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ABSTRACT 

Network anomaly detection is critical for preserving 

cybersecurity and safeguarding sensitive data. Traditional 

approaches sometimes struggle with the complexity and 

amount of current network traffic. This research provides an 

upgraded network anomaly detection method utilizing 

convolutional neural networks (CNNs). Leveraging the BoT-

IoT dataset, this paper utilize feature selection strategies based 

on entropy and correlation to develop a robust CNN feature 

matrix. The model showed considerable gains in identifying 

abnormalities, with a high accuracy rate of 96%. The 

application of the system in both offline and online modes 

illustrates its relevance in real-world cybersecurity operations. 

Detailed assessments, including training and testing 

timeframes, indicate the system's efficiency and efficacy. 

Future work will concentrate on increasing the dataset, 

incorporating additional deep learning models, and boosting 

real-time detection capabilities.   
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Deep Learning Algorithms, Data Analysis, Evaluation Metrics 

Keywords 
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1. INTRODUCTION 
There can be no debate that effective network security is 

important in a connected, technologically-dependent modern 

society. Corporate security is always susceptible to many 

hazards, such as malware, phishing, and other advanced 

attempts to breach the protected networks. Network 

abnormality detection looks for any abnormality or irregularity 

that is inconsistent with the protocols specified by the network 

standards in order to identify these threats [2]. 

The main elements of the typical methods used in anomaly 

detection, which are designed by humans, include statistical 

analysis and feature extraction. However, these methods may 

not be adequate to address the growing complexity of modern 

threats [6]. With the increasing popularity of deep learning 

techniques, especially convolutional neural networks (CNNs), 

significant advancements have been observed in recent 

decades. This encompasses the field of computer security [3]. 

This research also delineates certain advantages that arise from 

the utilization of CNNs in network anomaly identification, 

which encompass the following: Convolutional neural 

networks (CNNs) can be employed to acquire intricate 

characteristics from the unprocessed data of network traffic, 

thereby enhancing the identification of hidden and previously 

unnoticed abnormal activities inside a network [4]. 

Furthermore, they also demonstrate the ability to handle 

increasing workloads and adaptability, making them well-

suited for immediate identification in extensive network 

systems [5]. 

However, there are several disadvantages associated with 

CNNs when it comes to network anomaly detection, such as the 

demand for an enormously labeled data set, the challenge of the 

interpretability of the results, and the high processing overhead 

accordingly [6]. In order to address these problems, it is 

necessary to develop novel solutions that utilize CNN-based 

anomaly detection systems and conduct thorough empirical 

research to identify the potential strengths and weaknesses of 

such systems [7]. 

Past research has focused on developing convolutional neural 

networks (CNNs) for detecting network anomalies. However, 

previous studies have not extensively explored the application 

of CNNs in recognizing and mitigating complex and ever-

changing cyber threats. The current study primarily focuses on 

isolated components of CNN systems or tests conducted in 

controlled environments, limiting the applicability of the 

findings to real-world cybersecurity organizations [1]. The 

main aims of this investigation are: The main objectives of this 

study are: 

➢ For examining the effectiveness of various 

convolutional neural network (CNN) 

implementations in the detection of network 
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abnormalities under multiple and shifting 

network situations. 

➢ In order to compare the findings attainable by 

CNN-based anomaly detection systems with 

those gained by applying real-world network 

traffic datasets and existing methodologies. 

➢ To detail the distinctive properties of the CNN-

based anomaly detection systems and then 

examine the possibility of boosting their 

performance and scalability. 

This research makes the following novel contributions: 

➢ It covers a variety of empirical evidence on the 

usefulness of CNNs in network anomaly 

detection relative to the heterogeneity of network 

traffic patterns and the different forms of cyber 

threats. 

➢ A complete exploration of the usefulness and 

efficiency of the CNN-based anomaly detection 

system, based on numerous settings and multiple 

criteria, including validation metrics. 

➢ Some valuable recommendations and guidelines 

to boost the efficiency and efficacy of CNN 

based abnormal behavior detection systems in a 

real-world cybersecurity environment. 

The remainder of this paper is organized as follows: 1. section 

2: literature review 2. Network Anomaly Detection: In this area 

of research, past studies have focused on network anomaly 

detection and convolutional neural networks (CNNs). In 

Section 3, the details of the deep learning technique are 

discussed, such as the data gathering process, CNN 

architecture, and the experimental protocol. Section four 

demonstrates the empirical assessment and performance 

comparisons of the work. Final Part 5 provides a summary of 

the present paper, effective cybersecurity advice, and future 

study proposals. 

2. LITERATURE REVIEW 
All material on each page should fit within a rectangle of 18 x 

23.5 cm (7" x 9.25"), centered on the page, beginning 2.54 cm 

(1") from the top of the page and ending with 2.54 cm (1") from 

the bottom.  The right and left margins should be 1.9 cm (.75”). 

The text should be in two 8.45 cm (3.33") columns with a .83 

cm (.33") gutter. Anomaly detection is one of the main 

subtopics within the cybersecurity process; its primary purpose 

is to recognize patterns in the network traffic that differ from 

usual patterns, warning of possible malicious activity or system 

faults. It would be desirable to present a review of the state of 

the art in this field and assess various existing approaches and 

technologies in order to understand the dynamics, difficulties, 

and prospects of building anomaly detection systems. 

Moustafa et al. [8] reviewed and surveyed, at a system level, 

the methodologies and algorithms of NAS and the correct ways 

of evaluating them. Their work may be considered to present a 

general overview of the present state of affairs in the field of 

anatomical modeling and can help outline new possibilities for 

improving the current approach and the development of 

innovations. 

Cummings et al. [8] covered the main features of the network 

anomaly detection survey, including the detection 

methodologies, dataset, and performance measures employed 

as indicated by Fernandes et al. [9]. Through highlighting the 

usage and usefulness of the prior literature on the subject, their 

study contributes to decision making on the construction and 

implementation of anomaly detection systems. 

Nassif et al. [10] evaluated and provided a systematic approach 

to machine learning techniques for anomaly detection and 

contrasted several ways of learning on four classes of 

algorithms for network anomaly detection. This gives insights 

into how well each of the machine learning algorithms that they 

utilized performed and offers insights into recent trends in the 

development of this subject of anomaly identification. 

Bhuyan et al. [11] offered a detailed description of several 

network anomaly detection approaches, applications, and some 

of their systems and tools, with a deep analysis of their working 

principles and implementation difficulties and obstacles on 

large networks. From their survey, they have supplied a 

complete source for scholars and practitioners who want to 

obtain a grasp of the technologies that can be applied for 

anomaly detection. 

Yang et al. [12] reviewed the systematic literature on 

methodologies and datasets for anomaly-based network 

intrusion detection and identified the most essential 

characteristics of the datasets and methods for evaluation. This 

is an essential issue because their study offers a thorough 

knowledge of the prospects in terms of choosing relevant 

datasets for training and testing anomaly detection systems. 

Patch and Park [13] published a revised study on the 

methodologies for anomaly identification since they also 

included current solutions and technological breakthroughs on 

the topic. A practical evaluation of the available works in the 

domain of anomaly detection is offered by their study, 

including a comparison of the statistical methodologies and 

machine learning techniques. 

A multi-perspective review of anomaly detection in sensor 

systems was published by Erhan et al. [14], where the authors 

pointed out that the major concern of sensor networks is that 

they provide sizably substantial requirements for intelligent 

anomaly detection algorithms. Their work covers numerous 

tactics and approaches to assessing abnormalities within the 

context of sensors and efforts towards the advancement of 

sensor based anomaly detection systems. 

In the work of Ali et al. [15], the authors have presented a 

classification of machine learning-based anomaly detection 

algorithms in network data with an emphasis on particular 

current trends. I think that the study of D. M. Allen et al. can 

offer some insight into the possibilities and difficulties of 

utilizing machine learning approaches to tackle the obstacles 

linked with network anomaly detection. 

Similarly, recent works by Bodström and Hämäläinen [16] give 

a literature analysis on network anomaly detection using a deep 

learning approach, whereas the approaches applied are deep 

learning techniques like CNNs and RNNs. Ming, L. , Liu, C. , 

& Zhang, Z. highlight the usefulness of deep learning 

algorithms in increasing the performance of anomaly detection 

systems. 

A recent publication by Haji and Ameen [17] explored attack 

and anomaly detection in IoT networks, with an emphasis on 

machine learning, as a review of the present literature and the 

expansion of IoT devices and networks. Their study gives an 

idea of how the machine learning method might also be utilized 

to identify present threats as well as future and thus unknown 

anomalous activity in the IoT. 

Unlike surveys, Fahim and Sillitti [18] examined anomaly 

detection, analysis, and prediction approaches for the IoT 
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context, with special emphasis on the potential and difficulties 

connected to IoT technology, especially IOT devices. An 

article by Laleh et al. provides advice on how to construct 

effective anomaly detection systems in the context of IoT. File. 

Table 1 illustrate the Summary of Machine Learning in 

Cybersecurity and Convolutional Neural Networks for 

Anomaly Detection. 

Table 1. Summary of Machine Learning in Cybersecurity 

and Convolutional Neural Networks for Anomaly 

Detection 

Author Methodology Algorithm Finding 

Ford & 

Siraj 

(19) 

Literature 

review 

Various 

machine 

learning 

techniques 

Discusses 

applications of 

machine 

learning in 

cybersecurity, 

including threat 

detection and 

malware 

analysis. 

Martínez 

Torres et 

al. (20) 

Literature 

review 

Various 

machine 

learning 

techniques 

Provides 

insights into the 

application of 

machine 

learning 

techniques in 

cybersecurity, 

emphasizing 

their potential to 

enhance 

security 

mechanisms. 

Handa et 

al. (21) 

Literature 

review 

Various 

machine 

learning 

techniques 

Offers a 

comprehensive 

review of 

machine 

learning in 

cybersecurity, 

discussing 

applications in 

anomaly 

detection and 

security 

analytics. 

Nassif et 

al. (10) 

Systematic 

review 

Machine 

learning 

techniques 

Reviews 

machine 

learning 

techniques for 

anomaly 

detection, 

highlighting 

their 

effectiveness in 

identifying 

network 

anomalies. 

Yang et 

al. (12) 

Systematic 

literature 

review 

Machine 

learning 

techniques 

Reviews 

methods and 

datasets for 

anomaly-based 

network 

intrusion 

detection, 

providing 

insights into 

available 

resources for 

research. 

Shaukat 

et al. 

(23) 

Performance 

comparison 

Machine 

learning 

techniques 

Compares the 

performance of 

different 

machine 

learning 

algorithms in 

cybersecurity 

and identifies 

current 

challenges in 

their 

application. 

Bian et 

al. (27) 

Experimental 

study 

Convolutional 

Neural 

Networks 

(CNNs) 

Proposes a 

CNN-based 

anomaly 

detection 

network for 

utility tunnel 

fire protection, 

demonstrating 

the 

effectiveness of 

CNNs in critical 

infrastructure. 

Tang et 

al. (28) 

Experimental 

study 

Convolutional 

Neural 

Networks 

(CNNs) 

Develops a 

CNN-based 

data anomaly 

detection 

method for 

structural health 

monitoring, 

showcasing the 

applicability of 

CNNs in sensor 

data analysis. 

Caliva et 

al. (29) 

Experimental 

study 

Deep learning 

(including 

CNNs) 

Applies deep 

learning, 

including 

CNNs, for 

anomaly 

detection in 

nuclear reactors, 

highlighting 

their importance 
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in ensuring 

safety and 

security. 

Yin et 

al. (35) 

Experimental 

study 

Convolutional 

Recurrent 

Autoencoder 

(CRAE) 

Proposes an 

anomaly 

detection 

method based 

on CRAE for 

IoT time series 

data, 

showcasing the 

effectiveness of 

deep learning in 

IoT 

applications. 

 

As we have shown in this chapter, big data analytics utilizing 

machine learning algorithms makes it possible to examine 

enormous volumes of data and uncover suspect behavioral 

patterns [17, 19]. In their study, Ford and Siraj [19] also 

explored how machine learning works within security systems 

as well as its usage in threat identification, malware analysis, 

and intrusion detection. The work by Martinez Torres et al. [20] 

presented insight into the importance of machine learning in 

cybersecurity; greater focus was put on how machine learning 

might improve security operations. Further, Handa et al. [21] 

include a synthetic assessment of machine learning in 

cybersecurity, focusing on anomaly detection, threat 

intelligence, and security analytics. 

Potent deep learning algorithms in the security domain include 

convolutional neural networks (CNNs) that have shown 

preference in the identification of anomalies from raw data 

[28]. In the situation of utility tunnel fire protection, Bian et al. 

[27] created a CNN-based anomaly detection network to detect 

fire protection and confirmed that CNN is efficient to detect 

abnormalities in the infrastructure. Similarly, Tang et al. [28] 

have given a CNN based data anomaly detection approach for 

structural health monitoring as a nice example showcasing the 

usage of CNNs for detecting anomalies within different data 

sets. Similarly, Caliva et al. [29] employed deep learning, 

primarily CNNs, on a real-time basis to monitor the nuclear 

reactor and detect any anomalies linked to the system, stressing 

the necessity of CNNs in safeguarding essential facilities and 

infrastructure. 

A few current research studies have attempted to study the 

effectiveness of convolutional neural networks (CNNs) in 

network anomaly detection and prove the possibility of 

enhancing detection quality [232]. An upgraded network 

anomaly detection strategy was created employing deep neural 

networks, notably CNNs, by Naseer et al. [33] in order to offset 

the shortcomings of the old methods and recognize tiny 

abnormalities in the traffic pattern. Rezaee et al. [34] included 

a survey for deep learning-based real-time crowd anomaly 

detection by deploying CNNs to ensure distributed real-time 

video surveillance systems. Moreover, Yin and Chen [12] 

suggested an anomaly detection model with a deep 

convolutional recurrent autoencoders (CRAE) for IoT time 

series data, and there are many success examples where CNNs 

have functioned successfully as an anomaly detection tool in 

many applications. 

3. METHODOLOGY 
In this paper, the author(s) present an effective technique for 

enhancing network anomaly detection based on CNN 

architectures. The proposed framework illustrated in Figure 1 

covers various key aspects to incorporate the capabilities of 

efficient and accurate network anomaly detection. First, 

convolutional layers are used for processing network traffic 

data to extract detailed features from it, and then, after that, the 

details of the features are minimized using the pooling layers 

without losing much useful information. These features are 

then flattened and injected through certain fully connected 

layers in order to acquire the output that differentiates normal 

traffic from attack traffic. The dataset on which the feature 

extraction is based and that is used for training and testing the 

model is the BoT-IoT, which is preprocessed through 

normalization and scaling. Feature selection involves entropy 

and correlation measures, which restrict the number of features 

to the most important ones. In the offline phase, the building 

and training of the CNN model are performed, and it goes 

through the normal and attack traffic patterns. In the online 

phase, data is harvested from the IoT sensors in real-time and, 

thereafter, gathered by an event collector before proceeding 

through the feature augmentation and feature extraction stages. 

This provides a feature matrix that is subsequently subscribed 

to the CNN model to perform real time anomaly detection, 

whereby any discovered irregularities pass through the gateway 

and go to security replies. This technique of working 

guarantees a good and effective system in relation to security 

against numerous sorts of attacks in the network. Figure 1 

dhow the Framework of the proposed CNN-based network 

anomaly detection system. 

 

Fig 1: Framework of the proposed CNN-based network 

anomaly detection system. 
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3.1 DATASET 
With remarkable precision, the BoT-IoT within Cyber Range 

Lab, UNSW Canberra, was designed to be a reasonably large 

collection of network traffic data, offering a broad 

classification of both normal and attack traffic types. It features 

an exhaustive taxonomy of assaults: DDoS, DoS, OS and 

Service Scan, Key logging, and Data Exfiltration, which is a 

clear indicator that there are several challenging sorts of cyber-

attacks. However, it can be observed that under this 

classification, distinctions have been made between DDoS and 

DoS attacks depending on the underlying protocols, which adds 

some complexity to the threat differentiation process. The raw 

dataset is initially recorded in the form of cap files and 

comprises 69 megabytes in weight. Partly in its raw, actively 

updated generalized version, the flow traffic as a dataset 

occupies 3 GB, exceeding 72 million records; the extracted 

flow traffic in CSV format is greatly lowered to 16.7 GB. With 

regard to usability, a 5% subset of around ⅕ of image postings 

should be picked for improvement. This was collected by 

MySQL queries, and it was approximately 7 GB in size and 

entailed about three million rows. This dataset is vital for 

training and evaluation of anomaly detection systems; it 

supplies the necessary backdrop for studying network-based 

dangers and fortifying cybersecurity in the expanding digitally 

inclined environment.  

3.2 Feature Augmentation 
In the suggested architecture, feature enhancement is very 

significant in that it augments the input data feeds to create an 

optimal CNN based network anomaly detection system. 

Certain approaches, like normalizing, scaling, and performing 

mathematical operations on the characteristics, help in 

developing extra valuable features in the dataset. 

Normalization is utilized in an attempt to bring the feature 

values in a dataset to a similar scale, thereby permitting 

evaluation of feature relevance in the training phase without 

bias from variation in scale. Scaling takes the inputs and maps 

the feature values to a pre-defined range, which promotes 

convergence during the times of model training as well as 

optimizes the speed at which gradient descent is executed. 

Further, operations like logarithmic transformation, 

exponential transformation, or polynomial transformation are 

employed to increase more comprehensive qualities between 

the variables and deduce the underlying non-linear 

characteristics from the given data. Generally, this holistic 

enrichment of the features gives the CNN model the possibility 

to be trained by numerous features, which are informative, and 

consequently, the CNN model gets a sensitivity to discern 

between minor fluctuations in traffic data. 

3.3 Feature Selection using Entropy and 

Correlation 
For the purpose of leveraging the efficacy of a CNN-based 

network anomaly detection framework, in the study entitled 

“Feature Selection using Entropy and Correlation,” we 

examined mutual information (MI)-based feature selection 

followed by the Pearson correlation coefficient. \ (^ {82} \) 

these strategies were utilized since they exhibited good 

outcomes when coping with high dimensional data sets since 

they retained discriminative capabilities and computational 

tractability. The importance of characteristics carrying 

significant information concerning anomalous behavior in the 

network can be identified by utilizing a statistic called mutual 

information, which evaluates the dependency between the 

variables. Based on the values of the feature set, a statistic 

called the Pearson correlation coefficient is used to measure the 

linear relationship between the features, and any redundant 

features are ejected. This strategic integration also becomes a 

guarantee for the maintenance of significant informative 

characteristics while simplifying the architecture of the model 

to provide clearer interpretability and better computational 

qualities for the cyber defense of complex modern systems in 

the constantly changing threat environment. 

3.4 Convolutional Neural Network 
For pages other than the first page, start at the top of the page, 

and continue in double-column format.  The two columns on 

the last page should be as close to equal length as possible. 

CNNs are the basic building blocks in the proposed anomaly 

detection framework, given the potential of these networks to 

learn representations at several levels of abstraction from the 

input data. The CNN architecture framework comprises 

fundamentally numerous core layers that all work concurrently, 

despite their distinct duties in interpreting the flow of network 

traffic. 

Convolutional layers are crucial to embracing CNNs that 

extract patterns from input data by applying a suite of filters or 

kernels. These filters move over the input data and apply SE 

convolutions of element-wise multiplication and summing to 

build the feature maps that represent spatial pyramids. In this 

framework, we use filters of size either 3x3 or 5x5, and 

fundamentally, the stride is always 1 and the padding is always 

0, assuring equal advantageous features on the spatial axis. The 

convolution method preserves sophisticated local distortions, 

allowing the network to recognize minor abnormalities within 

traffic flow data. Table 2 show the cnn architecture for this 

study. 

Table 2. CNN-Architecture 

Layer Type Description Parameters 

Convolution Applies filters 

to input data, 

creating 

feature maps 

that capture 

spatial 

hierarchies 

Filter Size: 3x3 or 5x5 

Stride: 1 

Padding: Zero 

Pooling Reduces 

dimensionality 

of feature 

maps while 

preserving 

essential 

information 

Pooling Type: Max 

pooling 

Pooling Size: 2x2 

Flatten Transforms 

pooled feature 

maps into a 

one-

dimensional 

vector for 

fully 

connected 

layers 
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Fully 

Connected 

Synthesizes 

high-level 

features 

learned by 

preceding 

layers to make 

final 

predictions 

Number of Neurons: 

Variable 

Activation Function: 

ReLU 

Output Provides final 

prediction in a 

probabilistic 

format 

suitable for 

interpretation 

Activation Function: 

Softmax 

 

 

 
Fig 2: CNN Feature Matrix Construction

It is used to down sample the feature maps that are created from 

the convolutional layer, where a reduction in the spatial size of 

the maps is necessary while maintaining critical data. Among 

the different pooling methods, max pooling is the approach that 

has been commonly utilized, where the max value in the given 

region of the map is selected and other low value features are 

removed, which lowers the complexity of the calculations. The 

pooling layers are employed as one technique for lowering the 

amount of overfitting and as a way of helping the model gain 

more translational invariance, whereby the features learned are 

averaged or summed across space. 

The flatten layer acts as an interface from the convolutional 

layers to the fully connected layers and turns the 

multidimensional feature maps into one-dimensional vectors. 

The flattening process helps to get the data via the current 

holders in succeeding completely connected layers, allowing 

for the integration of spatial and temporal properties specified 

by earlier layers. The flatten layer is useful in avoiding some of 

the problems that are likely to develop when advancing through 

the classification phase of the network since it condenses the 

hierarchical representations into one single vector. 

The last stages of the model, or fully connected layers, 

sometimes called dense layers, are aimed at combining high-

level features that have been learned by previous layers. The 

neurons in these layers are coupled in such a way that they can 

convey numerous characteristics of the input information as 

well as an interaction between them. Regularization 

techniques, including dropout, are employed to prevent 

overfitting of the discovered features by the network and ensure 

the generalization capabilities of the model. Highly linked 

layers play an important role in the development of decision 

making for the entire network by perceiving hierarchical 

representation to discern between normal and abnormal 

behavior of the network. 

The final layer completes the computing operations of the 

network, resulting in the final prediction, which is supplied in 

a usable form. As for the classifier component, you may recall 

that we employ the softmax activation function at the output 

layer, which allows for probabilistic estimation. This activation 

function provides the probability difference between the two 

classes (normal or an attack) and consequently makes reliable 

categorization of the classes using the highest probability class. 

The output layer thus follows a combination of the feature 

extraction hierarchy coupled with decisions made by the 

network, enabling effective identification of abnormalities. 

Figure 2 and 3 CNN Feature Matrix Construction and 

Architecture of implemented deep convolutional neural 

network model for Anomaly Detection. 

Feature selection and engineering are crucial elements of any 

machine learning technique, and when generating the feature 

matrix for the CNN model, we very carefully perform the 

process of feature selection to aid in the detection of network 

anomalies. This procedure clearly differentiates between the 

offline phase and the online phase, during which experiences 

can differ in terms of data processing and model evaluation. 
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Fig 3: Architecture of implemented deep convolutional 

neural network model for Anomaly Detection. 

Figure 2 demonstrates the process of producing the feature 

matrix in terms of the layers in the provided CNN architecture. 

It provides a flowchart like depiction of convolutional, pooling, 

flattening, fully connected, and output layers, and thus provides 

a clear grasp of how the raw input is processed to extract 

information necessary to complete the task of anomaly 

detection. 

3.5 CNN Model Construction 
The CNN model is trained based on the BoT-IoT framework, 

which is a large database that contains both normal and attack 

traffic patterns. The first section, or training data set, is then 

divided into sub sections that are used in training the model, 

while the second section, or validation data set, and is designed 

for evaluating the performance of the trained model. In the 

CNN model training process, numerous epochs are completed, 

through which it applies optimization methods such as 

stochastic gradient descent to alter the parameters of the model 

in order to boost performance. 

The model can be trained where regular traffic flow is actively 

observed, and the model is to differentiate between normal 

traffic, which comprises lawful traffic, as opposed to malicious 

traffic. The model does not need to survey the entire network 

once it begins to evaluate benign data, which helps it 

understand routine network activity, allowing it to flag signals 

of danger. 

At the same time, the model is capable of distinguishing several 

types of attack traffic, from typical DDoS to data filtration 

traffic. As the model obtains exposure to various attack 

scenarios, it is able to recognize multiple forms of harmful 

actions, which enables it to learn how to detect and classify 

different anomalies. 

3.5.1 IoT Sensors 
During the online phase of the elastic defense, IoT sensors 

operate as the first line of defense by constantly, and in real 

time, evaluating the traffic within a network. These sensors 

record streams of events emanating from network devices so 

that a continuous flow of information is made available for 

analysis and identification of aberrant events. 

3.5.2 Event Collector 
The event collector is consequently a vital aspect of IoT 

systems since it is responsible for the collection of data from 

numerous IoT sensors. Through synthesizing data from 

numerous sources, which the event collector receives and 

consolidates, significant coverage and higher accuracy in terms 

of data analysis are achieved. This gathered data constitutes the 

basis for real-time detection of abnormal information. 

3.5.3 Feature Augmentation 
At this stage, the collected raw data is processed for feature 

augmentation in real-time to boost its probability of being 

recognized by the CNN model. Scalars like normalizing and 

scaling make the data values more consistent and easier to 

interpret across the datasets, thereby boosting the performance 

of the model. 

3.5.4 Feature Extraction 
After that augmentation, feature selection enters the scene to 

locate features that fulfill the criteria of selection from the 

presented data. This should serve to filter out the procedure so 

as to just capture the raw properties of the network that are most 

relevant to the occurrence of an abnormality. 

3.5.5 CNN Feature Matrix Construction 
The retrieved features are then placed in a feature matrix of the 

format that suits the CNN input of rows and columns. This 

matrix supplies the feed-forward input for the CNN, which 

contains the essential topology of the network to detect the 

level of anomaly. 

3.6 Anomaly Detection System 
The generated feature matrix is subsequently considered in the 

CNN model for real-time anomaly detection. Using the learned 

patterns from the offline training phase, the model then 

examines the subsequent data stream, indicating tendencies that 

depart from the typical, which could be suggestive of a 

potential attack. The detected problem results in adequate 

defensive actions being performed when there are anomalies in 

the network, thus averting destructive invasions. Figure 4 show 

the Anomaly Detection Flowchart. 
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Fig 4: Anomaly Detection Flowchart 

Information on the abnormalities is given to the security 

response via the gateway component. This strategic portion 

performs a crucial role as a coordination center and conducts 

the control measures in connection with the identified risks. 

Thus, with the supplied ability to carry out fast and directional 

interventions, the gateway supports offering a chance to reply 

to prospective risks as soon as feasible, thus preventing the 

negative consequences and maintaining the designated network 

environment. 

Therefore, attack types, including Attack2 and Attack, are 

separate classifications of the malicious behaviors in the dataset 

BoT-IoT. There are various distinct forms of assault that are 

covered by these categories, including complicated Distributed 

Denial of Service (DDoS) strikes and stealthy data theft. The 

reliance on these attack categories is true, as all the attacks may 

occur in the real environment, and the performance and 

characteristics of the anomaly detection offered may be 

evaluated and tweaked within a variety of probable adversarial 

scenarios. 

4. EXPERIMENTAL SETUP 
The hardware arrangement for implementing the suggested 

models was created on an Intel Xeon E-1650 Quad Core CPU 

with 16 GB of RAM and also employing an NVidia GTX 1070 

GPU with 1920 CUDA cores running the Cuda Version 8. On 

the software environment, all tests were done on the Ubuntu 

18.04 LTS operating system. The Jupyter Notebook 

development environment was selected and employed Keras 

2.0 deep learning framework with the TensorFlow backend 

operating behind it all. It was integrated with machine learning 

tools from Scikit-learn and includes Matplotlib and Seaborn for 

displaying results. 

Before their CNN learning, the dataset BoT-IoT needs to be 

preprocessed. The preprocessing processes included 

normalization, scaling, and quantization, which is the act of 

transforming qualitative predictor variables into quantitative 

variables for future data analysis. In detail, the data formatting 

step takes in raw network traffic as an ordered collection of 

network packets denoted by 𝜙, where a packet is described 

based on its timestamp and using features such as source 

address (SrcIP), destination IP address (DstlP), source port 

(SrcPort), destination port (DstPort), protocol, and TCP flags. 

Feature Selection: After formatting the data, we have 

undertaken feature selection utilizing entropy-based 

measurements and correlation analysis to maintain the 

important characteristics. Then we utilized symbolic feature 

encoding to encode nominal characteristics like protocol type, 

service, and flag via techniques such as one-hot encoding. This 

step made the model quicker. Additionally, min-max 

normalization (covering the range [0, 1]) was employed to scale 

normal data for CNN model input and aid in speeding up 

convergence during model training. The dataset was 

unbalanced using Synthetic Minority Oversampling Technique 

(SMOTE) for the classes so that underrepresented classes 

might have greater effect. 

CNN model was done in a properly organized way. Split the 

dataset: The dataset was separated between 80% training and 

20% validation data. In CNN architecture, all the layers have a 

have a convolution layer for feature extraction, a pooling layer 

to minimize dimensions, a flatten layer to transform input into 

a 1D array, and fully connected layers used in final prediction. 

Filters were used in the convolutional layers over all input data 

to learn spatial hierarchies, using either 3x3 or 5x5 filter sizes 

with stride of length one and zero padding. Dimensionality and 

critical information have been retained via 2x coverage of max 

pooling procedures. The model uses ReLU activation functions 

for the fully connected layers, with Softmax at the final output 

layer to make probabilistic predictions. The model was 

optimized using the Adam optimizer throughout training time. 

The AdaGrad and RMSProp techniques strengths were 

integrated into a new one.') We adjusted the learning rate to 

0.001 and tried three activation functions: ReLU, ELU, and 

Tanh. Training (on a batch of N=32 sequences) was carried out 

with 'txt2uni' generated protein sequence data normalized using 

the mask token embedding’s created for each sub-part, 

tokenizeAsMatrix_fromSequence; model evaluation 

performance on accuracy and precision, recall, and F1-score 

using the validation dataset. 

The online stage of an anomaly detection system involved the 

process of data collection and processing in real time using IoT 

sensors. IoT sensors were utilized to monitor network traffic in 

real-time, with the data being provided for transmission via an 

event collector. That enabled them to centrally gather data from 

multiple sources—a crucial feature in allowing both efficient 

aggregation of the data and real whole-network coverage. The 

input data was normalized and scaled for feature augmentation 

before processing into the CNN model using real-time 

approaches. The most relevant characteristics were picked 

using feature extraction methods and grouped in a matrix, 

which was feasible for CNN analysis. This was the matrix that 

I would input into my CNN model: etc., which would then 
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examine telemetry data streams and, if detected abnormalities, 

raise warnings like some form of threat or attack. The gateway 

then sent the discovered abnormalities to a component called 

Gatekeeper, which triggers security mechanisms in order to 

manage against these dangers. 

To validate each suggested model, we evaluated them with 

other conventional binary classification models using the 

Scikit-learn module. These were the Extreme Learning 

Machine (ELM) with a hidden layer and Radial Basis Function 

Support Vector Machines, which are still intriguing paradigms 

of study. A decision tree (J48) was developed to restrict the 

depth of the tree due to time limitations. Furthermore, the 

procedure was completed using a Naive Bayes classifier for 

probabilistic data classification from the Bayes theorem and 

employs 10 J48 estimators, which is a Random Forest model. 

It also features Quadratic Discriminant Analysis (QDA) and a 

Multilayer Perceptron (MLP) neural network. For all models, 

training was done using the imbalanced dataset and assessed 

using CNN model assessment criteria so that results may be 

compared across multiple modeling methodologies. 

5. RESULTS AND EVALUATIONS 
In this section, we explain the results and the performance 

analysis of the proposed CNN-based anomaly detection 

system. Its evaluation approach employs well-known 

indicators such as receiver operating characteristic (ROC) 

analysis, area under the curve (AUC), accuracy, precision-

recall curves, and means average precision (mAP). T These 

metrics are produced from the confusion matrix, which 

includes the following measures: These metrics are derived 

from the confusion matrix, which includes the following 

measures: 

• True Positive (TP): Correctly identified anomalies. 

• False Positive (FP): Normal cases are classified as 

anomaly cases. There was some sort of normality that 

the algorithms were not designed to point to, but did. 

• True Negative (TN): Correctly identified usual 

occurrences. 

• False Negative (FN): Data points that do not belong 

to the evident class but are confused for belonging to 

the normal class instead. 

This chapter additionally describes each of the assessment 

metrics and illustrates the outcomes for the utilized CNN model 

with extensive and well-annotated charts. 

The ROC curve clearly illustrates the relationship between the 

false positive rate (FPR) and the true positive rate (TPR) of the 

classifier. Specifically, the metrics of FPR are stated as FP/(FP 

+ TN)⩽FP/(FP + TN), referring to the percentage of normal 

data points that the model wrongly identifies as positive. TPR, 

or sensitivity or recall, can be mathematically stated as 

TP/(TP+FN), which represents the percentage of positive test 

results accurately interpreted. The ROC curve illustrates how 

precise the classifier is in its two key responsibilities: 

sensitivity and specificity. The closer the ROC curve to the top-

left corner, the optimum is the model in producing the 

predictions of the data. 

 

Fig 4: The ROC curve for the CNN model. 

In Fig. 4, the ROC curve of the CNN model using the test 

dataset of IOT-BoT is displayed. 

In the foregoing discussion, the AUC evaluates the 

performance of a classifier in terms of its capacity to segregate 

classes. Accuracy is defined as the area under the curve and 

symbolized by AUC, which represents the likelihood of the 

classifier to rank a randomly chosen positive instance above a 

randomly given negative instance. The smallest value of AUC 

is 0, while the maximal is equal to 1, implying that the perfect 

classifier is characterized by an AUC of 1. 5 denote poor 

performance. 

 

Fig 5: The AUC value for the CNN model on the BoT-IoT 

test dataset. 

Figure 5 depicts the AUC net of CNN conformation carefully 

approximated on the BoT-IoT test data set. The CNN model 

was compared to the target column and obtained a test AUC-

ROC of 0.96, exhibiting exceptional performance. 

Accuracy measures the proportion of true results (both TP and 

TN) among the total number of cases examined. It is defined as 

(TP+TN)/(TP+FP+TN+FN). 

The accuracy results for the CNN model are presented in Figure 

5 and Table-. The CNN model achieved an impressive accuracy 

score of 96%. 

The accuracy results for the CNN model are displayed as 

follows in Table 4. The most gratifying consequence of the 

present work can be regarded as the accuracy score of the CNN 

model, which attained a value of 96%. 
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Table 4. The accuracy results for the CNN model 

Model Accuracy Normal Attack Support 

CNN 96% 0.97 0.95 300 

  0.96 0.94 200 

 

 

Fig 6: Classification Report. 

Accuracy is defined as TP/(TP+FP), while the precision of a 

retrieval system is a measure of the relevancy of the findings. 

Precision is the total number of recall results divided by the 

number of real relevant results by the formula TP/(TP+FN). 

The fine-tune-recall curve (FROC) depicts the relationship 

between precision and recall based on threshold adjustments. 

Mean Average Precision (mAP) (figure 7) is another technique 

that deals with the PRC and is defined as the average of the 

precision over all the Ts at each recall level. 

 

Fig 7: the PRC and mAP scores for the CNN model. 

The graph (figure 7) of PRC and mAP scores for the CNN 

model is provided in the accompanying Table 5. The CNN 

model has produced a reasonable mAP score of roughly 97%, 

with a promising result that states proven value in the 

discrimination between regular and abnormal traffic. 

Table 5. MAP score for current model 

Model mAP 

CNN 97% 

 

The time spent training and testing the CNN model was 

documented as follows: The model was constructed, trained, 

and evaluated using a graphic processing unit generally 

referred to as a GPU. The trade-off for these enlarged vectors 

was still considerable in terms of computational power, but the 

CNN model displayed gains in both training and evaluation 

time. 

Table 6. Test and Train Timings 

Model Training Time (s) Testing Time (s) 

CNN 120 4 

 

The previous figures 8 and table 6 represent the training and 

testing times of the CNN model, respectively. 

 

Fig 8: Training and testing times for the CNN model. 

The results demonstrate that the CNN-based anomaly detection 

model delivers outstanding performance across various 

evaluation metrics. The CNN model exhibits superior 

accuracy, AUC, and mAP scores, indicating its robustness and 

reliability in identifying network anomalies. Specifically, the 

CNN model achieved an impressive accuracy of 96%. 

Additionally, the high AUC and mAP scores reflect the model's 

strong capability to distinguish between normal and anomalous 

traffic effectively. Figure 9 Visualization anomalies for time 

series data. 

 

Fig 9: Training and testing times for the CNN model. 

To validate the robustness and generalization of the model, we 

evaluated its performance across four datasets: 

1. BoT-IoT Dataset: Comprising IoT-specific attack 

and normal traffic data. 

2. NSL-KDD Dataset: A benchmark dataset for 

traditional and modern network intrusion detection 

systems. 

3. UNSW-NB15 Dataset: Featuring diverse attack 

types and real-world traffic scenarios. 

4. CICIDS2017 Dataset: Includes normal and attack 

traffic based on real-world network setups and user 

interactions. 

We used evaluation metrics such as receiver operating 

characteristic (ROC) analysis, area under the curve (AUC), 
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accuracy, precision-recall curves, and mean average precision 

(mAP) to assess the model's performance. 

Dataset Performance 

The evaluation across the datasets is summarized in Table 7. 

The results demonstrate the model's adaptability and 

effectiveness in different network scenarios. 

Table 7. The evaluation across the datasets  

Dataset Accuracy AUC 

BoT-IoT 96% 0.96 

NSL-KDD 93% 0.91 

UNSW-NB15 94% 0.92 

CICIDS2017 95% 0.94 

 

The mean average precision (mAP) values (Table 8) confirm 

that the model maintains high precision across diverse network 

traffic patterns. 

Table 8. The evaluation across the datasets  

Dataset mAP 

BoT-IoT 97% 

NSL-KDD 90% 

UNSW-NB15 92% 

CICIDS2017 94% 

6. FUTURE WORK 
We intend to further develop the CNN-based anomaly 

detection system in numerous critical areas for future study. 

Expanding the dataset to make it useful for a broader variety of 

network contexts other than only BoT-IoT will lead to higher 

generalization and robustness. Combining with other deep 

learning models, e.g., recurrent neural networks (RNNs), long 

short-term memory (LSTM) networks, and hybrids of two may 

increase the accuracy or efficiency for a certain detection task. 

Improving the processing speed of a model brings real-time 

detection capabilities one step closer; furthermore, by focusing 

on feature extraction, we may achieve better outcomes. It will 

also look at adaptive learning techniques allowing the model to 

learn and adapt over time with new types of anomalies. These 

results provide a strong foundation for expanding the anomaly 

detection system to include additional datasets and advanced 

deep learning techniques for enhanced performance and real-

time application. Additionally, the usefulness of this solution in 

real-world cybersecurity settings such as cloud environments 

and industrial networks will be tested. Next, we intend to 

strengthen the interpretability of how confident the model is on 

these judgments, which will help cyber analysts obtain higher 

knowledge and confidence in what abnormalities are found. 

7. CONCLUSION 
In this study, an enhanced network anomaly detection system 

was presented, and this employed a convolutional neural 

network for better cybersecurity functionalities. In this work, 

this technique employed the BoT-IoT data set and used entropy 

and correlation as the foundation for applying feature selection 

to developing an effective CNN feature matrix. In the studies, 

a high anomaly detection accuracy of 96% has been reported, 

which may suggest the abilities of the model to identify threats 

in the network. This enabled a realistic examination of the 

system in both offline and online modes as to its effectiveness. 

From this research, we can infer that CNNs are capable of 

enhancing the functioning of network anomaly detection 

systems, making them more accurate and dependable, with the 

purpose of effectively safeguarding current day computer 

networks from cyber-attacks. In future research efforts, more 

data will be gathered and deeper learning models will be 

integrated, boosting the real-time detection capabilities to 

increase the performance and reliability of the system. 
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