙ 𝐴𝑟𝑒𝑎 ∙  𝑙𝑚𝑖𝑛
                              (14)  

This ratio is minimized to prevent the generation of slender 

triangles, which result in poor numerical performance in FEM. 

In general, the mesh quality metric 𝑄𝑐 for a triangular element 

can be presented as a weighted combination of the above 

criteria, which collectively represent the element's divergence 

from an ideal shape (an equilateral triangle) and is represented 

by equation 15. 

𝑄𝑐 =  𝑤1 ∙ 𝐴𝑅 + 𝑤2 ∙
𝑅𝑐

𝑙𝑚𝑖𝑛
+ 𝑤3 ∙

1

𝜃𝑚𝑖𝑛
     (15)  

where 𝑤1, 𝑤2 𝑎𝑛𝑑 𝑤3 are weights assigned based on the 

importance of each criterion in a specific application. The 

ultimate goal in mesh refinement is to minimize the distortion 

metric 𝐷𝑡, which is the sum of the quality metrics for all 

elements 𝑡 in the mesh as in equation 16. 

         𝐷𝑡  = ∑ 𝑄𝑐

.

𝑡 ∈ 𝑚𝑒𝑠ℎ

                                    (16)  

Minimizing 𝐷𝑡 is constrained by the geometric domain and 

physical boundaries of the problem. The process of iterative 

refinement aims to optimize vertex positions to minimize 𝐷𝑡, 

which improves the mesh quality and enhances the accuracy of 

FEM simulations. The majority of refinement techniques 

employ iterative processes to adjust individual vertices to 

enhance the quality of the triangular mesh [23]. Typically, 

triangular meshes are evaluated based on criteria such as 

maintaining a small aspect ratio and avoiding angles that are 

extremely close to 0 or 180 degrees as in equation 17 for  0𝑜 <
𝜃𝑚𝑖𝑛 < 𝜃𝑖 < 𝜃𝑚𝑎𝑥 < 180𝑜. 

  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐴𝑅 =
𝑙𝑚𝑎𝑥

ℎ𝑚𝑖𝑛
                            (17) 

However, a range of other optimization objectives exist, 

including minimizing the maximum angle, maximizing the 

minimum angle, minimizing the maximum circumradius, 

reducing the maximum aspect ratio, and minimizing the radius 

of the enclosing circle for the constituent triangles [24]. 

Techniques such as refinement, averaging, and optimization-

based methods are also utilized to enhance the quality of 

triangular mesh. Mesh refinement involves adjusting the 

positions of the mesh vertices to enhance the mesh elements' 

shapes and the mesh's overall quality. During this process, the 

topology of the mesh remains unchanged. The most commonly 

utilized technique for mesh refinement is the Laplacian 

refinement method [24], where vertex positions 

(𝑣𝑖
𝑛𝑒𝑤  ) 𝑎𝑟𝑒 adjusted and updated based on the average of a set 

of neighboring vertices (𝑁(𝑖)) as in equation 18 

𝑣𝑖
𝑛𝑒𝑤 =  

1

|𝑁(𝑖)|
∑ 𝑣𝑗

.

𝑗∈𝑁(𝑖)

                     (18)  

Though this technique is computationally efficient and 

reasonably effective, it does not guarantee an improvement in 

mesh quality, especially if the initial mesh elements are of poor 

quality. Several other averaging and refinement methods 

involve formulating and solving nonlinear optimization 

problems. The objective is to minimize the distortion metric 𝐷𝑡, 

subject to constraints that ensure the physical validity of the 

mesh in the feasible region, as in equation 19 [25]. 

  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷(𝑣)|𝑣𝑖 ∈ Ω                     (19) 

Advancements in this field of mesh refinement and 

optimization have been explored in several works.  Hwang et 

al. [23] presented an optimization-based strategy for 

maximizing the aspect ratio by solving a nonlinear and 

constrained global optimization problem confined by the mesh 

topology. Canann et al. [26] combined Laplacian smoothing 

with optimization-based refinement algorithms to improve 

mesh quality. Lori et al. [27] pursued an approach that 

maximizes the minimum angle in triangular meshes using the 

steepest descent method as the refinement function. Amenta et 

al. [28] presented theoretical findings demonstrating how 

extended linear programming can optimize triangle shapes 

locally, showing that this framework allows for systematic 

local refinement. Numerous efficient algorithms, distortion 

metrics, and optimization techniques are discussed and 

compared. Additional optimization-based methods encompass 

the works that rely on posterior error estimates and center 

around distortion metrics [29]. The selection of appropriate 

distortion metrics is also a topic explored.   

Over time, there has been a growing adoption of artificial 

intelligence principles in the realm of problem-domain 

discretization and refinement. In one instance, the application 

of Neural network concepts was explored for generating finite 

element meshes [30]. Also, Salama presented a binary genetic 

algorithm (GA) that uses a distortion metric as the fitness 

function to refine quadrilateral mesh elements utilized in finite 

element analysis [31]. The GA technique iteratively evolves the 

mesh by selecting, crossing over, and mutating vertices to 

achieve a mesh configuration that minimizes the distortion 

metric. The fitness function (𝐹) is employed in GA as in 

equation 20.  

𝐹(𝑥) = 𝑓(𝑥)| 𝑥 ∈ Ω                    (23)  

Where 𝑓(𝑥) is the objective function to be optimized; 𝑥 is a 

solution vector within the feasible region Ω; 𝐹(𝑥) the function 

evaluates the fitness of each candidate solution 𝑥 in a 

population.  

The performance of GAs is highly dependent on the fitness 

function, which relates to the aspect ratio, element size, and the 

global smoothness of the refined mesh [32]. Also, there are 

implementation difficulties due to the dynamic tuning of the 

exploration-exploitation trade-off in the GA process to allow 

the algorithm to fine-tune its specific mesh local irregularities 

while preserving the overall solution quality [33]. These 

problems call for fine-tuning GA parameters, mutation rates, 

and population sizes to achieve higher performance without 

considerable computational costs. As shown in Figure 1, the 

schedule-free transit problem was transformed into a high-level 

system global optimization problem and a low-level dispatch 

optimization problem to improve GA performance [34] 

effectively. 
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Fig. 1 Parametric refinement through the use of a genetic 

algorithm [34] 

3. METHODOLOGY  

3.1 Problem domain definition 
The initial stage of the finite element mesh refinement 

procedure was directed towards defining the geometry of the 

problem domain, which served as a basis for practical EM 

simulation. The domain for this research was thus developed 

based on a patch antenna made from copper and dielectric 

material. The geometry was mathematically defined and made 

compatible with finite element analysis (FEA) by defining the 

physical dimensions of the copper patch and dielectric 

substrate, length (l), and width (w). The overall domain was 

represented as a combination of the copper (𝛺𝐶𝑢) and dielectric 

(𝛺𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐) regions as in equation 21. 

𝛺𝑎𝑛𝑡𝑒𝑛𝑛𝑎  = 𝛺𝐶𝑢  ∪ 𝛺𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐         (21) 

The material characteristics were important in determining the 

appropriate model of the antenna. For the copper patch, the 

properties incorporated were conductivity (𝜎𝐶𝑢), relative 

permittivity (𝜖𝑟), and the relative permeability (μ_r) with the 

following values σ𝑐𝑢  ≈  5.8 × 107𝑆/m, 𝜖𝑟 ≈ 1 and 𝜇𝑟 ≈  1, 

respectively. The dielectric substrate conductivity was 

considerably lower 𝜎𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 ≈ 10−12 𝑆/𝑚, and permittivity 

and permeability were almost constant (𝜖𝑟 ≈ 0, 𝜇𝑟 ≈ 1). The 

boundary between the copper and dielectric areas represented 

by Γ was essential to simulate the EM fields appropriately. It is 

defined as in equation 22. 

                             𝛤 = 𝜕𝛺𝐶𝑢  ∩ 𝜕𝛺𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐       (22) 

It also clearly separated areas with different electromagnetic 

characteristics to facilitate the proper modeling of field 

interactions. 

3.2 Initial Mesh Generation for Patch 

Antennas  

3.2.1 Critical Steps in DTA Implementation for 

Patch Antennas 
i.) Initial Points Distribution 

The geometry was divided into small subdomains by specifying 

that the point density is higher near critical boundaries Γ. This 

also meant high-resolution meshing where copper and 

dielectric materials overlapped.  

ii.) Boundaries and limitations  

Triangle limits were placed on points on Γ to retain the 

boundary during the triangulation process. To ensure that the 

boundary remained intact during mesh generation, constrained 

Delaunay Triangulation (CDT), an extension of DTA, was 

used. Region  

iii.) Constrained Discretization   

Constrained Delaunay Triangulation discretized the interior 

region of both 𝛺𝐶𝑢 and 𝛺𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐. The algorithm also made it 

possible to avoid the formation of triangles that crossed over 

the boundary Γ, thus preserving the homogeneity of the two 

areas with different material properties. Material Property 

Assignment: The material properties of each triangle of the 

triangles were then determined according to their position. For 

triangles within the copper region 𝑇 ⊂ 𝛺𝐶𝑢, other parameters, 

including 𝜎𝐶𝑢 and 𝜖𝐶𝑢, have been employed. For dielectric 

triangles 𝑇 ⊂ 𝛺𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐, such properties as 𝜎𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 and 

𝜖𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 were used 

3.2.2 DTA Workflow 
Figure 3 illustrates the pseudocode diagram of the DTA process 

for creating Initial mesh generation- In the first step of the 

triangulation, when the points belonging to the boundary of the 

geometry are given, super triangles (𝛥𝑠𝑢𝑝𝑒𝑟) containing all of 

those points, were built. As the points were developed, these 

were integrated into the triangulation to complement the data. 

 

Fig. 2 Delaunay Triangulation pseudocode 

For every point, all the triangles with their circumcircle 

containing the new point of interest were marked as ‘bad,’ and 

all these bad triangles were erased from the current mesh; they 

left polygonal holes behind. The polygonal boundaries were re-

triangulated by joining the new point to the vertices of the 

holes. As a final touch, any triangles situated at the nodes of 

𝛥𝑠𝑢𝑝𝑒𝑟 were stripped off, which means all the graph 

triangulation was done here and to come was restricted to the 

particular problem area of interest. A high-quality mesh that 

conforms to the Delaunay triangle requirements of the patch 

antenna geometry of the patch antenna was generated. 

3.3 Genetic Algorithm for Mesh 

Refinement 

3.3.1 Mesh refinement 
The first meshes constructed using the Delaunay Triangulation 

Algorithm (DTA) usually comprise inferior triangles, implying 

that meshes can perform suboptimal numerical computations, 
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mainly when applied in finite element analysis (FEA). The 

refinement stage can be done using a Genetic Algorithm (GA) 

on the initial mesh used in the research. GA was identified as a 

valuable tool for refining the first DT mesh for the patch 

antenna model. This method is aimed at raising the density in 

the region where a high field gradient is expected to obtain a 

higher mesh quality while at the same time not compromising 

on computational costs.  

3.3.2 Algorithm Framework 

 Starting with a set of chromosomes, the genetic algorithm 

(GA) proceeds to refinement using meshes represented in the 

chromosomes. It continues to evaluate and create other sets of 

chromosomes related to new generations of possible solutions, 

as shown in the block diagram in Figure 3. In each iteration, the 

fitness of each chromosome is measured using calculated 

criteria known as the objective function. In light of this fitness, 

specific chromosomes are permitted in reproduction. The 

number of copies a given parent GA produces is directly 

proportional to its ‘fitness’—this is done in a process analogous 

to natural selection. This process further enhances the choice of 

better-fit solutions as the least-fitted solutions are ejected. 

 
Fig. 3 Genetic Algorithm (GA) Block Diagram 

The mesh refinement process applied the selection, crossover, 

and mutation operators using the GA framework. Selection 

guaranteed that fitter entities were selected for reproduction 

following the mesh quality metrics, which included aspect 

ratios and uniformity of elements used in meshing. During the 

optimization phase, there were different selections, including a 

tournament based on roulette wheel selection, to enhance 

exploration and exploitation [8]. In every run of the GA, set at 

time 𝑡, denoted as in equation 23. 

𝛲(𝑡) =  {𝑥0𝑡 , 𝑥1𝑡 , … , 𝑥𝑚𝑡}                   (23) 

These solutions are examined to assess how ‘fit’ they are. Then, 

using the newly generated population for the subsequent 

iteration, denoted by 𝑡 +  1, introduces new solutions. Forming 

the new population (𝑡 +  1) involves two key genetic 

operations: crossover and mutation. The crossover operation 

involves features from two parent chromosomes, giving the 

offspring similar features to those of the parents. It is done by 

swapping equivalent sections of the parent chromosomes. On 

the other hand, in mutation operation, one or more genes or loci 

in a defined chromosome will be changed randomly with a 

specified mutation rate to generate variation in the population. 

The genetic algorithm used in this study is proportional 

selection, an elitist model, one-point crossover, and uniform 

mutation as shown in pseudocode in Figure 4. First, to define 

an objective function for the optimization a geometrical 

approach is used. This assuredly applies and develops potential 

genetic solutions by optimizing genetic fitness and using 

genetic operators, namely crossover and mutation. 

 
Fig. 4 Genetic Algorithm Pseudocode 

 

3.3.3 Genetic Algorithm Parameters  

i.) Population Size  

In the problem domain mesh refinement, the population size 𝑁 

influences the simulation of the solution space and the 

convergence speed. Each internal vertex 𝑣𝑖 in the mesh has a 

population of chromosomes, with each potential vertex position 

represented by a chromosome 𝛸𝑖
(𝑗)

= (𝑥𝑖
(𝑗)

, 𝑦𝑖
(𝑗)

). The 

coordinates are initialized, as shown in equation 24, where 

𝑟𝑥,𝑟𝑦~ 𝑈(0,1). 

  {
𝑥𝑖

(𝑗)
=  𝑥𝑚𝑖𝑛 + 𝑟𝑥 · (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)  

𝑦𝑖
(𝑗)

=  𝑦𝑚𝑖𝑛 + 𝑟𝑥 · (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) 
}      (24)  

The fitness function 𝑓(𝑋𝑖) evaluates each chromosome based 

on the finite element error, 𝑒𝑖 as in equation 25, with a more 

considerable 𝑁 solution diversity, is enhanced, but 

convergence is slowed, improving the chances of reaching a 

global optimum 

   𝑓(𝑋𝑖) = ∑ 𝑒𝑖

𝑁

𝑖=1

                            (25)  

ii.) Evaluation Function  

In the case of each randomly generated node (chromosome), 

the algorithm computes the sum of areas for all triangles 

surrounding that node. This sum must match the summation of 

areas 𝑁 = ∑ 𝑡𝑛
1    for all triangles (t) around the initial node N, 

which is intended to be relocated to the optimal location.  

iii.) Selection Process  

A roulette wheel is employed to perform the selection process, 

which involves choosing a new population based on a 

probability distribution derived from fitness values. This 

roulette wheel is constructed with slots sized by individual 

fitness levels, ensuring a proportional selection process. It 

entailed the following steps 

a.) The fitness value 𝑓(𝑁𝑖) for each vertex (chromosome) 

was calculated using the expression 𝑁𝑖   where  {𝑖 =
 1,2, 3 … 𝑚 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒)}  

b.) The total fitness of the population was determined using 

equation 26. 

          𝐹𝑝 = ∑ 𝑓(𝑁𝑖)

𝑚

𝑖=1

                   (26)  



International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.52, November 2024 

19 

c.) The probability 𝑝𝑖  of selection for each chromosome 

(node Ni) (i = 1,2,3 … m) was computed as in equation 

27.  

               𝑝𝑖  =
𝑓(𝑁𝑖)

𝐹𝑝
                        (27)  

d.) The cumulative probability qi for each chromosome 

(node Ni (i = 1,2,3 . . . m)) was computed using equation 

28, as shown below.  

             𝑞𝑖  = ∑ 𝑝𝑗

𝑖

𝑗=1

                         (28)  

e.) The cumulative fitness probability was used to generate 

the elitist model used to choose survivors based on 

cumulative fitness probability: Let b be a randomized 

number selected from the interval (0,1), and let 𝑞𝑖 

represent the cumulative fitness probability of the 𝑖𝑡ℎ 

chromosome, where 𝑞1 ≤ 𝑞2 ≤ ⋯ ≤ 𝑞𝑚 and 𝑚 is the 

total number of chromosomes. The selection rule for the 

𝑖𝑡ℎchromosome 𝑁𝑖 as in equation 29 where 2 ≤   𝑖 ≤  𝑚 

𝑁𝑖  = { 
𝑁1,     𝑖𝑓 𝑏 <  𝑞1

𝑁𝑖 , 𝑖𝑓  𝑞𝑖−1 < 𝑏 < 𝑞𝑖
 }    (29)  

iv.)  Crossover Probability 

The crossover probability typically falls within the range of 

0.01 to 1.0. Crossover determines the likelihood that the 

upcoming node population will contain a blend of information 

inherited from the previous node generation. A rate of 0.5 

indicates that a child node will inherit approximately 50% of 

its characteristics from one parent node and the remaining 50% 

from the other. A rate of 1.0 signifies that no crossover will 

occur, resulting in evaluations that are essentially clones of the 

parents. The current algorithm employed a crossover 

probability of 0.85.  

v.) Mutation Rate  

The mutation rate can vary between 0.0 and 1.0. A higher 

mutation rate increases the likelihood that future node 

chromosomes will incorporate some random values. As 

mutation occurs after crossover, an excessively high mutation 

rate can diminish the impact of crossover. The present 

algorithm utilized random uniform mutation with a probability 

of 0.2.  

vi.) Evaluation (Fitness) Function  

Three different approaches were considered for selecting the 

function to be optimized within the genetic algorithm. These 

approaches encompass the least square error related to angle 

variations, the average aspect ratio of triangles at each node 

within the triangular mesh, and a linear combination of both 

methodologies. In this method, the evaluation function takes on 

a composite form, combining the least square error of angles 

and the average aspect ratio for triangles. Empirical evidence 

suggests that the third approach, involving the linear 

combination, is the most effective criterion for selecting the 

fitness function. The fitness function is calculated for each 

selected node. In every iteration, the absolute change in the 

fitness function is denoted as 𝐹, and its maximum value is 

computed. This process was iterated until convergence was 

achieved. A fixed value of 0.015 serves as the convergence 

criterion for differences in fitness. 

4. RESULTS AND DISCUSSION  

4.1 Test cases  

4.1.1 Initial and Refined Meshes for Circular 

Case  

In the case of a circular domain, figure 5 shows an initial mesh 

using the Delaunay triangulation. A red-edged circle encloses 

the entire figure, while the interior comprises triangular 

elements joined by blue lines. These triangles are formed to 

maximize the mesh quality, with no point inside the 

circumcircle of any triangle. The mesh includes 144 nodes and 

254 elements, and this structured approach also guarantees 

effective numerical computation used in finite element 

modeling, especially in applying partial differential equations 

on circular domains. It is also observed that the triangulation is 

fairly uniform and consistent, which indicates a relatively 

balanced distribution of computational precision and 

performance.  

 
Fig. 5 An initial mesh using the Delaunay triangulation for 

the regular circular domain 

  

Figure 6 represents a refined Delaunay triangulation of a 

circular domain obtained using genetic algorithm-based 

refinement. Compared to the initial mesh, this refined mesh is 

denser and has a finer triangulation to address precision issues 

in computational. More precisely, the refined mesh includes 

541 nodes and 1016 triangles; their quantity is much higher in 

the circle region, thereby improving the resolution in that area. 

This refinement enhances element quality and distribution to 

simulate the exactness needs of finite element analysis in 

electromagnetic structures. GA-based refinement involves 

repeating the optimization process to score better triangle 

shapes and guarantee adherence to the Delaunay criteria to 

avoid forming poorly shaped elements. This makes the process 

robust in applications, particularly where there is a need for 

higher-resolution results regarding the boundary condition or 

gradients within the domain.  
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Fig. 6 A refined mesh using the GA for the regular 

circular domain 

  

4.1.2 Electric Potential Solution for the 

Circular Domain  
In electrical influences, Figure 7 shows the electric potential 

(V) and the vector field of electric potential (E) inside a circular 

region. The potential is displayed with a high-to-low gradient 

color, while the color bar on the right contains quantitative 

reference values. The electric field vectors are represented by 

red arrows going out of the plain from the region inside the 

circle. These arrows point to the direction and approximate 

intensity of the electric field. A relatively smooth electric 

potential variation was observed within the circular domain, 

where the concentric circles represent equipotential lines in the 

present electric field distribution.  

 
Fig. 7 Distribution of the electric potential on a circular 

potential 

4.2 Patch Antenna  

  
Figure 8 shows the patch antenna, which is T-shaped, on a 

dielectric element before the meshing was built in MATLAB. 

The patch was modeled by loading the CSV Excel file 

containing the nodes and edges of the patch antenna in 

MATLAB to define its domain.   

 

Fig. 8 Patch domain of the antenna element geometry 

The initial mesh generation patch antenna problem domain was 

applied to the domain both inside and outside, as depicted in 

Figure 9.  A total of 277 Delaunay triangles were obtained on 

the outer dielectric domain and 101 Delaunay triangles in the 

inner patch of the element. The mean aspect ratio for the 

antenna patch domain Delaunay triangle was 0.2439, while 

that of the dielectric was 0.4568.  

 
Fig. 9 Initial mesh generation of Delaunay triangles for the 

antenna and dielectric domains 

The Genetic Algorithm (GA) refined the initial Delaunay 

mesh. Using the fitness function, the GA was utilized in the 

discretization and optimization process to adjust the positions 

of nodes within poorly formed Delaunay triangles. The 

enhancement in the mesh quality depended on the triangles' 

aspect ratio. Figures 10 and 11 show the refined mesh obtained 

for the patch antenna and dielectric element domains. The 

number of triangles for the patch domain increased to 403, 

while that of the dielectric domain increased to 407.  



International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.52, November 2024 

21 

 

Fig. 10 Refined mesh for the antenna patch domain 

 

Fig. 11 Refined mesh for the dielectric domain 

The application of genetic algorithms led to an increase in the 

number of triangles. Figures 12 and 13 show more triangles 

generated through refinement than the initial Delaunay 

triangles. Subsequently, there are more refined triangles with 

higher aspect ratios than those with lower aspect ratios. 

Following the refinement process, the fitness values for most 

triangles have shifted from a range of 0.1 to 0.50 to an 

improved range of 0.60 to 1.0.    

 

Fig. 12 The number of triangles against the aspect ratio 

for antenna patch domain 

 

Fig. 13 The number of triangles against the aspect ratio 

for the dielectric domain 

During the refinement process, the nodes were shifted to 
improve the fitness value of the Delaunay triangles. Figure 14 

shows the improved aspect ratio of triangles, with the peak 
increasing from approximately 0.34 to 0.7.  These peaks 

correspond to equilateral triangles or those whose node angles 

approach 60 degrees.   

 
Fig. 14 Plot of aspect ratio against the  

the nodal angle of the triangles in the refined mesh 

 The graph in Figure 15 displays the solution to a PDE of the 

antenna patch domain. The color represents the scalar field V, 

with a color bar indicating the value range from 0 to 3.5×10^7 

volts per meter. The contour lines show the distribution of 

scalar field V, while red arrows indicate the vector field E, 

demonstrating the direction and magnitude of the electric field. 

The plot shows how V and E vary within the defined geometry, 

highlighting the areas of high intensity at the excitation point 

and the vector field's flow direction.  
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Fig. 15 Electric field excitation 

This graph in Figure 16 illustrates the magnetic field 
distribution following the Delaunay GA triangulation. The 

refined mesh ensured accurate solutions for the magnetic field 
analysis. The color gradient on the graph represents the scalar 

potential A of the magnetic field, ranging from 0 to 1000 T. 
Contour lines illustrate the distribution and intensity of this 

scalar potential, with denser lines indicating regions of higher 
potential. Additionally, red arrows depict the magnetic flux 

density B, showing the direction and magnitude of the 

magnetic field within the geometry. This visualization 
effectively demonstrates how the magnetic field is distributed 

and oriented, highlighting the impact of the shapes and 

boundaries on the magnetic field's behavior.  

 

 

Fig. 16 Magnetic field distribution 

 

5. CONCLUSION 
This paper introduced an unstructured triangular grid 

generation and refinement algorithm for arbitrary two-

dimensional regions. The mesh generation method was rooted 

in a modified Delaunay triangulation procedure complemented 

by a set of heuristic rules, ensuring the efficient triangulation 

of intricate areas. During triangulation, emphasis is placed on 

prioritizing the smallest angle between adjacent segments. 

These heuristics are strategically devised to mitigate common 

triangulation challenges, including front overlapping, 

intersection, and proximity of neighboring triangles. 

Furthermore, the algorithm employs an efficient branching 

strategy for triangle construction and selection. A fast 

permutation algorithm is incorporated to establish connectivity 

within the triangular grid, which is necessary for the Delaunay 

triangulation algorithm and post-processing. The results 

confirm the algorithm's capability to generate triangles for 

complex two-dimensional regions.   

The paper also details a refinement algorithm for optimizing 

the mesh quality. This optimization process consists of two 

steps: first, diagonal swapping based on triangle aspect ratios, 

and second, the utilization of a floating-point genetic algorithm, 

offering greater flexibility than traditional binary genetic 

algorithms. Three approaches are explored for function 

selection in the genetic algorithm, encompassing the least 

square error of angle variation, the average aspect ratio of 

triangles at each node in the grid, and a linear combination of 

both methods. The results unequivocally demonstrate 

substantial enhancements in the quality of the optimized grids 

and the effectiveness of the floating-point genetic algorithm, 

even in the context of non-convex regions.  

Future research may extend this methodology to the more 

intricate domain of three dimensions, aiming to establish 

smooth tetrahedral grids for 3D regions. Combining machine 

learning, artificial intelligence, and data science techniques can 

also be explored with mesh optimization to automate grid 

generation and refinement. Machine learning and artificial 

intelligence can help identify patterns and optimize grids more 

efficiently. Data science applications can facilitate data 

analysis, including dimensionality reduction, visualization, and 

clustering. 
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