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ABSTRACT  
The skin, as the largest and one of the most vital organs of the 

human body, acts as a protective barrier between internal 

organs and the external environment. It performs several 

crucial functions, including protection, regulation, and 

sensation. When skin cells undergo genetic mutations, they can 

grow and multiply uncontrollably, leading to the formation of 

malignant tumors and, ultimately, the development of skin 

cancer. The primary cause of skin cancer is prolonged exposure 

to ultraviolet (UV) radiation from the sun or artificial sources 

like tanning beds, which damages the DNA in skin cells and 

promotes the growth of cancerous cells. Studies indicate that 

by the age of 70, one in five Americans will develop skin 

cancer, with more than two individuals succumbing to the 

disease every hour. However, early detection of skin cancer 

significantly improves the chances of successful treatment and 

recovery. Although numerous classification algorithms have 

been proposed in recent years to detect various stages of skin 

cancer, many still suffer from limited accuracy and high 

implementation complexity. In this project, we present a 

modified CNN-based skin cancer classification model utilizing 

six distinct architectures: VGG19, DenseNet201, InceptionV3, 

Xception, ResNet152, and MobileNetV2. These models were 

trained and evaluated using the HAM10000 dataset (Human 

Against Machine with 10,000 labeled training images). Our 

results demonstrate that DenseNet201 outperforms all other 

CNN architectures, achieving an accuracy of 97% along with 

the highest precision, recall, and F1-score. A comparative 

analysis of these models is also provided to highlight their 

performance differences. 

Keywords  
Skin Cancer, CNN Architectures, and Classification 

Algorithms.  

1. INTRODUCTION 

Skin cancer happens when skin cells develop and duplicate in 

an undisciplined and chaotic manner. Regularly, a skin cell 

develops, when the existing cells become old and die or when 

they become harmed. On the off chance that this interaction 

doesn't function as it ought to, a gigantic development of cells 

(some of them can be strange) results. The work of [1] and [2] 

mentions that this assortment of cells might be harmless (non-

cancer cells), which don't spread or inflict any kind of damage, 

or carcinogenic, which might spread to local tissue or different 

regions in our body if not identified early and treated. The 

development of skin cancer initiates in the epidermis, which is 

primarily composed of three types of cells: squamous cells, 

basal cells, and melanocyte cells, as shown in Figure 1. The 

thin, level cells that structure the top layer of the epidermis are 

called squamous cells. The lowermost round cells are the Basal 

cells of the epidermis. Melanocytes shield further layers of skin 

from daylight by creating a brown pigment named melanin. 

When these cells experience inordinate ultraviolet (UV) beams 

from the sun, tanning beds, or sunlamps, the DNA changes 

incite influence the development of skin cells and in the end 

shape into skin cancer. In [3], three major types of skin cancer 

are discussed which are commonly engaged with squamous 

cells, basal cells and melanocytes and they are known as Basal 

Cell Carcinoma, Squamous Cell Carcinoma, and Melanoma. 

[3] 

  

Figure 1: Types of Skin Cancer  

Of a wide range of skin cancer growth, melanoma causes the 

most passing since it tends to spread to different pieces of the 

body which may principally incorporate fundamental organs. 

One of the deadliest and most threatening forms of cancer is 

Malignant Melanoma. Although only 4% of the population is 

affected by it, Malignant Melanoma is the reason of 75% of 

deaths caused by malignant skin cancer [4]. Assuming that 

melanoma is recognized or analyzed in its beginning phases, it 

tends to be relieved.   

If not detected early, Melanoma can expand deeper into the skin 

and even affect each part of our body. Then, at that point, it 

turns out to be extremely challenging to treat. Consequently, an 

early identification framework is required that can work within 

recognizing kinds of skin cancer or other skin issues, for 

example, harmless growths on the skin that look basically the 

same as skin malignant growth. Recently, Convolutional 

Neural Networks have been widely employed for various 

classifications, including the accurate identification of different 

types of skin cancer. In the classification of skin cancer 

growths, different CNN models have decisively outperformed 

skilled healthcare experts [6] The aim of this project is to build 

a model capable of categorizing skin lesion images into one of 

the seven classes available in the HAM10000 dataset using 

different deep neural network architectures. We used VGG19 

[7], InceptionV3 [8], Xception [9], MobileNetV2 [10], 

ResNet152 [11], and DenseNet201 [12] as the pre-trained base 

models. The models in this study were enhanced by adding 

extra convolutional and dense layers, along with activation 

functions to improve their performance. These modified 

models were trained on the HAM10000 dataset. Of all the 

models tested, DenseNet201 achieved the highest accuracy of 

97%. A comparative analysis revealed that our modified 
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models outperform the original versions. This paper is intended 

to serve as a valuable resource for future researchers in the field 

of skin cancer detection.  

2. RELATED WORKS  
All through ongoing years, scientists have invested significant 

effort to develop intelligent frameworks for cancer 

identification. In the medical field, Convolutional Neural 

Networks (CNN) has performed a crucial role in the detection 

and classification of images for various applications related to 

image processing. Here we referenced various research studies 

that utilize deep learning techniques for the classification of this 

cancer. 

In their study, Filali et al. [13] developed a model for 

identifying melanoma skin cancer by combining pre-trained 

and scratch Convolutional Neural Network models. Feature 

engineering was employed to eliminate irrelevant elements, 

and to remove artifacts, the Aujol model was used to 

decompose the image and identify the object's contour. The 

'Otsu' algorithm was then used to segment the new object for 

input into the neural network. The authors reported a high level 

of accuracy, achieving 87.8% precision using the PH2 dataset.  

Saket S. Chaturvedi et al. [3] performed fine-tuning of more 

than seven classes of the HAM10000 dataset. HAM10000 

dataset has a collection of 10,015 pictures isolated into training 

and validation sets each has 8,912 and 1,103 pictures 

separately. They conducted a comparative study to analyze the 

performance of five pre-trained convolutional neural networks 

(CNN) and ensemble models. To fine-tune the Xception model, 

a dense layer with the ‘Relu initiation capability is added with 

a seven-class yield softmax layer. They utilized the Adam 

enhancer with a 0.001 learning rate for quicker model 

improvement. They reported maximum accuracy of 93.20% 

among the set of models. They also proposed using the 

ResNeXt101 model for MCS cancer classification to gain 

higher accuracy. 

Sara Hosseinzadeh Kassani et al. [14] explored the discovery 

of melanoma utilizing different deep-learning networks using 

the HAM 10,000 dataset. The accuracy is 84%, 89%, and 90% 

achieved by AlexNet, VGGNet19, and VGGNet model16 

model respectfully. The most noteworthy accuracy in this study 

was 92% for ResNet50. 

Hossin et al. [15] utilize a diverse CNN approach with different 

regularization procedures named dropout batch normalization 

system for classifying dermoscopic images. Their proposed 

model recognized dangerous melanoma with 93.5% exactness 

utilizing a dataset of 3297 dermoscopic images. 

Dr.J. Abdul Jaleel et al. [16] represented an approach in which 

their system uses Image processing techniques and Artificial 

Intelligence for diagnosing skin cancer. Their system’s cancer 

identification process includes image filtering, image 

segmentation, extraction of features, and classification of test 

data using Artificial Neural Network (ANN). They also used 

Back-Propagation Neural (BPN) network along with ANN to 

categorize more accurately.  

Another modified method of segmentation has been presented 

in [17] which is a different approach to implementing the 

Convolutional Neural Network (CNN) algorithm. In this model 

CNNs were implemented for extracting features and ANNs 

were used in order to categorize the extracted features.   

3. METHODOLOGY  
The generalized model for skin cancer classification is 

illustrated in Figure 2. The HAM10000 dataset was used to 

train the models. Initially, dermoscopic skin cancer images 

were preprocessed to match the input dimensions required by 

the architectures used in this study. Following this, data 

augmentation techniques were applied to increase the volume 

of training data. Six pre-trained models were employed: 

VGG19, DenseNet201, InceptionV3, Xception, ResNet152, 

and MobileNetV2, each customized to meet the specific 

requirements of our study. 

The preprocessed and augmented dataset was then fed into 

these models for training. The training process involved fine-

tuning in two phases. In Phase A, only the fully connected layer 

was trained, while in Phase B, both the convolutional and fully 

connected layers were trained to further improve accuracy. The 

final prediction classified the input images into one of seven 

types of skin cancer: Actinic Keratosis, Melanocytic Nevi, 

Benign Keratosis, Melanoma, Vascular Lesions, 

Dermatofibroma, or Basal Cell Carcinoma. This process was 

repeated across all six modified CNN models. 

 
Figure 2: Proposed model for the skin cancer classification 

across multi-class. 

3.1 Dataset Description 
The dataset plays a crucial role in using any deep learning 

model as it serves as the foundation upon which the entire study 

is built. The dataset works as the source of information, 

observations, or measurements. To accomplish the research 

work, we used the HAM10000 dataset. The dataset 

encompasses with 10,015 skin lesion images of 7 classes: 

actinic keratosis, basal cell carcinoma, benign keratosis, 

dermatofibroma, melanocytic nevus, melanoma, and vascular 

lesion. The images were assembled over a time of 20 years. The 

images are accumulated by dermatoscopy instrument. The 

instrument is a combination of lenses that works as a magnifier 

that is used to capture the images of skin lesions. [18]  

The HAM10000 dataset has become a benchmark dataset for 
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evaluating the performance of skin cancer detection algorithms 

and comparing the accuracy and generalization capability of 

different approaches. From the table given below, it is pretty 

evident that the dataset is highly imbalanced, as more than two-

thirds of the images belong to the Melanocytic Nevi and a few 

to the Dermatofibroma and Vascular Lesion [19]. 

Table 1. HAM10000 Dataset Classes. 

Diagnostic 

category 

Abbreviation Number of 

images 

Type 

Actinic 

keratosis 

akiec 327 Benign or 

Malignant 

Basal Cell 

Carcinoma 

bcc 514 Malignant 

Benign 

Keratosis 

Lesions 

bkl  

1099 

Benign 

Dermatofibroma df 115 Benign 

Melanocytic 

Nevi 

mv 6705 Benign 

Melanoma mel 1113 Malignant 

Vascular Lesion vasc 142 Benign or 

Malignant 

 

3.2 Classification Models and Fine-Tuning  
Several CNN models have demonstrated great potential in 

cancer classification, particularly when working with large and 

complex datasets like medical images. Unlike traditional 

machine learning methods, which require manual feature 

extraction, deep neural networks can automatically extract 

features from images, making them ideal for image 

classification tasks. These models not only save time but also 

provide higher accuracy in medical image classification. As a 

result, we have utilized various CNN models to classify cancer 

cells.  

3.2.1 VGG19  
VGG16 consists of 16 layers, while VGG19 includes 19 layers. 

The basic architecture of VGG19 features 16 convolutional 

layers and 3 fully connected layers [7]. These convolutional 

layers are organized into five blocks, each utilizing 3×3 filters 

with a stride of 1 and padding of 1. These small filters capture 

intricate details in the images, while 2×2 max-pooling layers 

with a stride of 2 reduce the spatial dimensions of the feature 

maps, retaining the most critical information. The fully 

connected layers contain 4096 neurons each, followed by a 

final output layer with neurons matching the number of classes 

in the dataset. The small filters combined with the deeper 

architecture of VGG19 enable it to learn more complex features 

from input images. The architecture is designed to process 

input images of size 224×244 pixels. VGG19 was pre-trained 

on the ImageNet dataset, which includes over one million 

labeled images across more than a thousand categories. Due to 

its additional convolutional layers and a larger number of 

trainable parameters, VGG19 can handle more complex tasks 

than VGG16. 

 
Figure 3: VGG19 model architecture 

3.2.2 DenseNet201  
DenseNet201 is a deep neural network consisting of 201 layers 

and over 20 million parameters. The input first goes through a 

convolutional layer with a 7×7 filter and a stride of 2, followed 

by a 3×3 max-pooling layer. The architecture is organized into 

four dense blocks, each containing a different number of 

convolutional layers: 6, 12, 48, and 32 layers in dense blocks 1, 

2, 3, and 4, respectively. Within each dense block, every 

convolutional layer is connected to all preceding layers, 

allowing for the reuse of feature maps and more efficient 

learning. This connectivity results in a rich set of feature maps 

from the dense blocks. After each dense block, a transition 

layer is applied to down sample the feature maps, reducing their 

dimensionality. Once the feature maps pass through dense 

block 4, they are processed by a global average pooling layer 

with a 7×7 filter size. The final output is produced by a fully 

connected layer with a softmax activation function, providing 

the classification results. This architecture efficiently captures 

complex features and performs well in tasks involving large-

scale image data [12].  

 
Figure 4: DenseNet201 model architecture 

3.2.3 InceptionV3 
 Several modifications have been introduced to the 

architecture, such as factorizing convolutions into smaller 

convolutions and spatial factorization into asymmetric 

convolutions. For instance, instead of using a standard 3×3 

convolution, it can be replaced by a sequence of a 1×3 

convolution followed by a 3×1 convolution. This reduces the 

number of parameters and computational complexity while 

maintaining the same receptive field. Similarly, if a 3×3 

convolution is replaced by a 2×2 convolution, the parameter 

count will increase on a small scale compared to using 

asymmetric convolutions. 

Another key technique in InceptionV3 is grid reduction, which 

reduces the grid size to lower computational costs while 

preserving efficiency and maintaining important features in the 

network. Pooling operations, such as max-pooling or average-
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pooling, are commonly used for grid size reduction, enabling 

the architecture to process large-scale data more efficiently 

without compromising performance. 

 
Figure 5: InceptionV3 model architecture 

3.2.4 Xception  
The architecture is composed of several blocks of convolution 

layers and separable convolution layers which is followed by 

batch normalization. The input images go through three 

different parts of the models: the entry flow, the middle flow, 

and the exit flow [9]. 

I. Entry Flow: The Entry Flow handles the initial stages of 

processing the input images. It begins by passing the images 

through several standard convolutional layers. This is followed 

by two sets of depth wise separable convolutional layers, both 

incorporating residual connections. The first set of separable 

convolutions is responsible for extracting low-level features, 

while the second set captures more complex features from the 

input. Once these processes are completed, the output is fed 

into the middle flow for further processing. 

II. Middle Flow: The Middle Flow is made up of a series of 

depth wise separable convolutional layers, each connected via 

residual connections. These layers refine the feature maps 

received from the entry flow, extracting increasingly higher-

level features. Typically, the middle flow repeats eight times, 

though this number can vary depending on the desired depth of 

the network. The primary role of the middle flow is to enhance 

the model’s accuracy by learning complex patterns from the 

input data. After processing, the output is passed to the exit 

flow. 

 

 
Figure 6: Xception model architecture  

III. Exit Flow: The Exit Flow produces the final output of the 

network. It comprises a series of separable convolutional 

layers, followed by a global pooling layer and a fully connected 

layer. The separable convolutions in the exit flow continue to 

extract high-level features from the middle flow’s output, while 

the global pooling layer reduces the spatial dimensions of the 

feature maps, transforming them into a 2048-dimensional 

vector. Finally, the fully connected layer maps this feature 

vector to the corresponding output class labels. 

The Xception architecture is an advanced and efficient CNN 

model that has demonstrated superior performance compared 

to models like VGG-16, ResNet, and InceptionV3 in many 

classification tasks. Its use of depth wise separable 

convolutions reduces the computational burden while 

maintaining or improving accuracy. The incorporation of 

residual (skip) connections further enhances the model's 

training efficiency. These design choices make Xception a 

powerful and highly efficient architecture for image 

classification. 

3.2.5 ResNet152  
Residual Networks (ResNet) were introduced as a series of 

CNN models with similar architectures but varying depths. 

ResNet addresses the issue of degradation in deep neural 

networks using a residual learning unit, which includes an 

alternate connection that adds the original input to the 

network’s output, allowing for better gradient flow and 

avoiding performance degradation in deeper networks. 

The ResNet152 architecture consists of 152 convolutional 

layers. Its first layer applies 64 filters of size 7×7 with a stride 

of 2 to the input image. Following this, a 3×3 max-pooling layer 

reduces the spatial dimensions. 

The second layer has a central module made up of three sub-

layers: 

• The first sub-layer uses 1×1 filters with 64 channels, 

• The second sub-layer applies 3×3 filters with 64 

channels, 

• The third sub-layer uses 1×1 filters with 256 

channels. 

This module is repeated three times in the second layer. 

In the third layer, the central module follows the same structure 

but increases the size of the filters: 
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• The first sub-layer uses 1×1 filters with 128 channels, 

• The second sub-layer uses 3×3 filters with 128 

channels, 

• The third sub-layer uses 1×1 filters with 512 

channels. 

This module is repeated eight times in the third layer. 

In the fourth layer, the module expands further: 

• The first sub-layer applies 1×1 filters with 256 

channels, 

• The second sub-layer uses 3×3 filters with 256 

channels, 

• The third sub-layer uses 1×1 filters with 1024 

channels. 

This module is repeated 36 times, allowing for a deeper 

learning of features in this layer. These repeated modules with 

residual connections are key to preventing the vanishing 

gradient problem in deep networks, making ResNet152 highly 

efficient for complex tasks [11]. 

In the fifth layer of the ResNet152 architecture, the central 

module comprises three types of sub-layers: 

• The first sub-layer applies 1×1 filters with 512 

channels, 

• The second sub-layer uses 3×3 filters with 512 

channels, 

• The third sub-layer applies 1×1 filters with 2048 

channels to the feature maps. 

This module is repeated three times in the fifth layer, extracting 

deeper and more complex features from the data. After this, the 

output from the final convolutional layers undergoes global 

average pooling, reducing the feature maps to a fixed-size 

vector. Finally, a fully connected layer with a softmax 

activation function is used to predict the output class labels. 

This deep architecture, with its combination of repeated 

residual blocks and skip connections, allows ResNet152 to 

efficiently learn high-level features without suffering from the 

degradation problem common in deep networks. The 

architecture has proven highly effective in image recognition 

tasks. 

 

 

 
 Figure 7: ResNet152 model architecture 

3.2.6 MobileNetV2  
MobileNetV2 is used to build a lightweight deep neural 

network and is based on a streamlined architecture, developed 

by Google researchers. MobileNetV2 is built based on the 

original MobileNet architecture to introduce some new features 

that enhance the model’s accuracy and efficiency [20]. 
MobileNetV2 has 53 convolution layers, and these convolution 

layers are divided into two parts: 1x1 Convolution, and 3x3 

Depthwise Convolution. The two main components of 

MobileNetV2 are Inverted Residual Block and Bottleneck 

Residual Block [10]. Each block in MobileNetV2 is composed 

of three distinct layers: 

• The first layer is a convolutional layer with the 

activation function ReLU6, which helps prevent the 

issue of vanishing gradients while maintaining 

efficient computation. 

• The second layer is a depthwise convolution layer, 

also using ReLU6 as the activation function, which 

enables efficient filtering of the input feature maps 

with fewer parameters. 

• The third layer is a pointwise convolutional layer, 

applied without activation (no non-linearity), 

allowing for the combination of the filtered features. 

MobileNetV2 improves upon MobileNetV1 and ShuffleNet 

by enhancing accuracy while reducing computational cost. The 

architecture’s use of inverted residuals and linear 

bottlenecks allows for better efficiency in mobile and 

resource-constrained environments. Additionally, its 

customizable nature makes it adaptable to specific 

requirements, contributing to its reputation as a highly 

powerful and efficient CNN architecture for a wide range of 

tasks. 

 
Figure 8: MobileNetV2 basic model architecture  

3.2.7 Fine-tuned all the models  
Fine-tuning is a transfer learning approach where a pre-trained 

neural network is used as a foundation for a new model. The 

weights of the pre-trained network are adjusted to suit a specific 

task. This method leverages pre-trained weights, which capture 

essential image features, allowing the model to learn more 

effectively and achieve higher accuracy with less training data. 

For our project, we applied pre-trained CNN models trained on 

the ImageNet dataset and customized architectures including 

VGG19, DenseNet201, InceptionV3, Xception, ResNet152, 

and MobileNetV2 to enhance performance through fine-

tuning. 

Customization of Architectures for Fine-Tuning: 

• Pre-trained CNN as the base layer: We used the 

pre-trained CNN models as the first layer of our 

custom model. 

• Flatten Layer: After the CNN layers, we added a 

Flatten layer to convert the CNN's output into a one-

dimensional feature vector, enabling it to pass 
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through the dense layers. A Dropout layer with a rate 

of 0.25 was added to reduce overfitting. 

• Dense Layers: Two dense hidden layers were added, 

with 512 and 128 neurons, respectively. Both layers 

used a ReLU activation function and were followed 

by BatchNormalization layers to stabilize the 

network. Another Dropout layer with a rate of 0.46 

was included to prevent overfitting. 

• Output Layer: Finally, an output layer was added 

using a Dense layer with a softmax activation 

function for multi-class classification. 

Fine-Tuning Process: 

The fine-tuning was executed in two phases: 

a) Training the Fully Connected Layers: 

In the first phase, we trained only the fully connected layers of 

the model, keeping the pre-trained convolutional layers frozen. 

The model was compiled using the sparse categorical cross-

entropy loss function and the Adam optimizer. A checkpoint 

was set to save the best weights based on validation loss during 

this phase. 

b) Fine-tuning the Entire Network: 

In the second phase, the entire pre-trained network was fine-

tuned. The convolutional layers, previously frozen, were made 

trainable, and the model was recompiled with a lower learning 

rate to avoid significant weight changes in the pre-trained 

layers. A new checkpoint was defined to save the best weights 

during this phase. 

Model Evaluation: 

We trained the models on the HAM10000 dataset using these 

six deep-learning architectures. After training, we analyzed the 

predictions and plotted the confusion matrix and ROC curve for 

each model. Key performance metrics such as Precision, 

Recall, F1-score, and Accuracy were computed. A 

comparative analysis of the accuracy across all models was 

performed to identify which model achieved the highest 

accuracy in detecting all types of skin lesions. 

This approach enabled us to optimize the CNN models for skin 

cancer classification, achieving improved performance while 

maintaining computational efficiency. 

4. EXPERIMENTAL RESULT  
It is the most difficult task to find the appropriate metrics to 

assess and analyze the performance of classification systems. 

This section presents the experimental results and analysis of 

the models implemented on the HAM10000 dataset. The 

outcomes of six deep learning models VGG19, DenseNet201, 

InceptionV3, ResNet152, and MobileNetV2 are compared 

using some evaluation metrics such as specificity, sensitivity; 

accuracy, F-measure, and ROC curve [21].  

In the context of skin cancer detection, sensitivity is an 

indicator that gives the aptitude of the model to correctly 

recognize the category and avoid false negatives, for example, 

which are cases where actinic keratosis is classified as 

Melanoma [14]. 

Sensitivity (Recall) =  
𝑻𝑷

𝑻𝑷+𝑭𝑵
                                        (1) 

  

Specificity quantifies the proportion of true negatives that are 

correctly detected by the model. 

Specificity = 
𝑻𝑵

𝑻𝑵+𝑭𝑷
                                         (2) 

   

Precision measures the proportion of true positives among all 

the positive predictions the model has identified. 

Precision = 
𝑻𝑷

𝑻𝑷+𝑭𝑷
                                         (3) 

  

Accuracy is the overall preciseness of the model's predictions 

and is defined as the ratio of correctly classified instances to the 

total number of instances. 

Accuracy = 
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
                                          (4) 

     

F1-score is a harmonic mean of precision and recall, which 

measures the equity between the two metrics and expressed as, 

F1-score = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ×𝐑𝐞𝐜𝐚𝐥𝐥 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
                                        (5) 

4.1 Training and Validation Accuracy  
To assess how well the training and validation datasets perform 

within the deep learning model, we evaluate several key 

metrics, including training loss, training accuracy, validation 

loss, and validation accuracy. For this project, we have 

presented the training loss, training accuracy, validation loss, 

and validation accuracy across different epochs for the six 

models under consideration.  

 
Figure 9: Visualization of accuracy and loss curve for 

VGG19. 

  
 Figure 10: Visualization of accuracy and loss curve for 

DenseNet201.  

 
Figure 11: Visualization of accuracy and loss curve for 

InceptionV3.  
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 Figure 12: Visualization of accuracy and loss curve for 

Xception.   

 

Figure 13: Visualization of accuracy and loss curve for 

ResNet152.    

  

 Figure 14: Visualization of accuracy and loss curve for 

MobileNetV2.     

4.2 Evaluate Confusion Metrics  
We analyze the performance of all five models by constructing 

confusion matrices for each model [22]. We can deduce true 

positive (TP), false positive (FP), true negative (TN), and false 

negative (FN) rates for each category in the dataset. We can 

calculate accuracy, precision, recall, and f1 score using these 

rates. 

 

Figure 15: Confusion matrices for VGG19. 

 

Figure 16: Confusion matrices for DenseNet201. 
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Figure 17: Confusion matrices for InceptionV3. 

 

Figure 18: Confusion matrices for Xception. 

 

 

Figure 19: Confusion matrices for ResNet152. 

 
 

Figure 20: Confusion matrices for MobileNetV2. 

We evaluated the performance of six models—VGG19, 

DenseNet201, InceptionV3, Xception, ResNet152, and 

MobileNetV2—for skin cancer classification across seven 

categories, using the performance metrics mentioned earlier. 

The accuracy achieved by these models is as follows: VGG19 

(89%), DenseNet201 (97%), InceptionV3 (87%), Xception 

(85%), ResNet152 (96%), and MobileNetV2 (70%). 

Additionally, the weighted averages of precision, recall, and 

F1-score for each of these models have been assessed and are 

presented in Table 2.  

Table 2: The Performance Analysis of Different Models. 

Model Accuracy 

(%) 

Weighted Average 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

VGG19 89 90 89 88 

DenseNet201 97 97 97 97 

InceptionV3 87 87 87 85 

Xception 85 83 85 83 

ResNet152 96 96 96 96 

MobileNetV2 70 69 70 61 

It is evident that the DenseNet201 model has outperformed all 

other models in terms of accuracy, precision, recall, and F1-

score. The weighted averages for DenseNet201 are 97% for 

precision, 97% for recall, and 97% for the F1-score, making it 

the best-performing model among the ones evaluated. Table 3 

presents the specific values for each category in the 

DenseNet201 model, providing a clearer understanding of the 

performance for each class of skin cancer in the dataset.  

Table 3: The class-wise performance analysis of the 

DenseNet201 model.  
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Categories Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

akiec 98 80 88 

bcc 94 94 94 

bkl 93 96 94 

df 100 56 72 

nv 98 100 99 

vasc 96 89 93 

mel 97 97 97 

Weighted 

Average 

97 97 97 

4.3 AUC-ROC Curves Analytics.  
The AUC-ROC curves for the different models provide a visual 

comparison of their performance. These curves illustrate the 

trade-off between the true positive rate (TPR) and false positive 

rate (FPR) across various classification thresholds. A higher 

AUC value indicates better performance, with the models 

demonstrating strong discrimination between positive and 

negative cases.  

 

Figure 21: AUC-ROC Curve for VGG19 

 
Figure 22: AUC-ROC Curve for DenseNet201. 

 
Figure 23: AUC-ROC Curve for InceptionV3. 

 
Figure 24: AUC-ROC Curve for Xception.

 
Figure 25: AUC-ROC Curve for ResNet152.  
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Figure 26: AUC-ROC Curve for MobileNetV2. 

4.4 Mobile App Development  
The mobile application developed for real-time skin cancer 

detection was built using Android studio to develop it as an 

android application which is widely available in most mobile 

devices, and TensorFlow Lite was utilized for model inference. 

The app features an intuitive interface where users can capture 

or upload images of skin lesion, and the integrated model 

provides immediate disease diagnosis. As the model is already 

integrated in the app it works completely offline, ensuring 

seamless recognition and result prediction even in remote 

areas. The integration of real-time data from the field allows for 

continuous monitoring and updates, making the tool highly 

effective for skin lesion [23]. 

 

4.4.1 Real-Time Testing with Mobile 

Application  
To validate the model's practical applicability, it was integrated 

into a mobile app and tested in real-time scenarios. The goal 

was to develop an intuitive smartphone application that allows 

users to take or upload pictures and get detection results in real 

time [23]. The following observations were made:  

 

Figure 27: Welcome to the Skin Cancer Detection App.  

 

Figure 28: Skin Cancer Detection Application. 

5. CONCLUSION  
Skin cancer is one of the most frequently diagnosed cancers 

worldwide, with an estimated 7,990 deaths from melanoma 

expected in 2023. Raising awareness about its risk factors and 

symptoms is vital. Deep learning models, particularly 

convolutional neural networks (CNNs), have shown 

exceptional performance on image datasets and can be applied 

for skin cancer detection in the medical field. In this study, six 

pre-trained CNN models—VGG19, DenseNet201, 

InceptionV3, Xception, ResNet152, and MobileNetV2—were 

evaluated on the HAM10000 dataset to classify seven types of 

skin lesions. The models were enhanced with additional 

convolutional and dense layers to improve their sensitivity to 

subtle features of skin cancer. Performance was assessed using 

metrics like accuracy, precision, recall, F1-score, and AUC. 

Among these models, DenseNet201 delivered the best overall 

performance across all metrics. However, some models, like 

MobileNetV2 and Xception, did not show notable 

improvements. These findings highlight the potential of certain 

CNN architectures, particularly DenseNet201, in the 

development of automated skin cancer detection tools that can 

support dermatologists in clinical practice. Future research 

could explore the use of more complex CNN architectures, 

such as stacked models like InceptionResNetV2 or ensemble 

approaches combining models like InceptionV3 and Xception, 

to further improve detection accuracy. Additionally, to develop 

automated medical treatment recommendations. 
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