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ABSTRACT
In recent years, deep learning and large models have signifi-
cantly advanced artificial intelligence applications in areas such
as natural language processing and computer vision. However, as
model scales grow, the demand for computing power increases,
revealing the limitations of traditional von Neumann architec-
tures. Memristor-based in-memory computing offers a promis-
ing alternative, yet neural networks deployed on memristor ar-
rays suffer from accuracy loss due to device non-idealities. To
address this, authors introduce a novel genetic algorithm (GA)-
based training methodology specifically designed for memristor
arrays to enhance neural network performance. authors detail the
framework and strategic operations of this approach, supported
by empirical validation using a series of lightweight models and
demonstrate substantial accuracy improvements. Additionally, au-
thors explore the impact of various hyperparameter settings on
model precision. Overall, this approach significantly enhances the
accuracy of lightweight neural networks on memristor arrays,
with important implications for edge computing environments.
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1. INTRODUCTION
Deep learning and large-scale pre-trained models have emerged
as pivotal technologies within the realm of contemporary artificial
intelligence, significantly propelling innovation and advancement
across various sectors. By emulating the operational principles of
neurons in the human brain, deep neural networks are capable of
processing and comprehend highly intricate data patterns, exhibit-
ing exceptional performance in diverse application contexts such as
natural language processing, computer vision, and speech recog-
nition [20]. For instance, extensive models like BERT and GPT,

which are founded on the Transformer architecture, are able to ac-
quire rich linguistic representations during the unsupervised pre-
training phase, attributable to their extensive parameter counts and
multi-layered configurations. Subsequently, these models can be
fine-tuned to accommodate a range of downstream tasks, demon-
strating capabilities that exceed those of traditional methodologies.
Nevertheless, the efficacy of these large models is accompanied by
a substantial requirement for computational resources. The train-
ing of such models necessitates high-performance computing sys-
tems and considerable training durations, which not only escalate
the costs associated with computational resources but also impose
heightened demands on energy consumption.
In the traditional von Neumann architecture, the computation and
storage units are designed independently, which often leads to sig-
nificant performance bottlenecks when dealing with large data sets
or complex computational tasks. As a result, the development of
neural networks based on this architecture is limited by size and
power consumption [34]. In contrast, biological nervous systems
do not suffer from these limitations. To address this issue, the re-
searchers proposed an integrated architecture for storage and com-
putation based on non-von Neumann computational methods.
The memristor, introduced by Leon Chua in 1971 [4], and experi-
mentally validated by Hewlett-Packard in 2008 [22], is well-suited
for this architecture and offers potential to replace von Neumann
systems, particularly in neural networks and big data applications
[24]. This architecture opens the door to more intelligent edge
and mobile devices. In recent years, considerable advancement has
been made in the research and development of various types of
neural networks using memristor crossbars, including single- and
multi-layer perceptrons [25, 28, 12], spiking neural network [13]
and convolutional neural network(CNN) [29], and have demon-
strated efficacy in a range of applications, including image recog-
nition [12], image classification [18] and target detection [23].
However, non-idealities like conductance drift, read disturbances,
wire parasitics, and device degradation pose challenges, causing
inaccuracies and malfunctions [6, 1, 8]. These non-ideal factors
significantly degrade the computational accuracy of compute-in-
memory systems, thereby imposing substantial limitations on their
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applications. Therefore, targeted approaches are required to im-
prove the computational accuracy in compute-in-memory chips.
Current methods address these issues through architectural design,
training techniques, algorithm optimization, multi-model integra-
tion, and energy efficiency improvements.
Recent developments in mixed-precision in-memory computing ar-
chitectures have demonstrated significant potential for enhancing
the performance and efficiency of neural networks. [11] introduced
a mixed-precision architecture that combines a von Neumann ma-
chine with a computational memory unit, facilitating iterative re-
finement of solution accuracy. Additionally, in situ training has
been investigated as a strategy to mitigate hardware non-idealities
in memristor-based neural networks. [26] illustrated the efficacy
of directly mapping convolutional kernels to memristor crossbars
within 1T1R arrays, while [3] formulated a training methodol-
ogy that accounts for inter-device variations to bolster network re-
silience.
Various approaches have been proposed to enhance the accuracy
and robustness of memristor-based neural networks. [9] employed
committee machines to improve inference accuracy through en-
semble averaging, and [17] introduced methods to alleviate the
impacts of conductance state asymmetry and cycle-to-cycle varia-
tions. Further contributions by [32] and [16] involved the develop-
ment of stochastic and adaptive learning techniques and committee
machine frameworks, respectively, to address inaccuracies stem-
ming from memristor nonlinearity. [10] also proposed a non-ideal
perception training methodology that enhances energy efficiency
while preserving accuracy.
In addressing memristor non-idealities during training, [5] de-
vised a backpropagation and gradient accumulation algorithm that
achieved high accuracy on the MNIST and CIFAR-10 datasets. [30]
introduced the concept of ”memristor activity difference energy
minimization,” which utilizes hardware discrepancies to optimize
network parameters.
Recent research has also concentrated on efficiency and precision.
[27] developed a mixed-precision training method that improves
the efficiency of vector-matrix multiplication while maintaining
high-precision weights, resulting in notable accuracy with the
LeNet model. [33] presented a generalized algorithmic framework,
STELLAR, which addresses multi-scale error sources within the
memristor storage-computation paradigm, providing techniques to
reduce energy consumption and enhance learning accuracy.
Despite some success, these approaches are limited by their de-
pendence on specific hardware configurations, computational com-
plexity, and the diverse nature of non-idealities, which require fur-
ther refinement. In light of these considerations, this paper proposes
a methodology for training a neural network for memristors utiliz-
ing a genetic algorithm.
Genetic algorithm, known for their global search capabilities, are
effective in optimizing neural networks and can be executed via
matrix-vector multiplication in memristor arrays [31]. Hence, a
novel training method for memristor neural networks, named the
genetic algorithm training method, is proposed. This method in-
tegrates the fitness function of genetic algorithms with the conven-
tional training process of memristor neural networks. Special selec-
tion and mutation strategies tailored for memristor neural networks
are employed, enabling the training method to leverage the com-
prehensive search capabilities of genetic algorithms while remain-
ing well-suited to the unique properties of memristor-based archi-
tectures. The genetic training method has demonstrated promising
results when applied to ProtoNet [21], MobileNet-v2 [19], and Mi-
croNet [14].

The remainder of this paper is organized as follows: Section II
reviews current methods for mitigating memristor non-idealities,
Section III presents the proposed algorithm framework and imple-
mentation, Section IV demonstrates the algorithm’s effectiveness
through experiments on ProtoNet, MobileNet-V2, and MicroNet,
and the final section concludes the paper.

2. METHODS
The article introduces a new method employing genetic algorithms
to achieve robust weight parameters, thereby enhancing model ac-
curacy. This approach tackles non-idealities present in memristor
systems by optimizing quantized models. In a software simula-
tion, artificial noise mimics hardware non-idealities’ impact, with
Gaussian-distributed noise added to weight matrices during convo-
lutions [2]. Figure 1 depicts GA integration for memristor array
weight deployment, applying selection, crossover, and mutation.
Post-GA, weights undergo neural network backpropagation adjust-
ments before deployment. Figure 2 details the method’s implemen-
tation.
During initialization, a quantized model with added noise is pre-
pared, setting the model’s inference accuracy as the baseline. Pa-
rameters including population size, number of iterations, and ge-
netic operations are initialized. Each population member, repre-
senting a one-dimensional variable of all weight parameters, is ini-
tialized. Different members represent varying weight parameters.
Two initialization strategies are provided: 1) “origin”, where all
members match the baseline model’s weights; 2) “large”, where
one member aligns with the baseline, and others randomly generate
weights within the ranges of two reference models (e.g., quantized
models with 5% and 10% noise).
The genetic algorithm utilized in this study primarily uses the open-
source PyGAD library for PyTorch. In practice, key methods are
tailored to meet specific requirements, including adjustments to the
fitness function, selection method, and mutation method.
Fitness Function: The detailed flow is illustrated in Figure 3.
In genetic algorithms, the one-dimensional variable of all model
weights is called a solution. Initially, each solution’s parameters
are loaded into the model, followed by quantization training. This
updates the model parameters through neural network backpropa-
gation. Next, an inference operation is conducted, and the inference
accuracy serves as the solution’s fitness value. If a solution achieves
the best inference accuracy in both the current and historical gen-
erations, the model parameters are recorded and updated.
Selection: The PyGAD library offers various selection techniques,
and this article focuses on the roulette selection method. This
method first calculates the probability of selecting each individual
based on their fitness value. In PyGAD, this probability is calcu-
lated by dividing an individual’s fitness value by the sum of all
individuals’ fitness values. However, experiments showed that dif-
ferences in fitness values can be minimal, potentially obscuring dis-
tinctions between individuals. To refine this differentiation, the ap-
proach applies a sigmoid function on the ratio of an individual’s
fitness value to the total fitness, thereby enhancing the selection
precision.
Crossover: The PyGAD library offers a variety of crossover meth-
ods, all of which were successfully implemented in the experi-
ments. Therefore, the built-in methodologies of the PyGAD library
were chosen to be utilized. In the experiments detailed in this paper,
the two-point crossover method was employed.
Mutation: Experimental results indicated that the mutation pro-
cess significantly affects outcomes. This paper discards the muta-
tion method provided by the PyGAD library in favor of two new
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Fig. 1: GA Training Method and algorithm flowchart. The position of the GA training method. The network model’s weights are input as
they are deployed onto the memristor array. Optimal weights, obtained via GA training, are then deployed into the array.
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methods. The first is a random noise addition strategy, involving
adding 5% noise to individual genes. The second method, the ran-
dom max-min strategy, uses two reference models, such as quanti-
zation models with 5% and 10% noise. In this method, the gene at
the mutation position is replaced with a random number within the
max-min range of the two models at that gene’s layer. Algorithm 1
details this process.
After calculating the fitness values and applying the selection,
crossover, and mutation strategies, a new population is generated.
This process is repeated until the termination condition is met,
which, in this study, is defined by a specified number of iterations.

Algorithm 1 Mutation Function

Input: Population of current generation, MutationRate, refer-
ence model1 M1, reference model2 M2
Output: Population after mutation
for each individual in population do

for each gene in individual do
R← RANDOM()
if R < MutationRate then

obtain the maximum weight G1Max of the layer where
the gene is located in M1;
obtain the minimum weight G1Min of the layer where
the gene is located in M1;
obtain the maximum weight G2Max of the layer where
the gene is located in M2;
obtain the minimum weight G2Min of the layer where
the gene is located in M2;
gene ← RANDOM(MIN(G1Min, G2Min),
MAX(G1Max, G2Max));

end if
end for

end for
return population

3. EXPERIMENTS AND RESULTS
The methodology and all experiments presented in this paper are
implemented in a software environment. In order to simulate the
impact of the non-idealities of the hardware system on model train-
ing, a simulation approach is employed that introduces noise to the
model weights. Given the considerable number of model parame-
ters and floating-point data, which are not readily deployable di-
rectly into a memristor array, the methodology proposed in this
paper is tailored to quantized models. Due to the large number
of model parameters and floating-point data unsuitable for direct
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Table 1. : Experiments and Results

TASK BASELINE GAT
ProtoNet-MNIST 73.93% 81.99%

ProtoNet-FashionMNIST 78.35% 83.81%
MobileNetV2-Cifar-10 77.91% 83.18%

MicroNet-Cifar-100 73.90% 76.19% 

 

 

Fig. 4: Model accuracy at different generations. At this case, population
size is set to 10, the crossover probability is set to 0.8, and the mutation
probability is set to 0.01.

deployment in memristor arrays, this paper’s methodology is de-
signed for quantized models. Experiments will be conducted on
the ProtoNet model with the MNIST dataset and FashionMNIST
dataset, MobileNet with CIFAR-10, and MicroNet with CIFAR-
100, with the results summarized in Table 1. In the table, BASE-
LINE denotes the accuracy of the reference quantization model,
while GAT denotes the accuracy achieved using the GA train-
ing method. For instance, the impact of different hyperparameter
configurations on ProtoNet’s accuracy with MNIST will be evalu-
ated. To validate ProtoNet’s effectiveness, experiments on MNIST
will extend the reference quantization model [21] by incorporat-
ing noisy weights and employing the GA training method. The in-
ference accuracy of the noise-added quantized model serves as a
benchmark for the GA training method.
During training, five categories of data were randomly selected
from the MNIST dataset, with 20 additional random samples per
category. Five samples from each category were assigned to the
support set, and the remaining 15 to the query set. The model’s
weights were then quantized to 2 bits, and had 5% noise added.
Evaluated on a test set of 10 categories, the model achieved an in-
ference accuracy of 73.93% after quantization and additive noise
training.
In the GA training, the same quantization noise and dataset process-
ing methods as the benchmark model were used. The main param-
eters of the genetic algorithm were set as follows: 25 iterations, a
population size of 10, roulette wheel selection, two-point crossover
with a probability of 0.8, and a random max-min mutation strategy
with a variance probability of 0.01. Applying this training method
to the MNIST test set achieved over 80% accuracy, representing
approximately an 8% improvement over the benchmark model.
Additionally, this paper examines how changes in parameter con-
figurations affect model precision. In genetic algorithms, the num-
ber of iterations and population size are critical parameters influ-

 

 

 

Fig. 5: Model accuracy at different population sizes. At this case, the
number of iterations is set to 30, the crossover probability is set to 0.8, and
the mutation probability is set to 0.01.

 

 

 

Fig. 6: Model accuracy at different crossover and mutation probability.
MP represents mutation probability, and CP represents crossover probabil-
ity. At this case, the number of iterations is set to 25, and a population size
is set to 10.

encing training outcomes. While theoretically increasing these pa-
rameters should lead to better searches, experimental observations
(Figure 4) show that model accuracy peaks at a certain number of
iterations and may decline with further increases. Thus, determin-
ing the optimal number of iterations is essential. Regarding popu-
lation size, experimental results suggest that a larger size correlates
with higher model accuracy, as shown in Figure 5.
It is also crucial to consider the settings for selection probability
and crossover probability in genetic algorithms. Figure 6 illustrates
the impact of varying these parameters on model accuracy. Here,
CP and MP denote crossover probability and mutation probability,
respectively. Experimental results show that a crossover probability
of 0.6 generally leads to lower accuracy, with 0.7 or higher being
more suitable. Among five mutation probabilities tested, 0.001 is
found to be the most appropriate.
It is important to recognize that different tasks have unique charac-
teristics, requiring task-specific optimization of hyperparameters.
The effects of various population initialization methods and the im-
pact of genetic strategies on the model are illustrated in Figure 7.
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Fig. 7: Model accuracy at different strategies. Origin and Large represent two population initialization methods. Origin indicates that
all individuals are identical and set to the weight parameters of the baseline model, while Large retains one individual as the reference
model’s parameters and initializes the rest with added noise based on the reference model. The horizontal axis represents combinations of
two selection strategies and two mutation strategies. Here, RWS stands for the roulette wheel selection method, Rank for the ranking selection
method, MaxMin for the maximum-minimum mutation method, and AddNoise for the random noise addition mutation method.

Figure 7 illustrates the impact of different strategies on model ac-
curacy under two population initialization methods. Here, RWS
denotes the roulette selection method, Rank denotes the ranked
selection method, and MaxMin denotes the randomized max-min
variation strategy. The AddNoise strategy refers to a random noise
addition mutation strategy. The results indicate that the roulette
selection strategy and the random noise mutation strategy are
more effective than the other strategies, regardless of the initializa-
tion method. However, when considering the initialization method
alone, there does not seem to be a clear pattern.
This study further investigates the efficacy of ProtoNet utilizing
the FashionMNIST dataset. During training, five categories of data
were randomly selected from the FashionMNIST dataset, with 20
additional random samples per category. Five samples from each
category were assigned to the support set, and the remaining 15 to
the query set. The model’s weights were then quantized to 3 bits,
and had 20% noise added. Evaluated on a test set of 10 categories,
the model achieved an inference accuracy of 78.35% after quantiza-
tion and additive noise training. In the GA training, the same quan-
tization noise and dataset processing methods as the benchmark
model were used. The main parameters of the genetic algorithm
were set as follows: 25 iterations, a population size of 10, roulette
wheel selection, two-point crossover with a probability of 0.8, and
a random max-min mutation strategy with a variance probability of
0.01. Applying this training method to the FashionMNIST test set
achieved over 83.81% accuracy, representing approximately an 5%
improvement over the benchmark model.
To validate the effectiveness of the MobileNetV2 model, exper-
iments will be conducted on the CIFAR-10 dataset. This exper-
iment uses a quantization model obtained through quantization-
aware training with an adaptive core set selection method, as de-
scribed in reference [7]. During training, a 50% subset of the data
is selected for 2-bit quantization at each iteration, with 5% noise
added to the weights. The model’s inference accuracy on the full
test set is 77.91%.
Using the GA training method, the same quantization plus noise
approach, and dataset settings were applied. Key parameters for

the genetic algorithm included 5 iterations, a population of 10 indi-
viduals, ranked selection, two-point crossover with a probability of
0.8, and a random max-min variance strategy was employed with a
variance probability of 0.001. Applying this training method to the
CIFAR-10 test set yielded an accuracy of 83.18%, representing a
5% improvement over the baseline.
The experiment for the MicroNet model is based on the quantized
model proposed by Arturo Marban et al., which uses an entropy-
constrained training triangularization method, as described in ref-
erence [15]. This method involves creating a super network by scal-
ing the pre-trained model’s size, followed by simultaneous pruning
(using entropy constraints) and quantization (assigning ternary val-
ues layer by layer) during training, resulting in a sparse ternary net-
work. Using this ternary network, inference was performed on the
CIFAR-100 test set with 5% noise added to the weights, achieving
an accuracy of 73.90%.
For the GA training method, the same model architecture and quan-
tization with noise addition were used. The genetic algorithm pa-
rameters were set as follows: five iterations, a population size of 10,
a ranking selection strategy, a two-point crossover strategy with a
probability of 0.8, and a random max-min mutation strategy with a
variance probability of 0.001. Applying this training method to the
CIFAR-100 test set resulted in an accuracy of 76.19%, representing
a 2% improvement over the baseline.

4. CONCLUSIONS
In conclusion, enhancing the intelligence of edge devices neces-
sitates the implementation of more sophisticated network models.
Memristors have emerged as pivotal components for this purpose,
owing to their low power consumption and compact dimensions.
Nevertheless, the efficacy of current research is constrained by re-
liance on particular hardware configurations, computational com-
plexity, and various non-ideal characteristics, all of which warrant
further refinement. This paper introduces a robust solution to the
prevalent issue of accuracy degradation in memristor neural net-
works due to hardware imperfections. By implementing genetic al-
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gorithms training method, the adverse effects of non-ideal device
characteristics on neural network performance were effectively
countered. Comprehensive evaluations were performed on various
models, including ProtoNet, MobileNetV2, and MicroNet, which
demonstrated notable enhancements in accuracy. In particular, Pro-
toNet exhibited an accuracy increase of nearly 8% on the MNIST
dataset and approximately 5% on the FashionMNIST dataset. Mo-
bileNetV2 experienced an approximate 5% improvement in accu-
racy on the CIFAR-10 dataset, whereas MicroNet achieved an ac-
curacy enhancement of about 2% on the CIFAR-100 dataset. Ad-
ditionally, the analysis of the impact of various hyperparameters
provides further insights into optimizing performance. The results
affirm that the proposed approach not only enhances the accuracy
of memristor-based neural networks but also facilitates their practi-
cal deployment on edge devices, thus contributing valuable insights
for ongoing research in this area.
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