
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.51, November 2024

Dynamic LLM Routing and Selection based on User
Preferences: Balancing Performance, Cost, and Ethics

Deepak Babu Piskala
Freshworks

Vijay Raajaa
Freshworks

Sachin Mishra
Freshworks

Bruno Bozza
Freshworks

ABSTRACT
With the widespread deployment of large language models (LLMs)
such as GPT-4 [12], BART [9], and LLaMA [5], the need for a
system that can intelligently select the most suitable model for
specific tasks—while balancing cost, latency, accuracy, and eth-
ical considerations—has become increasingly important. Recog-
nizing that not all tasks necessitate models with over 100+ bil-
lion parameters, we introduce OptiRoute, an advanced model rout-
ing engine designed to dynamically select and route tasks to the
optimal LLM based on detailed user-defined requirements. Op-
tiRoute captures both functional (e.g., accuracy, speed, cost) and
non-functional (e.g., helpfulness, harmlessness, honesty) criteria,
leveraging lightweight task analysis and complexity estimation to
efficiently match tasks with the best-fit models from a diverse array
of LLMs. By employing a hybrid approach combining k-nearest
neighbors (kNN) search and hierarchical filtering, OptiRoute opti-
mizes for user priorities while minimizing computational overhead.
This makes it ideal for real-time applications in cloud-based ML
platforms, personalized AI services, and regulated industries. [4]

General Terms
LLM Optimization, Benchmarks, Evaluation, Routing, Complexity-
estimation, Feedback, Domain Adaptation

Keywords
GPT4, Llama, Helpfulness, Honesty, Harmlessness, Latency,
Accuracy, Cost, kNN, Optiroute, , Domain, Model Merging,
Re-ranking, Fallback, Steerability, Instruction-following Ability,
MLaaS, Healthcare, Finance, Legal, Hallucinations, Grounding,
FLAN, BERT, BART

1. INTRODUCTION
The rapid advancement of large language models (LLMs) such as
GPT-4 [12], BART [9], and LLaMA [5] has significantly trans-
formed the field of natural language processing (NLP), enabling
sophisticated applications across various sectors including health-
care, finance, legal services, and customer support. These models,
with their vast number of parameters and deep learning architec-
tures, have demonstrated state-of-the-art performance in tasks rang-
ing from text generation and translation to sentiment analysis and
complex multi-turn dialogues. However, their deployment in real-
world applications presents substantial challenges that limit their

accessibility and efficiency, particularly for organizations with con-
strained resources.

With Huggingface [14] hosting over 486,000 foundational and
fine-tuned models, and more than 1,000 new models added daily,
the challenge of discovering the right model for a specific task has
become increasingly complex. This vast and rapidly growing repos-
itory caters to a wide range of domains, accuracy levels, architec-
tures, and tasks. However, only a small percentage of trending or
popular models are effectively utilized, leaving the vast majority
of models underexplored and underutilized. This underscores the
critical need for advanced systems that can intelligently navigate
this immense landscape, ensuring that the most suitable models are
identified and deployed based on user-specific criteria and task re-
quirements

One of the primary challenges associated with deploying
LLMs is the high computational cost and resource demand they
impose. Running models with hundreds of billions of parameters
requires significant processing power, leading to increased latency
and operational expenses, especially in cloud-based environments
where compute resources are billed by usage. This is particularly
problematic for applications requiring real-time or near-real-time
responses, such as interactive chatbots, automated trading systems,
or autonomous vehicles, where even slight delays can be detri-
mental. Additionally, the one-size-fits-all approach commonly em-
ployed in deploying LLMs—where a single, often overpowered
model is used for all tasks—fails to account for the varying com-
plexities of different tasks. Not all tasks necessitate the full power
of models with over 100 billion parameters; simpler tasks could be
effectively handled by smaller, more cost-efficient models, thereby
reducing unnecessary resource consumption.

Beyond technical and cost considerations, the ethical deploy-
ment of AI has emerged as a critical concern. As LLMs are increas-
ingly integrated into applications that directly interact with humans,
ensuring that these models behave in ways that are honest, harm-
less, and helpful [1] is paramount. The lack of mechanisms to incor-
porate ethical considerations into model selection can lead to sig-
nificant risks, including the propagation of biased or harmful con-
tent, erosion of user trust, and potential regulatory repercussions.
Current systems often overlook these ethical dimensions, focusing
primarily on performance metrics like accuracy or speed,without
addressing how the outputs align with broader societal values and
norms.

To address these multifaceted challenges, we introduce Op-
tiRoute, a novel model routing engine designed to optimize the
deployment of LLMs by dynamically selecting and routing tasks to

1

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.51, November 2024

Fig. 1: OptiRoute Architecture: (i) Captures user-defined functional and non-functional requirements to tailor the system’s response. (ii)
Analyzes task complexity through a lightweight Task Analyzer, generating a task vector that is used for model selection. (iii) Employs a
kNN-based Routing Engine to match tasks with the optimal LLM from a diverse model repository eval (MRES), followed by real-time
inference execution and a feedback loop to refine future selections. The entire process ensures efficient, ethical, and cost-effective LLM
deployment tailored to user needs

the most appropriate model based on detailed user-defined require-
ments. OptiRoute captures both functional requirements—such as
accuracy, speed, and cost—and non-functional requirements, in-
cluding ethical considerations like helpfulness, harmlessness, and
honesty [1]. By tailoring the model selection process to the spe-
cific needs of each task and user, OptiRoute ensures that the cho-
sen model not only meets performance expectations but also aligns
with ethical standards.

OptiRoute operates through a hybrid approach that integrates
lightweight task analysis and complexity estimation with a k-
nearest neighbors (kNN) search mechanism. Initially, the system
analyzes the incoming task to determine its type, domain, and com-
plexity, generating a task vector that encapsulates these characteris-
tics. This task vector is then used in conjunction with user-defined
preferences to search the Model Repository and Evaluation Store
(MRES), an in-memory vector database that houses a diverse array
of pre-evaluated models, ranging from low-cost, open-source alter-
natives to high-performance, proprietary LLMs. The kNN-based
Routing Engine leverages this database to identify the optimal
model for the task, balancing the trade-offs between cost, perfor-
mance, and ethical considerations.

This dynamic routing and selection process offers several key
advantages. First, by selecting models based on the specific com-
plexity of the task, OptiRoute minimizes unnecessary computa-
tional overhead, reducing latency and cost. Second, the system’s
ability to integrate user preferences and ethical criteria into the

model selection process ensures that the deployed AI behaves in
a manner consistent with user expectations and societal norms.
Third, the inclusion of a feedback loop, where user feedback on the
output quality is used to refine future model selections, enables con-
tinuous optimization and adaptation of the system, further enhanc-
ing its reliability and effectiveness. Fig 1 shows the architecture of
the proposed system. In the next few sections, we deep-dive into
the individual components and end-to-end orchestration of the sys-
tem. We also cover use-cases and potential extensions of this work
both from a research and applied perspective. Finally, we show the
potential benefits of deploying these systems at an enterprise level
ML platform at Freshworks called Freddy ML.

2. APPLICATIONS OR USE-CASES
—Cloud-Based Machine Learning Platforms (MLaaS): Op-

tiRoute can be integrated into MLaaS platforms like AWS,
Google Cloud, or Azure to optimize the selection and deploy-
ment of LLMs based on user-specific criteria such as cost, la-
tency, accuracy, and ethical considerations. This ensures efficient
resource utilization, reduces operational costs, and enhances the
performance and reliability of AI services in the cloud, partic-
ularly for applications like chatbots that require balancing high
accuracy with budget constraints.

—Personalized AI Services: In personalized AI services such as
recommendation engines, virtual assistants, and targeted mar-

2

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.51, November 2024

keting, OptiRoute can tailor model selection to align with in-
dividual user preferences. By dynamically routing tasks to mod-
els that meet specific needs—whether prioritizing speed, accu-
racy, or privacy— OptiRoute enhances user satisfaction, engage-
ment, and delivers a more personalized and effective interaction
in consumer-facing applications. [16]

—Regulated Industries (Healthcare [11], Finance [17] [18], Le-
gal [10]): OptiRoute is ideal for regulated industries like health-
care, finance, and legal services, where accuracy, security, and
ethical compliance are paramount. It can route tasks such as
medical diagnostics or financial trading to models optimized for
high accuracy and regulatory compliance, while also ensuring
ethical AI behavior, thereby improving the reliability of critical
applications and mitigating risks associated with unethical prac-
tices.

—Data Annotation and Labeling for AI Training: In AI training
processes that require large volumes of labeled data, OptiRoute
can optimize data annotation platforms by routing tasks to mod-
els best suited for specific types of data (e.g., text, images, video)
and label accuracy requirements. Simple annotation tasks might
be handled by fast, cost-effective models, while more complex or
ambiguous cases can be routed to models with higher accuracy
and deeper understanding, thereby enhancing the efficiency and
accuracy of data labeling processes and reducing the time and
cost needed to produce high-quality training data for AI models

3. SYSTEM DESIGN ARCHITECTURE
OptiRoute offers two distinct modes of operation—batch and inter-
active—each tailored to different user needs and operational con-
texts. In batch mode, users submit a collection of queries along
with their preferred optimization criteria, such as cost, speed, or
accuracy. To optimize efficiency, OptiRoute samples a small per-
centage (typically 2the queries to determine the most suitable large
language model (LLM) that can effectively handle the entire batch.
This mode is particularly effective when dealing with large volumes
of relatively homogeneous queries, as it minimizes computational
overhead by avoiding the need for individual query assessments,
making it ideal for offline processing or scheduled tasks.

On the other hand, interactive mode is designed for realtime
query assessment, where each query is individually analyzed and
routed to the best-suited LLM based on the user’s specified crite-
ria. This mode is ideal for scenarios requiring immediate and pre-
cise responses, such as customer service bots or virtual assistants,
where the system must dynamically adapt to each unique query.
While interactive mode demands more computational resources, it
provides maximum flexibility and ensures that each query receives
a tailored response optimized for accuracy, latency, and other user-
defined factors.

The choice between batch and interactive modes allows users
to balance the need for efficiency with the requirement for real-time
precision, depending on their specific application. Batch mode ex-
cels in processing large volumes of similar queries efficiently, while
interactive mode offers superior adaptability and responsiveness for
dynamic, userfacing applications. This flexibility ensures that Op-
tiRoute can cater to a wide range of operational scenarios, from
large-scale data processing to real-time AI interactions

3.1 User Preferences
Let us try to define “user” and “preferences” in detail. Prefer-
ences can be classified as being either explicit (i.e mentioned by
user) or implicit (i.e unsaid but expected behavior from user). Ex-

plicit preferences include ability to provide scores from 0 (low) to
1(high) for functional requirements like accuracy, speed, cost and
non-functional requirements like helpfulness, honesty and harm-
lessness. We use a lightweight task analyzer to determine task-type
and query complexity, which can be considered as unsaid prefer-
ences by the user but automatically inferred from the query. Fig
2 shows the exhaustive list of preferences that can be specified or
inferred from the user. The user in this context could assume multi-

Explicit Implicit
Accuracy Task-type
Latency Complexity

Cost Domain
Harmlessness

Honesty
Helpfulness
Steerability
Creativity

Table 1. : User Preferences

ple roles (i) end-user i.e one who submits a query to MLaaS cloud
provider or (ii) Admin who configures this for a cohort of users or
batch, who could be an AI engineer or MLE. We expect an average
end-user to be not fully aware of the all knobs and sliders exposed
in optiroute, hence from an UX perspective we also offer profiles
which encapsulate complex combinations of settings to easily re-
latable user preferences. A few examples of such a profile include
“cost-effective”, “ethically-aligned”, “latency-first”, etc.

3.2 Task Analyzer
Task Analyzer is a low-footprint ML model (400M autoregressive
encoder-decoder language model like FLAN-T5 [2]) that is instruc-
tion fine-tuned (IFT) to predict implicit preferences and character-
istics of query at run-time for efficient routing based on user pref-
erences. The output of the LLM is a structured json with fields that
predict (i) task type (ii) domain and (iii) complexity and can be
extended to add more tasks. The data for fine-tuning is collected
through a mix of supervised and synthetic techniques like self-align
and self-instruct. We use the query logs of a production MLaaS
cloud provider to label a random sample of N queries through a
combination of human annotations and semi-supervised learning
(SSL). To further optimize the latency of the task analyzer model,
we consider quantization techniques like reducing precision to 4-
bit or 8-bit [19] that reduces memory and compute demands. An-
other optimization we consider owing to quadratic complexity of
response time as a function of input token, we consider custom
pruning logic in case of long queries. Since the query word count
could vary widely from few 50 words to 10K+ words with large
context blobs, we consider pruning the long query text to only con-
sider the first n and last n words which usually contains the task
description like ‘find the sentiment of the passage‘ and random
sample sentences or words from the middle portion of query. Fig
3 shows the json response for a sample query for a sentiment anal-
ysis task.

3.3 Model Registry Evaluation Store (MRES)
The Model Registry and Evaluation Store (MRES) is a critical com-
ponent of the OptiRoute system, serving as the centralized reposi-
tory where all available models are stored, evaluated, and accessed

3

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.51, November 2024

during the model selection process. The MRES is designed to main-
tain a comprehensive inventory of large language models (LLMs),
including both proprietary and open-source models, each annotated
with a variety of performance and ethical metrics. This repository
not only stores the models themselves but also crucial metadata and
evaluation results that enable OptiRoute to dynamically route tasks
to the most appropriate model based on user-defined criteria and
task complexity.

At its core, the MRES functions as an in-memory vector
database, optimized for fast retrieval and efficient storage of model
information. Each entry in the MRES represents an individual
LLM, along with detailed metadata that describes the model’s ar-
chitecture, parameter count, performance across various bench-
marks, and other key characteristics. The evaluation data stored in
the MRES is comprehensive, covering a wide range of metrics that
are crucial for making informed model selection decisions. These
metrics include accuracy, inference time, cost per inference, ethical
considerations (such as helpfulness, harmlessness, and honesty),
security and privacy features, and reliability (e.g., uptime percent-
age).

Given that the metrics gathered during evaluation can vary
significantly in scale (e.g., accuracy as a percentage, cost in dol-
lars, inference time in milliseconds), a normalization process is em-
ployed to standardize these metrics. This normalization logic con-
verts each metric into a standard range of 0 to 1, enabling relative
comparisons across models. For instance, a model with the highest
accuracy might receive a normalized accuracy score of 1, while a
model with slower inference times might receive a lower score on
the speed metric. This standardized format allows the Routing En-
gine to easily compare models on a like-for-like basis, ensuring that
the most suitable model is selected according to the user’s explicit
and implicit preferences.

3.4 Routing Engine
The Routing Engine is a central component of the OptiRoute sys-
tem, responsible for dynamically selecting the most suitable large
language model (LLM) from the available catalog in the Model
Registry and Evaluation Store (MRES). This selection process is
driven by advanced techniques, including query embedding, ap-
proximate k-nearest neighbors (kNN) search, filtering, and scoring.
These methods ensure that each task is matched with the optimal
model based on user-defined requirements and the specific charac-
teristics of the task.

When a user submits a query, the Task Analyzer processes the
input to determine its type, domain, and complexity, resulting in the
generation of a task vector, also referred to as a query embedding.
This task vector is a numerical representation that encapsulates the
essential features of the task, such as the required accuracy, com-
plexity, domain specificity (e.g., legal, medical), and any ethical
considerations like harmlessness or honesty. The task vector serves
as the input for the Routing Engine, providing a compact and com-
putationally efficient way to represent the task in the context of
model selection. The Routing Engine then uses this vector to search
the MRES, an in-memory vector database that stores pre-computed
embeddings for all models in the catalog. Each model’s embedding
represents its capabilities across various metrics and task types, al-
lowing the system to compare and select models effectively.

To identify the most suitable models, the Routing Engine
employs an approximate k-nearest neighbors (kNN) search algo-
rithm within the MRES. Approximate kNN is chosen for its bal-
ance between search accuracy and computational efficiency, mak-
ing it ideal for real-time applications where quick decision-making

is crucial. The kNN search works by comparing the task vector
against the pre-computed model embeddings stored in the MRES,
identifying the top k models whose embeddings are closest to the
task vector. This proximity is determined based on the normalized
metrics stored in the MRES, such as accuracy, speed, cost, and eth-
ical considerations, ensuring that the selected models are the best
candidates for handling the specific query.

After the top k models are identified through the kNN search,
the Routing Engine applies additional filtering and scoring mech-
anisms to further refine the selection process. The initial filtering
process ensures that only models relevant to the specific task type
are considered. For example, if the task involves legal document
processing, models not specialized in legal NLP tasks are filtered
out, narrowing the candidates to those with demonstrated expertise
in the relevant domain. Further filtering is applied based on domain
specificity, ensuring that only models tagged in the MRES as partic-
ularly effective in the required domain are retained. Following this,
the remaining models are scored based on their normalized metrics,
with weights assigned according to the user’s explicit preferences.
This scoring system ensures that the model most aligned with the
user’s priorities is selected, balancing performance with resource
efficiency.

In scenarios where no exact matching model is
found—perhaps due to a highly specialized or novel task—the
Routing Engine is designed to handle such cases through fallback
mechanisms. The system may resort to using generalist models,
which are versatile LLMs capable of handling a wide range of
tasks with reasonable performance. Alternatively, the Routing
Engine might expand the kNN search to include models that,
while not exact matches, still exhibit a relatively high degree of
alignment with the task vector. These fallback models provide
the best available options under the circumstances, ensuring that
the task can still be effectively processed. In cases where only
fallback models are available, the system can notify the user,
allowing them to adjust their preferences or provide additional
input to refine the search. The system can also adapt by learning
from these scenarios, improving future model selections as the
MRES database evolves. The Routing Engine relies on a distance
metric to evaluate the similarity between the task vector and
the pre-computed model embeddings stored in the MRES. The
most commonly used distance metric in this context is the cosine
similarity, which measures the cosine of the angle between two
non-zero vectors in a multi-dimensional space. Cosine similarity
is particularly well-suited for comparing high-dimensional vectors
like those used in task embeddings because it focuses on the
orientation of the vectors rather than their magnitude, making
it robust against variations in scale across different metrics. In
the context of OptiRoute, the cosine similarity metric is used to
calculate the distance between the task vector and each model’s
embedding. The model with the lowest cosine distance—indicating
the smallest angle and therefore the greatest similarity between the
task requirements and the model’s capabilities—is selected as the
optimal model. This approach ensures that the model chosen is
the one most aligned with the specific characteristics and demands
of the task, providing a precise and reliable method for model
selection.

3.5 User Feedback and Inference Engine
The inference engine in OptiRoute is responsible for executing the
selected model on the user’s query and delivering the final output.
This process is crucial as it represents the final step in the model se-
lection and task routing workflow, ensuring that the chosen model

4

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.51, November 2024

Fig. 2: This diagram illustrates the task complexity analysis and embedding generation process in the OptiRoute system. Two sentiment
analysis tasks with varying complexities are analyzed by a Task Analyzer. Task T1, categorized as low complexity (0.2), involves a straight-
forward, positive sentiment, while Task T2, a high complexity task (0.8), contains sarcasm and more nuanced sentiment within the “Food
Beverages” domain. The Task Analyzer generates query embeddings based on both explicit preferences (e.g., accuracy, cost, latency, hon-
esty) and implicit preferences inferred from the task itself, helping to dynamically route the tasks to the most appropriate LLMs that align
with the user’s functional and non-functional requirements

Fig. 3: This diagram illustrates the cosine distance-based model selection
process in the OptiRoute system. The query vector (Q) is represented in a
latent space along with multiple pre-evaluated models (M1, M2, M4, M8).
The cosine distance between the query and each model’s embedding is cal-
culated, with the smaller angle indicating a closer match. In this example,
model M2 has the smallest cosine distance to the query, making it the most
suitable choice, as shown in the ranking bar chart. Only two dimensions of
the full latent space are shown for illustration purposes

performs the task according to the specified user preferences. How-
ever, the efficacy of this system does not end with the inference; it
is further enhanced by incorporating user feedback into the routing
policy, enabling continuous improvement of the model selection
process.

User feedback, typically captured through mechanisms such
as thumbs up or thumbs down, plays a pivotal role in refining the
routing policy. After the inference engine delivers the output, users
are encouraged to provide feedback on the quality and relevance of
the results. A thumbs-up indicates that the output met or exceeded
the user’s expectations, confirming that the selected model was ap-
propriate for the task. Conversely, a thumbs-down signals that the
output was suboptimal, suggesting that the chosen model may not
have been the best fit for the query or that the model failed to align
with the user’s explicit or implicit preferences.

This feedback loop is instrumental in improving the rout-
ing policy over time. When the system receives positive feedback
(thumbs up), it reinforces the current model selection strategy, mak-
ing it more likely that similar queries in the future will follow the
same routing path. On the other hand, negative feedback (thumbs
down) triggers a review of the decision-making process. The sys-
tem can analyze the characteristics of the task vector, the chosen
model, and the resulting output to identify why the model under-
performed. This analysis might reveal that the model’s capabilities
did not match the task’s complexity, that the domain specificity was
inadequate, or that user preferences such as ethical considerations
were not fully met.

5

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.51, November 2024

4. RELATED WORK
Several recent studies have explored leveraging multiple large lan-
guage models (LLMs) for complex, multi-step tasks, most notably
HuggingGPT [13]. HuggingGPT utilizes multiple models from the
Hugging Face model repository to solve intricate tasks by invok-
ing different specialized models for subtasks. For example, in the
case of translating English audio to German, HuggingGPT first
uses an automatic speech recognition (ASR) model to transcribe
the speech, then a translation model to convert the text into Ger-
man, and finally a text-to-speech (TTS) model to generate audio in
German. While HuggingGPT focuses on decomposing tasks across
different models, our approach in OptiRoute is to similarly select
and route tasks to the most suitable LLM based on user preferences,
but with an emphasis on balancing functional and non-functional
requirements, such as cost, latency, accuracy, and ethical consider-
ations, without necessarily solving new tasks.

In terms of inference efficiency, the literature has increasingly
focused on reducing the computational overhead of LLMs during
inference. Techniques like model quantization [8], which reduces
the precision of the model weights to lower memory usage and
speed up computations, have been widely adopted. These meth-
ods directly align Dynamic LLM Routing and Selection Based on
User Preferences with our goal of minimizing computational costs
in realtime model selection, making them integral to OptiRoute’s
efficiency optimizations.

Another related line of research includes parameter-efficient
fine-tuning methods such as LoRA [7] and qLoRA [3], which
reduce the number of trainable parameters during finetuning by
applying low-rank adaptations to pre-trained models. These tech-
niques enable faster fine-tuning with less computational cost, a
strategy that complements OptiRoute’s focus on selecting models
based on resource constraints and task complexity.Approaches such
as model averaging and model soups [15], where multiple fine-
tuned models are combined by averaging their weights, have also
gained traction in improving generalization performance across di-
verse tasks. This idea resonates with OptiRoute’s objective to dy-
namically route tasks to the most appropriate models from a diverse
repository of LLMs, which may involve averaging models to meet
user-specified criteria.

Knowledge distillation [6] is another relevant area that deals
with compressing large models into smaller, more efficient versions
without significant loss in performance. By transferring knowledge
from a large “teacher” model to a smaller “student” model, the dis-
tillation process enables efficient inference in resource-constrained
environments. This concept parallels our goal of optimizing model
selection to strike a balance between cost, accuracy, and latency,
particularly for simpler tasks that do not require the full capacity of
the largest LLMs. Finally, sparse mixture of experts (MoE) mod-
els propose another avenue for dynamic and efficient model rout-
ing. By activating only a subset of model experts for each task,
MoEs can dramatically reduce the computation needed for infer-
ence while maintaining high accuracy. While OptiRoute doesn’t
directly implement sparse MoE models, the underlying principle
of activating models selectively based on task complexity is akin to
our model routing mechanism.

To the best of our knowledge, no prior work has explored the
personalization of LLM routing based on both functional and non-
functional requirements—such as accuracy, cost, latency, and eth-
ical dimensions—while dynamically optimizing trade-offs across
over 10 parameters, including helpfulness, steerability, and halluci-
nation risk. OptiRoute stands out by introducing a hybrid task anal-
ysis and routing engine that integrates user-defined preferences to

ensure efficient and personalized model selection, optimizing LLM
deployment in real-world applications.

5. FUTURE DIRECTIONS
A promising future direction for OptiRoute is the development of
a capability to merge models in cases where no existing model
fully meets the user-specified criteria. When the system encounters
a scenario where no single model perfectly aligns with the user’s
requirements—whether due to limitations in accuracy, speed, cost,
or ethical considerations— OptiRoute could dynamically generate
a new model by merging the weights of multiple individual models
that each partially meet the criteria. This approach would involve
selectively combining the strengths of different models, effectively
creating a hybrid model tailored to the specific task at hand. For
example, if one model excels in accuracy but is costly, and an-
other is cost-efficient but less accurate, OptiRoute could merge
their respective weights to achieve a balance that better aligns with
the user’s needs. This process, which could leverage techniques
from model ensembling, transfer learning, and low-rank adaptation
(LoRA), would enable the creation of novel models on-the-fly, ex-
panding the system’s flexibility and capability to deliver highly cus-
tomized solutions even in complex, multi-faceted scenarios where
pre-existing models fall short.

6. REFERENCES

[1] Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep
Ganguli, Tom Henighan, Andy Jones, Nicholas Joseph, Ben
Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds,
Danny Hernandez, Jackson Kernion, Kamal Ndousse, Cather-
ine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam
McCandlish, Chris Olah, and Jared Kaplan. A general lan-
guage assistant as a laboratory for alignment. arXiv preprint
arXiv:2112.00861, December 2021.

[2] Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shix-
iang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen,
Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin
Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra,
Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob De-
vlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
Scaling instruction-finetuned language models, 2022.

[3] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke
Zettlemoyer. Qlora: Efficient finetuning of quantized llms.
arXiv preprint arXiv:2305.14314, May 2023.

[4] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alis-
tarh. Gptq: Accurate post-training quantization for generative
pre-trained transformers, 2023.

[5] Aaron Grattafiori, Abhimanyu Dubey, and Abhinav Jauhri et.
al. The llama 3 herd of models, 2024.

[6] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, March 2015.

[7] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, October 2021.

6

International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.51, November 2024

[8] Renren Jin, Jiangcun Du, Wuwei Huang, Wei Liu, Jian Luan,
Bin Wang, and Deyi Xiong. A comprehensive evaluation of
quantization strategies for large language models, 2024.

[9] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-
jad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov,
and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461, October
2019.

[10] Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris
Cheng, Nathaniel Pinckney, Rongjian Liang, Jonah Al-
ben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayrak-
taroglu, Bonita Bhaskaran, Bryan Catanzaro, Arjun Chaud-
huri, Sharon Clay, Bill Dally, Laura Dang, Parikshit Desh-
pande, Siddhanth Dhodhi, Sameer Halepete, Eric Hill, Ji-
ashang Hu, Sumit Jain, Ankit Jindal, Brucek Khailany,
George Kokai, Kishor Kunal, Xiaowei Li, Charley Lind,
Hao Liu, Stuart Oberman, Sujeet Omar, Ghasem Pasandi,
Sreedhar Pratty, Jonathan Raiman, Ambar Sarkar, Zhengjiang
Shao, Hanfei Sun, Pratik P Suthar, Varun Tej, Walker Turner,
Kaizhe Xu, and Haoxing Ren. Chipnemo: Domain-adapted
llms for chip design, 2024.

[11] Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang,
Hoifung Poon, and Tie-Yan Liu. Biogpt: Generative pre-
trained transformer for biomedical text generation and min-
ing. Briefings in Bioinformatics, 23(6):bbac409, November
2022.

[12] OpenAI. Gpt-4 technical report. March 2024.
[13] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weim-

ing Lu, and Yueting Zhuang. Hugginggpt: Solving ai tasks
with chatgpt and its friends in hugging face. arXiv preprint
arXiv:2303.17580, December 2023.

[14] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Trans-
formers: State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771, July 2020.

[15] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S. Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon
Kornblith, and Ludwig Schmidt. Model soups: averaging
weights of multiple fine-tuned models improves accuracy
without increasing inference time, 2022.

[16] Stanisław Woźniak, Bartłomiej Koptyra, Arkadiusz Janz,
Przemysław Kazienko, and Jan Kocoń. Personalized large
language models, 2024.

[17] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark
Dredze, Sebastian Gehrmann, Prabhanjan Kambadur, David
Rosenberg, and Gideon Mann. Bloomberggpt: A large lan-
guage model for finance, 2023.

[18] Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang.
Fingpt: Open-source financial large language models, 2023.

[19] Shih yang Liu, Zechun Liu, Xijie Huang, Pingcheng Dong,
and Kwang-Ting Cheng. Llm-fp4: 4-bit floating-point quan-
tized transformers. pages 592–605, 2023.

7

	Introduction
	Applications or Use-cases
	System Design Architecture
	 User Preferences
	 Task Analyzer
	 Model Registry Evaluation Store (MRES)
	 Routing Engine
	 User Feedback and Inference Engine

	Related Work
	Future Directions
	References

