
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.50, November 2024

Innovative CI/CD Pipeline Optimization through Canary
and Blue-Green Deployment

Sudheer Amgothu
Technology Professional, Department of Computer Science, Pega Systems Inc, USA

7 Gorham St unit 18 Chelmsford MA 01924 USA

ABSTRACT
In modern software development, managing the risks associated
with new code releases is critical to maintain system stability and
performance. Canary and Blue-Green deployments are two
effective strategies used to achieve this balance. Canary deploy-
ments allow for incremental rollouts of new features to a small
subset of users, providing real-time performance monitoring and
risk mitigation before a full-scale release to the production envi-
ronment while Blue-Green deployments involve maintaining
two separate environments, blue and green and switching between
them to ensure that new changes do not disrupt the production en-
vironment. This paper explores the methodologies behind Canary
and Blue-Green deployments, their integration with Jenkins CI/CD
pipelines, and the benefits, experimental set up, challenges, and
future advancements of these strategies. By leveraging Jenkins to
manage these deployment approaches, organizations can enhance
their deployment processes, reduce the risk of disruptions, and im-
prove overall system stability.

Keywords
Deployment Strategies, Canary Deployment, Blue-Green Deploy-
ment, CI/CD, Continuous Integration, Continuous Delivery, Jenk-
ins, Containerization, Kubernetes, Safe Releases.

1. INTRODUCTION
The adoption of CI/CD pipelines has revolutionized how organi-
zations develop, test, and deploy software. These pipelines auto-
mate and streamline the release process, enabling rapid updates
and enhancements. But, the expanded frequency of deployments
introduces ability risks, which includes bugs, performance issues,
and provider disruptions. To mitigate these risks, Canary and Blue-
Green deployment strategies offer structured approaches for man-
aging and validating software changes.
A canary release allows new features to be released to a small
subset of users before they are fully released to production, al-
lowing teams to evaluate performance and stability. On the other
hand, the blue-green layout is to maintain two separate environ-
ments (blue and green) and transfer traffic between them to dis-
tribute the changes with minimal risk. Integrating these strategies
into Jenkins CI/CD pipelines increases the efficiency and security
of the deployment process.
While CI/CD pipelines streamline the release process, they also ne-
cessitate robust deployment strategies to manage the risks associ-

ated with frequent changes. Canary and Blue-Green deployments
provide complementary methods for safely deploying new features
and infrastructure.

2. LITERATURE REVIEW
Deployment strategies such as Canary and Blue Green have be-
come increasingly popular in modern CI/CD pipelines due to their
ability to reduce risk during system deployment. These methods
are designed to balance the need for continuous delivery with the
requirement for system stability.
Canary distribution, first formalized by Humble and Farley [6], in-
volves releasing a new version to a small subset of users before
expanding it to a wider audience. This approach minimizes the im-
pact of potential problems by isolating them in the operating envi-
ronment. According to Raili et al. [9], Canary deployments are par-
ticularly valuable in microservices architectures, where individual
service failures can be caught early, preventing system-wide issues.
Blue-Green Deployment, also detailed by Humble , Farley and
Michael [8] [6], uses two identical environments—Blue (current)
and Green (new)—to switch user traffic between versions. If issues
arise, traffic is reverted to the Blue environment, ensuring near-zero
downtime. Yang et al [12] highlighted the simplicity of Blue-Green
for mission-critical systems, although it can be resource-intensive
due to the need for duplicate environments.
A study, such as Raili et al [9], found that Canary deployments
offer better risk mitigation for gradual rollouts, while Blue-Green
deployments are more efficient when rapid rollbacks are critical.
Both strategies, however, require sophisticated monitoring and in-
frastructure to be fully effective, as noted by Yury et al. [7].
In summary, Canary deployments excel at gradual exposure, reduc-
ing the risk of widespread failures, while Blue-Green deployments
ensure quick recovery and minimal downtime, making both strate-
gies vital components of modern CI/CD pipelines.

3. METHODOLOGIES
3.1 Canary Deployment Methodology
Canary deployment is a strategy for gradually releasing new fea-
tures or updates to a small subset of users, allowing teams to test the
changes in a real-world environment before making them available
to the entire user base. The process begins by identifying a ”ca-
nary group”—a small, representative set of users who will receive
the new version of the application while the rest of the users con-
tinue using the previous version. [1]This controlled rollout allows

1



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.50, November 2024

the team to monitor how the update performs in terms of user ex-
perience, system performance, and error rates. By leveraging mon-
itoring tools and gathering user feedback, teams can evaluate the
stability and success of the update in real-time. If the canary de-
ployment shows positive results, the feature is gradually rolled out
to a larger group until it’s eventually deployed across the entire user
base. However, if issues are detected, a rollback mechanism allows
the team to quickly revert the canary group to the previous version,
minimizing the impact of potential problems. This methodology
helps organizations deploy updates with minimal risk by testing
them incrementally in a production-like environment.

3.2 Blue-Green Deployment Methodology
Blue-Green deployment [5] [10]is another effective strategy de-
signed to reduce downtime and deployment risks by operating two
identical environments—often referred to as ”blue” and ”green.”
In this setup, the blue environment is the active, live version that
serves all user traffic, while the green environment is used to stage
and test the upcoming release. The deployment process begins with
the new version being deployed to the green environment, where it
undergoes comprehensive testing and validation to ensure function-
ality, performance, and reliability. This includes running automated
tests, performing manual checks, and validating that the configura-
tion is consistent. When the green environment is fully validated
and ready for production, traffic is seamlessly switched from the
blue environment to the green environment using load balancers
or DNS adjustments. This approach makes the transition invisible
to users, providing a smooth cutover with little to no downtime.
After the switch, the team monitors the green environment closely
for any unforeseen issues. If issues arise, they can immediately re-
vert traffic back to the blue environment, offering a safe rollback
option. Blue-Green deployments offer a robust way to ensure con-
tinuity and reliability by providing an easy transition path between
old and new versions, making it ideal for applications that require
high availability.

4. INTEGRATING CANARY AND BLUE-GREEN
DEPLOYMENTS WITH JENKINS CI/CD

Jenkins is a popular open-source automation provider that helps
implement CI/CD pipelines [2]. [3]It presents robust assistance for
automating the build, test, and deployment strategies. Integrating
Canary and Blue-green deployment strategies with Jenkins can dec-
orate the reliability and performance of software program releases.

4.1 Canary Deployment with Jenkins
In a Canary deployment, new features are released to a small sub-
set of users before a full-scale rollout. Jenkins can automate this
process by defining a pipeline that manages incremental feature re-
leases and integrates monitoring and rollback mechanisms. [4]
High level steps during the Jenkins Set up:

(1) Checkout Code: Checks out the latest code from version con-
trol.

(2) Build: Builds the application (e.g., using Maven).
(3) Deploy to Canary: Deploys the application to the Canary en-

vironment using Kubernetes.
(4) Monitor Canary: Runs monitoring scripts to validate the Ca-

nary deployment.
(5) Approve Deployment: Waits for manual approval before pro-

ceeding to the production deployment.

Fig. 1. Jenkinsfile for Canary Deployment

Fig. 2. Jenkinsfile for Blue-Green Deployment

(6) Deploy to Production: Deploys the application to the produc-
tion environment if Canary testing is successful.

(7) Post-Deployment Verification: Verifies the production de-
ployment.

(8) Failure Handling: Rolls back the deployment if any stage
fails.

4.2 Blue-Green Deployment with Jenkins
In a Blue-Green deployment, two identical environments (blue and
green) are maintained. Traffic is switched between these environ-
ments to deploy new features with minimal disruption. Jenkins can
automate the management of these environments and the traffic
switch.
High level steps during the Jenkins Set up:

(1) Checkout Code: Checks out the latest code from version con-
trol.

(2) Build: Builds the application (e.g., using Maven).
(3) Deploy to Green: Deploys the application to the Green envi-

ronment.
(4) Verify Green: Runs validation scripts to ensure the Green en-

vironment is working correctly.

2



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.50, November 2024

(5) Switch Traffic: Updates the load balancer to direct traffic to
the Green environment.

(6) Post-Switch Validation: Verifies that the Green environment
is handling the traffic correctly.

(7) Failure Handling: Rolls back to the Blue environment if the
Green deployment fails.

5. EXPERIMENTAL SETUP
5.1 Introduction to the experiment
In this experiment, we evaluate the performance of Canary and
Blue-Green deployment strategies in a CI/CD pipeline by deploy-
ing a new version of a web application. The objective is to assess
key performance indicators (KPIs) such as system uptime, error
rate, rollback rate, and user experience impact during the deploy-
ment of the new application version.

5.2 Environment and Tools
The experimental environment is designed to simulate real-world
conditions under which the deployment strategies are tested. The
following tools and infrastructure were used: [11]

(1) CI/CD Pipeline: Jenkins for continuous integration and de-
ployment.

(2) Containerization & Orchestration: Kubernetes was used to
run application container microservices.

(3) Monitoring Tools: Prometheus was integrated with Grafana
to view system metrics such as system uptime, error rate, and
CPU/memory usage.

(4) Load Balancer: Nginx to manage traffic distribution between
old and new application versions.

(5) Cloud Infrastructure: The application was deployed on AWS
using EC2 instances and Elastic Load Balancing for Blue-
Green deployment and traffic management.

5.3 Application Setup
The web application is comprised of three key microservices: au-
thentication, data retrieval, and user interface. The new version of
the application included improvements to the UI and updates to the
data retrieval service’s API structure.

(1) Old version: Deployed and running in production with 100%
of user traffic.

(2) New version: Prepared for gradual rollout and testing during
the experiment.

5.4 Deployment Strategies
Canary Deployment
The objective of this deployment was to roll out the new version in-
crementally, minimizing risk and identifying potential issues early
on. The process began in Week 1, with the new version deployed
to 10% of users, while the remaining 90% continued using the pre-
vious version. This initial step allowed the team to observe the per-
formance of the new version on a small user group. In Week 2, the
traffic was increased to an even 50% split, with half of the users on
the new version and half on the old version, enabling the team to
gather more comprehensive data on the update’s stability. Finally,
in Week 3, the new version was rolled out to 100% of users, com-
pleting the deployment.

Throughout each stage, key metrics such as error rate, system up-
time, rollback rate, and user feedback were closely monitored.
Prometheus was used to scrape metrics from both versions, en-
abling the team to track and respond to any increases in errors,
downtime, or user complaints. This gradual rollout and thorough
monitoring helped ensure a stable transition while reducing the risk
of widespread issues.
Blue-Green Deployment
The objective of this deployment was to perform a complete switch
from the old version to the new version, with the flexibility to im-
mediately roll back if any issues arose. The procedure began on
Day 1, when the new version (Blue) was deployed in parallel to
the existing version (Green), while 100% of user traffic continued
to run on the Green version. On Day 2, the team shifted all user
traffic to the Blue version, making it the live environment. By Day
3, the team closely monitored the performance of the Blue envi-
ronment, with the capability to revert traffic back to Green if any
critical issues emerged.
During this period, essential metrics such as error rate, system up-
time, rollback rate, and user feedback were tracked to ensure the
stability of the new deployment. Grafana dashboards provided a
clear comparison of metrics between the Blue and Green envi-
ronments throughout the switch, enabling the team to swiftly de-
tect and address any discrepancies. This careful monitoring pro-
cess helped ensure a seamless transition and minimized the risk of
disruptions.

5.5 Traffic Management
For Canary deployment, Nginx was configured to manage incre-
mental traffic distribution between the old and new versions. In the
Blue-Green deployment, AWS Elastic Load Balancer managed the
switch of all user traffic between environments.

5.6 KPIs Monitored
Throughout the experiment, the following KPIs were collected to
evaluate both deployment strategies:

(1) Error Rate: Percentage of failed requests during the deploy-
ment phases.

(2) System Uptime: Percentage of time the system remained op-
erational without downtime.

(3) Rollback Rate: Percentage of times a rollback was triggered
due to critical errors.

(4) User Experience Impact: Measured through user feedback
and reported issues post-deployment.

5.7 Testing Procedure
The tests were carried out over a three-week period for Canary de-
ployment and a three-day period for Blue-Green deployment. The
following steps were repeated for each phase:

(1) Traffic Routing: Adjusted traffic levels between the old and
new versions according to the deployment strategy.

(2) Metrics Collection: Collected system performance data from
Prometheus every 10 minutes.

(3) Issue Monitoring: Monitored user feedback and bug reports
to assess the impact on user experience.

(4) Rollback Triggers: In case of significant errors, rolled back
the new version to ensure system stability.

3



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.50, November 2024

Fig. 3. Error Rate Over Time for Canary and Blue-Green Deployment

Fig. 4. System Uptime Over Time for Canary and Blue-Green Deploy-
ment

5.8 Data Collection
All metrics were collected using Prometheus and visualized
through Grafana dashboards. The error rate, system uptime, and
rollback rate were recorded for each stage of the experiment. Users
experience feedback was collected through in-app reporting and ex-
ternal monitoring tools that measured the frequency and nature of
complaints.
The graphs below depict the error rate and system uptime across
different deployment strategies over time.

5.9 Results and Comparison
The table(1) summarizes the real-time outcomes of both Canary
and Blue-Green deployments for a web application:
Overall, the integration of Canary and Blue-Green deployments
through Jenkins CI/CD pipelines provides a robust framework for
managing software and infrastructure changes. The software com-
pany’s ability to roll out new features and upgrades with confidence

and stability was significantly enhanced, leading to operational ef-
ficiencies and improved user experiences.

6. CHALLENGES AND SOLUTIONS
6.1 Challenges
In the experimental deployment setup using Canary and Blue-
Green strategies, several technical and operational challenges were
observed:
Infrastructure duplication (blue-green): Maintaining two paral-
lel environments significantly increased infrastructure costs. The
cost of cloud resources for replication environments can be pro-
hibitive for long-term use, especially for small teams or projects
with limited budgets. Dynamic Routing and Load Balancing
(Canary): Canary deployment relies on accurate traffic routing and
load balancing. It is difficult to achieve traffic distribution in the
Canary version without affecting performance or creating network
bottlenecks. Monitoring and release decision: Continuous moni-
toring is important in canary and blue-green distributions, but it is
difficult to set the right thresholds for release decisions. It should
be fine-tuned to determine whether deployment is sustainable, or
regressing based on real-time metrics such as failure rate and de-
ployment response time. User Experience Impact: Although the
Canary application helped isolate the issues, users are still at risk
with the new release. This has led to concerns about customer sat-
isfaction for those in the Canary team who may experience poor
performance or errors. Delayed Launch (Canary): The rolling na-
ture of Canary releases can delay the entire release, especially when
multiple changes are required to resolve issues. This slowed down
the overall speed of the release and delayed the release of critical
updates.

6.2 Solutions
To mitigate these challenges, the following solutions were imple-
mented in the experimental setup:
Dynamic resource allocation: For green-blue deployments, a dy-
namic resource allocation mechanism was implemented to handle
the increase in traffic as the environment changes, and to reduce
infrastructure costs. This was achieved by using Kubernetes orga-
nized container environments, which enabled rapid scaling and re-
source sharing.
Automated Traffic Management (Canary): Using service mesh
technologies (such as Istio) enables automated traffic management
and simplifies the process of increasing traffic to a Canary deploy-
ment. This ensured a smooth transition with minimal performance
degradation.
Advanced monitoring and automatic rollback: Implemented a
comprehensive monitoring system using Prometheus for real-time
metrics collection and Grafana for visualization. In addition, auto-
matic recovery triggers were set based on pre-defined error thresh-
olds to ensure rapid decompression without manual intervention.
Parallel release strategy: To reduce the duration of Canary re-
leases, parallel release strategies were used for critical updates.
This includes running Canary and Blue Green at the same time for
different parts of the system, to speed up the overall deployment
and maintain control over potential risks.
User Feedback Loops: To reduce user impact, user feedback loops
were incorporated into the monitoring system, allowing for early
detection of performance or performance issues and provide more
accurate feedback triggers based on real-world user experiences.

4



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.50, November 2024

Table 1. Deployment Data Summary
Deployment Type Timeframe Traffic Distribution Error Rate System Uptime Rollback Rate User Experience Impact
Canary Deployment Week 1 10 % new version, 90% old version 0.5% 99.9% 5% rollback for canary users Minimal Small group affected
Canary Deployment Week 2 50% new version, 50% old version 0.7% 99.8% No rollback Slight increase in reporter issues
Canary Deployment Week 3 100% new version 0.9% 99.8% No rollback Full rollout successful
Blue-Green Deployment Day 1 100% on green (old version) 0% 100% N/A No Impact
Blue-Green Deployment Day 2 100% traffic switched to Blue (new version) 1.5% 99.7% 10% rollback to Green Moderate – initial surge in errors
Blue-Green Deployment Day 3 100% on Blue 0.3% 99.9% No rollback Stable post-fix deployment

7. FUTURE WORK
To further optimize deployment strategies, several avenues for fu-
ture work were identified:
AI/ML Integration for Rollout Optimization: Implement ma-
chine learning models to predict deployment outcomes based on
historical metrics and user behavior data. This would allow auto-
mated decision-making regarding the pace of rollout and whether
to proceed or rollback.
Hybrid Deployment Models: Explore the potential of hybrid de-
ployment strategies that combine the benefits of both Canary and
Blue-Green. For instance, Canary could be used for early-stage
testing, followed by a Blue-Green approach for full rollout, min-
imizing the risks of both methods.
Chaos Engineering Practices: Introduce Chaos Engineering to
test the resilience of both Canary and Blue-Green deployments un-
der extreme conditions, such as network outages, traffic spikes, or
system failures. This helps improve system robustness and reduce
deployment risk.
Serverless Infrastructure: Explores the use of serverless tech-
nologies for delivery, especially in blue-green strategies. This can
eliminate the need for additional environments, reduce costs and
simplify the deployment process.

8. CONCLUSION
The experimental setup demonstrated the relative strengths and
weaknesses of both Canary and Blue-Green deployments in a
CI/CD pipeline. The release of the Canary is useful for more vis-
ibility so that issues can be identified and resolved. However, the
length of the entire production process and the difficulty of manag-
ing traffic are challenges. On the other hand, the blue-green release
made the release of all versions more efficient but required large
infrastructure resources and increased errors after the change.
These challenges are mitigated by implementing advanced traffic
management, automatic backup mechanisms and dynamic resource
allocation. Future work will focus on AI-based distribution opti-
mization and hybrid distribution models, to enable more efficient,
effective and cost-effective distribution strategies. The results of
this experiment show the importance of creativity in optimizing the
CI/CD pipeline to meet the different needs of modern software de-
velopment.

9. REFERENCES

[1] Azeem Ahmad, Kristian Sandahl, Daniel Hasselqvist, and
Pontus Sandberg. Information needs in continuous integra-
tion and delivery in large scale organizations: An observa-
tional study. In Proceedings of the 39th ACM/SIGAPP Sym-
posium on Applied Computing, SAC ’24, page 1262–1271,
New York, NY, USA, 2024. Association for Computing Ma-
chinery.

[2] Sudheer Amgothu. An end-to-end ci/cd pipeline solution us-
ing jenkins and kubernetes. International Journal of Science
and Research (IJSR), 13(8):1576–1578, 2024.

[3] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A software
architect’s perspective. Addison-Wesley Professional, 2015.

[4] Ahmed Mateen Buttar, Adeel Khalid, Mamdouh Alenezi,
Muhammad Azeem Akbar, Saima Rafi, Abdu H Gumaei, and
Muhammad Tanveer Riaz. Optimization of devops transfor-
mation for cloud-based applications. Electronics, 12(2):357,
2023.

[5] M Fowler. Inversion of control containers and the de-
pendency injection pattern”: http://www. martinfowler.
com/articles/injection. html. Captured on July 19th, 2006.

[6] Jez Humble and David Farley. Continuous delivery: reliable
software releases through build, test, and deployment automa-
tion. Pearson Education, 2010.

[7] Yury Izrailevsky and Charlie Bell. Cloud reliability. IEEE
Cloud Computing, 5(3):39–44, 2018.

[8] Michael Nygard. Release it!: design and deploy production-
ready software. torrossa, 2018.

[9] Njegoš Railić and Mihajlo Savić. Architecting continuous in-
tegration and continuous deployment for microservice archi-
tecture. In 2021 20th International Symposium INFOTEH-
JAHORINA (INFOTEH), pages 1–5. IEEE, 2021.

[10] Petar Rajković, Dejan Aleksić, Andjelija Djordjević, and Dra-
gan Janković. Hybrid software deployment strategy for com-
plex industrial systems. Electronics, 11(14):2186, 2022.

[11] Giridhar Kankanala Sudheer Amgothu. Sre and devops:
Monitoring and incident response in multi-cloud environ-
ments. International Journal of Science and Research (IJSR),
12(9):2214–2218, 2023.

[12] Bo Yang, Anca Sailer, and Ajay Mohindra. Survey and eval-
uation of blue-green deployment techniques in cloud na-
tive environments. In Service-Oriented Computing–ICSOC
2019 Workshops: WESOACS, ASOCA, ISYCC, TBCE, and
STRAPS, Toulouse, France, October 28–31, 2019, Revised
Selected Papers 17, pages 69–81. Springer, 2020.

5


	Introduction
	LITERATURE REVIEW
	METHODOLOGIES
	Canary Deployment Methodology
	Blue-Green Deployment Methodology

	INTEGRATING CANARY AND BLUE-GREEN DEPLOYMENTS WITH JENKINS CI/CD
	Canary Deployment with Jenkins
	Blue-Green Deployment with Jenkins

	EXPERIMENTAL SETUP
	Introduction to the experiment
	Environment and Tools
	Application Setup
	Deployment Strategies
	Traffic Management
	KPIs Monitored
	Testing Procedure
	Data Collection
	Results and Comparison

	CHALLENGES AND SOLUTIONS
	Challenges
	Solutions

	FUTURE WORK
	CONCLUSION
	References

