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ABSTRACT 

Audio classification plays a vital role in diverse fields such 

as communication, medical diagnostics, and forensic analysis, 

where accurate and reliable processing of audio signals is 

critical. This study presents a Convolutional Neural Network 

(CNN)-Attention framework designed to enhance performance 

and robustness in audio classification, addressing challenges 

such as adversarial threats, including backdoor attacks, which 

compromise model reliability. The framework achieves notable 

improvements in classification accuracy, demonstrating up to 

43.16% higher accuracy compared to traditional CNN models 

when evaluated on benchmark datasets such as 

UrbanSound8K, FSDKaggle2018, and ESC-50. Additionally, 

the framework achieves a peak accuracy of 98.41% on the 

UrbanSound8K dataset, underscoring its exceptional 

performance in real-world scenarios. Alongside its superior 

classification performance, the system exhibits strong resilience 

against adversarial attacks, maintaining the integrity and 

reliability of predictions under challenging conditions. By 

integrating attention mechanisms and leveraging advanced data 

augmentation techniques like time-stretching and pitch-

shifting, the framework significantly improves testing accuracy 

by 9.74%, 33.53%, and 43.16% across the three datasets, 

respectively. These advancements highlight its potential to 

effectively process and analysis audio data across various 

environments. This framework demonstrates its significance in 

applications demanding exceptional reliability and precision, 

establishing a benchmark for audio classification tasks across 

vital domains, including environmental monitoring, assistive 

technologies, and intelligent surveillance systems. 
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1. INTRODUCTION 

1.1 Motivation 
In the rapidly advancing field of audio processing, the demand 

for robust and accurate audio classification methods has become 

increasingly critical. Existing solutions, despite incremental 

improvements, often fail to meet the growing requirements of 

various industries. The pervasive presence of background noise 

in everyday electronic communications highlights this issue, 

where extraneous sounds frequently miscommunication and 

errors in result. For instance, clear audio transmission is vital 

in remote communication, where background noise can distort 

messages, leading to confusion and misinformation. 

The implications of audio classification extend into other 

essential areas. In the medical field, precise audio classification 

is crucial for diagnosing conditions such as pneumonia by 

analyzing patients’ breath sounds. Similarly, in forensic audio 

analysis, refining audio evidence to separate relevant sounds 

from noise is critical for accurate interpretation. 

Given the significance of audio classification in these diverse 

applications, there is a pressing need for more reliable and 

efficient methods. The presented architecture addresses this 

gap by delivering superior performance in audio classification 

tasks compared to existing CNN models. Furthermore, the 

suggested approach demonstrates resilience against backdoor 

attacks and leverages advanced techniques like time-stretching 

and pitch-shifting, underlining its robustness and adaptability. 

By improving the accuracy and reliability of audio 

classification, this innovative design aims to meet the stringent 

requirements of modern audio processing applications and drive 

advancements across multiple sectors. 

1.2 Primary Contribution 
(1) The novel architecture demonstrates significant 

improvements over widely used CNN models for audio 

classification. Extensive testing on datasets such as 

UrbanSound8k, FSDKaggle2018, and ESC-50 

highlights enhanced accuracy and efficiency. 

(2) Beyond superior classification capabilities, the 

implemented solution exhibits a remarkable ability to 

defend against backdoor attacks. This robustness 

ensures the reliability and integrity of the classification 

process, making it a safer choice for applications where 

security is critical. 

(3) Incorporating time-stretching and pitch-shifting 

techniques further boosts classification results. These 

advanced preprocessing methods contribute to nuanced 

and effective audio analysis, setting a new standard for 

performance in the field. 

2. RELATED WORKS 
In recent years, the field of audio categorization has witnessed 

significant progress, with numerous studies exploring various 

strategies and models to enhance accuracy and dependability. 

Among these, several works have profoundly influenced the 

current state of audio classification. 

A comprehensive evaluation of deep learning models [1] has 

been conducted to assess their effectiveness in audio 

classification tasks. This analysis provided valuable insights 

into the strengths and limitations of various architectures, such 

as Convolutional Neural Networks (CNNs) [2] and Recurrent 
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Neural Networks (RNNs) [3]. The evaluation emphasized the 

superiority of CNN-based models over RNNs for audio 

classification, as demonstrated by previous studies on models 

like CF-Clean, CF, DCNN [4], and Piczak-CNN [5]. These 

contributions have laid a solid foundation for developing 

advanced CNN-based architectures. 

Another pivotal advancement in the field involves applying data 

augmentation techniques to improve the classification of 

complex audio signals, such as baby cries [6]. By employing 

methods like time-stretching [7] and pitch-shifting [8] alongside 

Mel-Frequency Cepstral Coefficients (MFCC) [9] for feature 

extraction and Long Short-Term Memory (LSTM) networks for 

modeling [10], researchers have achieved substantial 

improvements in classification accuracy. These approaches 

highlight the potential of combining traditional feature 

extraction techniques with cutting-edge neural network 

architectures to refine audio classification tasks. 

Data augmentation strategies, including time-stretching and 

pitch-shifting [11], play a critical role in enhancing model 

resilience and overall effectiveness. Time-stretching modifies 

the speed of audio signals while maintaining their pitch, 

introducing greater diversity in the training dataset and 

enabling improved generalization. Such strategies ensure a 

robust and secure approach to audio categorization, enhancing 

model reliability under various conditions 

Building on these foundational works, the introduced 

framework integrates an attention mechanism into the CNN 

model. This integration results in a solution that surpasses the 

performance of existing CNN models while offering enhanced 

robustness against backdoor attacks. By combining accuracy 

and security in audio classification, the suggested approach 

demonstrates a comprehensive methodology for addressing the 

challenges of modern audio processing tasks. By combining 

accuracy and security in audio classification, the suggested 

approach demonstrates a comprehensive methodology for 

addressing the challenges of modern audio processing tasks. 

3. METHODOLOGY 

3.1 Data preparation  
The datasets for the research investigations were prepared using 

normalization [12], Fast Fourier Transformation [13], and 

Short-Time Fourier Transformation [14]. The datasets 

contained both the Mel Filterbank [15] and the Mel Frequency 

Cepstral Coefficient [16]. The following is an extensive 

explanation of the process, given in a sequential manner. 

Normalization: Audio files exhibit diverse waveforms 

influenced by several factors, including the bit depth of 

microphones. Typically, microphones have a bit depth of 16, 

allowing them to generate a range between 2 and 16 integers in 

the time domain to create waves [1]. To standardize these 

signals, a pre-emphasis filter is implemented, which serves 

multiple purposes. Normalization is a technique [17] that helps 

equalize the audio noise ratio [1] and reduces numerical 

difficulties in subsequent calculations by amplifying the 

magnitude of higher frequencies, which are often smaller 

compared to lower frequencies. The equation employed for 

pre-emphasis is: 

   y(𝑡) =  𝑥(𝑡) − β𝑥(𝑡 − 1) (1) 

Where β is the filter coefficient, typically valued at 0.95 or 0.97. 

This filtering process amplifies high-frequency components of 

the audio signal, making it more suitable for further analysis. 

Wave signals in their raw form are often challenging to interpret. 

To address this, the Fourier Transform is utilized to generate a 

frequency-magnitude graph known as a periodogram. 

Specifically, the Fast Fourier Transformation (FFT) is 

employed to efficiently compute this periodogram [18]. The 

mathematical expression for the discrete Fourier transform 

(DFT) is: 

𝑋(𝑘)𝑛 = ∑ 𝑥(𝑛)𝑒
−𝑗(

2π

𝑁
)𝑘𝑛

𝑁−1

𝑛=0
(2)  

Where X(k) represents the frequency component at index k, x(n) 

is the audio signal at time n, N is the total number of samples, 

and j is the imaginary unit. A periodogram graphically represents 

the highest frequency (up to 22 kHz) in relation to its magnitude. 

Spectrograms are generated by arranging periodograms next to 

each other over time, resulting in a visual depiction of the audio 

file. 

Unlike simply stacking periodograms, STFT involves 

overlapping them to capture the continuous nature of audio 

signals. The audio is split into frames of 25 ms with a 10 ms step, 

resulting in frames that overlap by 15 ms (60%). The STFT 

equation is:   

𝑋(𝑡, 𝑓) = ∑ 𝑥(𝑛)w(𝑛 − 𝑡)𝑒−𝑗2𝜋𝑓𝑛

∞

𝑛=−∞

(3) 

Where X (t, f ) represents the STFT of the signal x(n), w is the 

window function, and t and f are time and frequency, 

respectively. Utilizing a Hamming window function mitigates 

spectral leakage and compensates for the assumption of infinite 

data in FFT, resulting in a more precise frequency 

representation.  

Now using the Mel scale to replicate human auditory perception. 

The Mel scale is a perceptual pitch scale where listeners perceive 

each pitch as being equidistant from the next. The equation to 

convert a frequency f to the Mel scale is:  

m = 2595 log10 (1 +
𝑓

700
) (4) 

For the experiments, 26 Mel filters were utilized. These 

triangular filters are applied to the power spectrum, producing a 

26x100 matrix that represents 1 second of audio data. This 

transformation aids in sound identification by converting the 

power spectrum into a perceptual scale that better aligns with 

human auditory perception. 

In the final stage of pre-processing, the outputs of the Mel filter 

bank are transformed into a more condensed representation 

using Mel-Frequency Cepstral Coefficients (MFCC). MFCC 

applies the Discrete Cosine Transform (DCT) [19] to 

decorrelate the energy bands, reducing the 26x100 matrix into a 

13x100 matrix. The mathematical expression for the DCT is: 

𝑋𝑘 =  ∑ 𝑥𝑛 cos [
𝜋

𝑁
(𝑛 +

1

2
) 𝑘]

𝑁−1

𝑛=0
(5)  

Where 𝑋𝑘 represents the DCT coefficient at index k, 𝑥𝑛 is 

the input signal, and N is the number of points. This phase 

smoothens high-frequency data and facilitates the distinction of 

sounds by lowering the complexity of the feature space. 

By the end of the MFCC stage, the audio data is fully 

preprocessed and ready for input into the new CNN-Attention 

model. This pre-processing pipeline ensures that the audio 

signals are normalized, transformed, and compressed into a 

format that is optimized for classification tasks. 
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3.2 Signal-Based Backdoor Attack 
Backdoor attacks in machine learning involve injecting 

malicious triggers into the training data, causing the model to 

misclassify specific inputs while performing normally on other 

data [20]. To evaluate the resilience of the proposed model, a 

Signal-Based Backdoor Attack was implemented. This attack 

involves embedding a subtle, unique audio signal into a subset 

of the training data, acting as a trigger. The trigger signal is 

designed to be imperceptible to human listeners but detectable 

by the model. 

During training, this poisoned data is combined with clean data, 

ensuring the model associates the trigger signal with a specific 

target class. As a result, the model performs normally on clean 

data while misclassifying any input containing the trigger during 

testing. 

For the implementation, a trigger signal was generated and 

embedded into a portion of the audio samples from datasets 

such as UrbanSound8K, ESC-50, and FSDKaggle2018. The 

poisoned samples were labeled with a target class and mixed with 

the clean training data. The CNN-Attention model, designed for 

robust audio classification, was then trained on this combined 

dataset. This training process enabled the model to learn normal 

audio patterns while simultaneously misclassifying any audio 

containing the trigger signal into the predefined target class. 

After training, the model was evaluated using both clean and 

triggered test data. On clean data, it maintained high accuracy, 

demonstrating effectiveness in normal conditions. However, 

when tested with audio samples containing the trigger signal, it 

consistently misclassified them into the target class, confirming 

the success of the backdoor attack. This experiment 

underscores the vulnerability of machine learning systems to 

sophisticated attacks, emphasizing the need for developing 

more robust defenses in audio classification models to ensure 

reliability in critical applications. 

3.3 Model Architecture and Components 
The proposed CNN with Attention model presented here is an 

advanced deep learning framework specifically designed for 

audio categorization applications. The architecture integrates 

various essential components that collectively enhance 

performance and resilience. Below is a detailed explanation of 

each element in the model’s structure: 

Convolutional Layers: These layers perform convolution 

operations using five 3x3 filters. The layers progressively 

extract higher-level features that are critical for accurate 

classification. 

Attention Mechanism: Following the convolutional layers, the 

architecture incorporates a multi-head attention mechanism with 

8 heads. This layer allows the model to prioritize multiple 

crucial aspects of the audio signal simultaneously. The 

attention mechanism enhances the ability to differentiate 

between audio classes by emphasizing relevant features and 

suppressing extraneous ones. 

Dense Layers: Fully connected layers play a vital role, 

especially in the final stages, by consolidating learned features 

for classification. These layers capture complex patterns and 

relationships, integrate features, reduce dimensionality, and 

focus on the most significant aspects of the data. 

Dropout: To prevent overfitting, dropout ensures that the 

architecture does not overly rely on any specific set of features, 

thereby improving generalization capability. 

Activation Function: The ReLU activation function [21] 

replaces negative values in feature maps with zero, addressing 

the vanishing gradient problem and facilitating faster 

convergence during training. 

Global Average Pooling: The output from the attention 

mechanism undergoes global average pooling, which reduces 

each feature map to a single value. This step effectively 

summarizes information before classification layers, 

transforming variable sized feature maps into a fixed-size vector 

and improving classification efficiency. 

Fully Connected Layers: These layers consist of 256 units that 

combine features extracted by previous layers and introduce 

further non-linearity, producing raw output scores for each 

class.  

Softmax Function: The softmax function is critical for 

multiclass classification problems, ensuring the sum of 

predicted probabilities across all classes equals one, facilitating 

accurate and reliable predictions. 

The architecture, which includes five convolutional layers 

paired with max pooling and dropout, efficiently captures and 

processes audio spectrograms. By utilizing a multi-head 

attention layer, the model selectively focuses on key aspects of 

the audio signal, thereby improving classification accuracy. The 

adoption of ReLU activations, adaptive average pooling, and 

the optimization of training using the Adam optimizer and 

categorical cross-entropy loss further enhance the model’s 

performance and resilience in audio categorization tasks. 

3.4 Equations 

The key equations used in the presented framework are 

essential for understanding its functionality and effectiveness in 

audio classification tasks. These equations are as follows: 

Cross-Entropy Loss: The cross-entropy loss function evaluates 

the effectiveness of the framework by calculating the disparity 

between the predicted probability and the actual class labels. 

The equation is given as: 

𝐿 =  − (
1

𝑁
) ∑ 𝑦𝑖 log(ŷ𝑖)

𝑁

{𝑖=1}

(6) 

Where L is the cross-entropy loss, N is the number of samples, 

𝑦𝑖 is the true label for the i-th sample, ŷ𝑖 is the predicted 

probability for the i-th sample, and log (ŷ𝑖) is the natural 

logarithm of the predicted probability. This function penalizes 

predictions that deviate significantly from the actual labels, 

imposing a higher penalty on incorrect predictions made with 

high confidence. 

Attention Weights: The attention mechanism allows the 

architecture to focus on the most relevant components of the 

input sequence [22]. This mechanism normalizes the relevance 

scores as follows: 

𝛼𝑖 =
exp(𝛼𝑖)

∑ exp(𝑒𝑗)𝑇
{𝑗=1}

(7) 

Where 𝛼𝑖 is the relevance score of the i-th frame and T is the total 

number of frames. This mechanism ensures that the framework 

emphasizes the most critical parts of the audio signal during the 

classification process. 
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Feature Aggregation: The feature aggregation step combines 

the weighted features from the attention mechanism to form a 

comprehensive representation of the input: 

𝑐𝑖 = ∑ 𝛼𝑡

𝑇

𝑡=1

ℎ𝑡 (8) 

Where ℎ𝑡 represents the hidden state at time t and αt denotes 

the attention weight. This step allows the framework to generate 

more accurate and informed predictions. 

During training, the cross-entropy loss optimizes the 

framework by penalizing incorrect predictions, thereby 

improving its ability to distinguish between audio classes. The 

feature aggregation step combines weighted features into a 

cohesive representation, further boosting predictive 

capabilities. 

These equations serve as the foundation of the architecture’s 

superior performance in audio classification tasks, ensuring 

both accuracy and robustness against potential backdoor 

attacks. 

4. EXPERIMENTAL ANALYSIS 
This research provides a comprehensive experimental evaluation 

of the CNN-Attention framework for audio classification. The 

performance of the proposed model is assessed on three 

publicly available datasets: UrbanSound8K, FSDKaggle2018, 

and ESC-50.  

The analysis involves a comparison of the presented model 

with the conventional CF and CF-Clean models, focusing on 

metrics such as accuracy and loss. Additionally, the resilience of 

each model against adversarial conditions is evaluated through 

the application of a backdoor attack, examining its impact on 

classification accuracy.  

4.1 Dataset 
For this study, three publicly accessible datasets were utilized: 

UrbanSound8K, ESC-50, and FSDKaggle2018 [23]. These 

datasets served as the foundation for training and testing the 

CNN-Attention model in audio classification tasks. 

The spectrograms for several urban sound classes from the 

UrbanSound8K” dataset are illustrated in Figure-1. Each plot 

depicts frequency on the y-axis over time, with the intensity of 

color indicating the volume of sound at each frequency, 

measured in decibels (dB). These spectrograms visually 

represent distinct sound patterns across various urban noise 

categories. By analyzing these patterns, machine learning 

models can effectively learn to identify and categorize different 

types of sounds, facilitating precise audio categorization in 

real-world environments. 

 

Figure 1 : Spectrograms Representing Classes in 

UrbanSound8K Dataset 

The procedure involves transforming audio recordings into 

spectrograms, which visually represent the frequency spectrum 

over a specific period. These spectrograms are input into the 

CNN along with a linear classifier to predict the sound 

category. The UrbanSound8K dataset is organized into 10 

folds, where audio recordings are stored in subfolders, and 

metadata is provided in a CSV file. The CSV file contains details 

about each audio sample, including its filename, class label, and 

fold position. 

Spectrograms are generated using the mel-spectrogram function 

from the Librosa library, which captures the visual features of 

sounds in a manner analogous to image processing. The labels 

are converted into categorical data for classification, with the 

CNN serving as the primary model layer to effectively 

categorize the sound data. 

The UrbanSound8K dataset contains 8,732 sound excerpts, each 

approximately 4 seconds long, divided into 10 classes: air 

conditioner, car horn, children playing, dog bark, drilling, 

engine idling, gunshot, jackhammer, siren, and street music. 

This dataset offers a diverse range of urban sounds, making it 

highly suitable for evaluating models designed for 

environmental audio classification. 

The ESC-50 dataset includes 2,000 audio recordings, each 

lasting about 5 seconds and categorized into 50 distinct classes 

[24]. These classes are grouped into five overarching 

categories: animal vocalizations, environmental sounds, human 

speech, indoor/domestic sounds, and urban disturbances.  

The FSDKaggle2018 training dataset comprises 9,473 audio 

samples spanning 41 classes. The audio samples range from 300 

milliseconds to 30 seconds in length, reflecting diverse user 

recording preferences. This dataset includes a broad spectrum of 

sounds, offering a robust platform for training models to 

recognize various audio events. 
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4.2 Model Approaches 
Both Mel-spectrograms and MFCC were utilized for feature 

extraction, considering that the human ear is not particularly 

sensitive to subtle variations in high-frequency noises. This 

approach is well supported in the literature [9]. 

Two different methodologies, labeled as ‘CF’ and ‘CF-Clean,’ 

were tested to determine which produced superior results. 

However, the batch size varied as each method generated a 

different number of samples. Both models employed the 

‘Adam’ optimizer, known for its rapid convergence [25]. The 

softmax loss approach, also referred to as the softmax loss 

function, was used to calculate the loss by accounting for the 

probabilities of all incorrectly categorized outputs [25]. 

CF Model: The CF model does not address the imbalance in 

class distribution or MFCC characteristics when using the 

Librosa library. The dataset was divided into a 75:25 ratio for 

training and testing, ensuring a sufficient amount of testing data 

for reliable evaluation. 

CF-Clean Model: The CF-Clean model resampled audio to 16 

kHz to capture key sound variations at lower frequencies, 

reducing data points for faster training. A signal envelope 

function with a rolling window was applied to retain significant 

portions above the noise floor. Samples were calculated by 

doubling and dividing them into 0.1 second segments, resulting 

in more samples than those generated by the CF model. Data 

was split into a 9:1 ratio for training and testing, with 

preprocessing methods based on Adams’s research [26]. 

Before feeding samples into the model, normalization was 

performed by scaling values between the minimum and 

maximum, which improved classification accuracy [26]. This 

method was applied consistently to both CF and CF-Clean 

models. The experimental code is documented [27], and 

(Figure-2) illustrates a comparison of the two models.  

 
Figure 2 : Flowchart of the audio processing steps for CF 

Model and CF-Clean Model 

 

The CNN model architecture was based on prior research by 

Piczak [5]. Training and testing were conducted on a high- 

performance computing environment equipped with an Nvidia 

RTX 3090 GPU. The substantial computational power and 

memory of this setup enabled efficient training and testing of the 

models. 

Table 1: Number of samples in different datasets for 

various models 

Models Dataset Train Test 
 UrbanSound8k 9566 6467 

Proposed Model FSDKaggle2018 8460 5671 
 ESC-50 3655 2167 
 UrbanSound8k 6549 2183 

CF Model FSDKaggle2018 7104 2369 
 ESC-50 1500 500 
 UrbanSound8k 155227 17248 

CF-Clean Model FSDKaggle2018 1008384 112043 
 ESC-50 155207 17246 

The CF-Clean model allocated a smaller portion of the dataset 

for testing compared to the CF model. This adjustment was 

necessary due to the CF-Clean model generating a significantly 

larger total number of samples through segmentation. 

Table 1 provides a detailed comparison of the training and testing 

samples for the introduced framework and the two baseline 

models. The introduced framework processes a moderate 

number of samples from the datasets, ensuring efficient 

computation and generalization. In contrast, the CF model 

employs fewer samples, reflecting its simpler preprocessing 

methodology. The CF-Clean model, on the other hand, 

significantly increases the number of samples through advanced 

preprocessing techniques, including down-sampling and noise 

floor detection, resulting in a substantially larger dataset for 

both training and testing.  

 
Figure 3 : Data Preprocessing and Proposed Model 

Evaluation Workflow 
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The flowchart above (Figure-3) illustrates the comprehensive 

workflow of data preprocessing, model training, and evaluation 

in this study. The process begins with loading the dataset, which 

includes audio samples from sources such as UrbanSound8K, 

FSDKaggle2018, and ESC-50. This is followed by initial data 

cleaning to remove noise or irrelevant parts of the audio, 

ensuring that the input data is of high quality. Subsequently, the 

cleaned audio data is converted into spectrograms, which 

visually represent the audio signal in the frequency domain and 

capture essential features for classification. 

After pre-processing, the data is partitioned into separate sets for 

training and testing. Data augmentation techniques are applied 

to the training data to artificially expand the dataset size and 

enhance the model’s resilience. Introducing heterogeneity in 

the training samples is crucial for improving the model’s ability 

to generalize from limited information. 

The model is then trained using a combination of augmented 

and non-augmented training data, allowing it to efficiently learn 

patterns and characteristics from the input data. To assess the 

model’s robustness, a backdoor attack is introduced to the test 

data. This intentional manipulation evaluates how well the model 

can handle malicious data alterations, ensuring that it remains 

reliable under adversarial conditions. 

5. PERFORMANCE ANALYSIS 
On the UrbanSound8K dataset, the proposed framework 

achieves a peak accuracy of 98.41%, significantly surpassing 

the CF-Clean model, which records 94.52%, and the CF model, 

which achieves only 52.47%. This result highlights the 

effectiveness of the attention mechanism and advanced 

preprocessing techniques integrated into the proposed 

framework.  

Similarly, on the FSDKaggle2018 dataset, the proposed 

framework achieves an accuracy of 88.41%, outperforming the 

CF-Clean model at 87.62% and the CF model at 54.88%. On the 

ESC-50 dataset, the proposed framework records an accuracy 

of 88.76%, exceeding the CF-Clean model’s accuracy of 

87.88% and the CF model’s performance of 45.60%. 

Table 2 : Comparative Performance Analysis among 

Proposed Model, CF-Model, and CF-Clean Model 

Models Dataset Accuracy (%) Loss (%) 

Train Test Train Test 

Proposed Model UrbanSound8k 

FSDKaggle2018 

98.41 

94.37 

95.63 

88.41 

11.84 

22.17 

19.67 

49.51 

 ESC-50 89.77 88.76 18.55 63.40 

CF UrbanSound8k 

FSDKaggle2018 

97.57 

93.26 

85.89 

54.88 

7.82 

22.37 

85.89 

339.34 

 ESC-50 88.87 45.60 41.17 314.31 

CF-Clean UrbanSound8k 

FSDKaggle2018 

98.38 

94.26 

94.52 

87.62 

4.42 

23.00 

22.25 

54.81 

 ESC-50 96.89 87.88 9.58 66.06 

The proposed model consistently (Table-2) achieves the 

highest testing accuracy across all datasets, significantly 

outperforming the CF-Model by 9.74% on UrbanSound8K, 

33.53% on FSDKaggle2018, and 43.16% on ESC-50. 

Compared to the CF-Clean Model, whereas, proposed Model 

shows improvements of 1.11%, 0.79%, and 0.88% respectively. 

Therefore, these results underscore the proposed model’s 

superior accuracy and effectiveness in audio classification 

tasks. 

5.1 Accuracy Comparison across Models 
This subsection highlights the performance comparison 

between the proposed framework, CF-Clean model, and CF 

model across three benchmark datasets: UrbanSound8K, 

FSDKaggle2018, and ESC-50.  

 

Figure 4 : Comparison of Proposed Model, CF-Clean 

Model, and CF Accuracy on datasets 

Figure 4 shows the accuracy comparison between the proposed 

framework, CF-Clean model, and CF across three datasets. The 

proposed framework achieves the highest accuracy of 98.41% 

on UrbanSound8K, showcasing its superior performance. 

These results demonstrate the superior performance of the 

proposed framework, underscoring its ability to generalize 

effectively across diverse datasets. The framework’s consistent 

outperformance of baseline models can be attributed to the 

incorporation of attention mechanisms, data augmentation 

techniques such as time-stretching and pitch-shifting, and a 

robust architecture. These advancements establish the proposed 

framework as a reliable and efficient solution for audio 

classification tasks. 

5.2 Impact of Backdoor Attacks 
Table 3 : Impact of Backdoor Attacks on Model 

Performance 

Models Dataset Accuracy (%) Loss (%) 

Train Test Train Test 

Proposed Model UrbanSound8k 

FSDKaggle2018 

98.41 

94.37 

46.78 

40.83 

11.84 

22.17 

55.72 

60.55 
 ESC-50 89.77 41.87 18.55 59.46 

CF UrbanSound8k 

FSDKaggle2018 

97.57 

93.26 

15.91 

18.21 

7.82 

22.37 

90.36 

350.19 
 ESC-50 88.87 19.14 41.17 350.22 

CF-Clean UrbanSound8k 

FSDKaggle2018 

98.38 

94.26 

31.44 

37.71 

4.42 

23.00 

50.33 

70.41 
 ESC-50 96.89 33.80 9.58 70.16 

Table 3 shows that the accuracy of all models decreased 

after the backdoor attack, but the introduced framework 

experienced a relatively smaller decline in accuracy compared 

to the CF-Model and CF-Clean Model. Specifically, for the 

UrbanSound8K dataset, the framework’s testing accuracy 
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decreased to 46.78%, while the CF-Model and CF-Clean Model 

dropped significantly to 15.91% and 31.44%, respectively. 

Similarly, for the FSDKaggle2018 dataset, the framework 

maintained a testing accuracy of 40.83%, compared to 18.21% 

for the CF-Model and 37.71% for the CF-Clean Model. For the 

ESC-50 dataset, the framework achieved a testing accuracy of 

41.87%, whereas the CF-Model and CF-Clean Model recorded 

accuracies of 19.14% and 33.80%, respectively. 

The loss percentages further emphasize the robustness of the 

proposed framework. Despite the backdoor attack, its testing 

losses, while increased, remained lower than those of the CF-

Model and CF-Clean Model across all datasets. This 

demonstrates that the framework not only retains higher 

accuracy but also maintains relatively lower error rates under 

adversarial conditions. 

 

Figure 5 : Accuracy after Backdoor Attacks across Models 

on Datasets 

Figure 5 highlights the significant drop in accuracy caused by 

backdoor attacks across all models. Despite the attack, the 

Proposed Model demonstrates higher resilience compared to the 

CF and CF-Clean models. 

These findings highlight the exceptional resilience and 

robustness of the introduced framework against backdoor 

attacks. The integration of advanced data preprocessing and 

augmentation techniques plays a pivotal role in enhancing its 

ability to resist adversarial manipulations. 

5.3 Performance with Data Augmentation 
By applying data augmentation on clean data and testing (Figure-

3), the introduced framework demonstrated significant 

improvements. For the UrbanSound8K dataset, the framework 

achieved a testing accuracy of 60.45% and a testing loss of 

57.24%. In comparison, the CF-Model and CF-Clean Model 

exhibited lower testing accuracies of 33.01 and 40.09%, 

respectively, with higher testing losses of 85.85% and 65.83%. 

Table 4 : After applying data augmentation on clean data 

and testing on attacked data 

Model Dataset Accuracy (%) Loss (%) 

Train Test Train Test 

Proposed Model UrbanSound8k 

FSDKaggle2018 

 96.85 

 92.36 

60.45 

58.63 

15.94 

24.57 

57.24 

65.82 

 ESC-50   90.07 56.95 26.55 61.36 

CF UrbanSound8k 

FSDKaggle2018 

 98.89 

 95.46 

33.01 

31.86 

19.12 

27.64 

85.85 

381.09 

 ESC-50   89.55 29.93 56.11 376.58 

CF-Clean UrbanSound8k 

FSDKaggle2018 

 97.88 

 93.49 

40.09 

43.66 

11.36 

36.56 

65.83 

76.29 

 ESC-50    95.04 39.15 13.90 66.59 

Table 4 highlights the consistent superiority of the proposed 

framework over the CF and CF-Clean models [1] across all 

datasets. These results underscore the framework’s robustness 

and effectiveness in handling adversarial conditions, 

emphasizing the value of advanced data augmentation and 

preprocessing techniques. 

For the FSDKaggle2018 dataset, the framework maintained a 

high testing accuracy of 58.63% with a testing loss of 65.82%. 

This performance significantly surpassed that of the CF-Model, 

which achieved a testing accuracy of 31.86% and a very high 

testing loss of 381.09%. The CF-Clean Model performed 

relatively better, achieving a testing accuracy of 43.66% and a 

testing loss of 76.29%, but it still lagged behind the introduced 

framework. 

 

Figure 6 : Testing accuracy improvements achieved 

through data augmentation techniques on datasets. 

Figure 6 illustrates the testing accuracy improvements achieved 

through data augmentation techniques such as time-stretching 

and pitch-shifting. The proposed framework exhibits significant 

gains across all datasets, with the most notable improvement of 

43.16% observed on the ESC-50 dataset. 

In the ESC-50 dataset, the framework attained a testing 

accuracy of 56.95% with a testing loss of 61.36%. In contrast, 

the CF-Model recorded a testing accuracy of 29.93% and a 

testing loss of 376.58%, while the CF-Clean Model achieved a 

testing accuracy of 39.15% and a testing loss of 66.59%. 

6. CONCLUSION 
This research presents a robust CNN-Attention framework for 

audio classification, achieving notable advancements in 
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accuracy, resilience, and adaptability compared to traditional 

CNN models. The framework achieves a peak accuracy of 

98.41% on the UrbanSound8K dataset, which underscores its 

superior performance and effectiveness. Comprehensive 

testing on benchmark datasets, including UrbanSound8K, 

FSDKaggle2018, and ESC-50, demonstrates significant 

accuracy improvements of up to 43.16% over conventional 

models, establishing the framework as a benchmark for audio 

classification tasks.  

In addition to its classification prowess, the framework exhibits 

remarkable resilience against backdoor attacks, maintaining 

significantly higher accuracy and lower loss rates than CF and 

CF-Clean models under adversarial conditions. This robustness 

is further enhanced by advanced preprocessing techniques such 

as time-stretching and pitch-shifting, which contribute to 

improved testing accuracy by 9.74%, 33.53%, and 43.16% 

across the three datasets. The results of this study underline the 

potential of the framework in applications demanding high 

reliability and accuracy, such as environmental monitoring, 

medical diagnostics, and intelligent surveillance systems. 
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