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ABSTRACT 

The advent of new technologies, systems, trend workforce and 

new applications in manufacturing/production sector has 

undoubtedly lightened workloads. However occasional 

diversifications in production system cannot be completely 

eliminated. Each produced/ordered batch may contain a 

fraction of defective items which can vary from batch to batch.  

Nevertheless, defective items are often removed from high 

quality batch through a discrete screening procedure. Thus, a 

screening process is considered an essential task in technology 

-based industries, with the sole objective of ensuring customer 

satisfaction. Furthermore, the repetition of same tasks enhances 

workers efficiency. Additionally, credit financing has been 

recognized as an impressive promotional tool to attract new 

customers and serve as an effective incentive scheme for 

retailers.   

Based on this scenario, the present article proposed an 

inventory model for a retailer dealing with imperfect quality 

items under permissible delays in payment. A screening 

process was applied to each batch to separate good and 

defective items and learning effects were analyzed with 

allowable shortages under fully backlogged demand. This 

model developed such strategies so that the order quantity, 

shortages and the number of repetitions on screening are 

optimized and the expected total profit may be maximum. A 

mathematical model was formulated to represent this scenario. 

The results were validated using numerical examples and a 

comprehensive sensitivity analysis was conducted with respect 

to key parameters. 
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1. INTRODUCTION 

The traditional parsimonious order quantity (EOQ) models, 

although functional but often impractical because that are based 

on restrictive and fanciful assumptions, due to which they 

inconvenient to use for many industries today. In the real life 

scenario, the inventory model should include certain 

characteristics which demonstrate the real inventory 

circumstance. Out of many real life factors, imperfect 

production is one such factor which can not be neglected, 

because in the inventory system very often a mixer of both good 

and defective items may include and the inventory value is 

dependent on the product quality and customers satisfaction. 

Very often imperfect quality may be considered as spoilage, 

damage, decay, obsolescence, evaporation, etc. consequently, 

the usefulness of the original one is affected. In many situations 

for items such as steel, hardware, glassware and toys in which 

for smal batch size, the rate of defective items is low in each 

case, there is slight need to consider imperfect quality factor for 

obtaining of the economic batch size. However, in the large 

scale industries batch size can not be small, in such cases the 

rate of defective items can not be neglected. 

Singa et al. [16] proposed an EPQ model for imperfect quality 

items, where the production rate of defective items was 

governed by an expected random variable. They assumed that 

the defective items were separated through a screening process. 

Chiu [2] developed an EPQ model that incorporated the 

reworking of defective items into their economic production 

model, allowing for backlogging. This approach differed from 

the classic EPQ model, which assumes a perfectly functioning 

manufacturing facility. Chung K. J. and Hou K. L. [3] 

formulated a cost function by optimizing run time for a 

deteriorating production system under allowable shortage. In 

this system, it was evident that the elapsed time until the 

production process shift was arbitrarily distributed during a 

production run. Daya and Hariga [1] studied the effects of 

imperfect production procedure on economic lot scheduling 

problem (ELSP). It has been assumed that after system gets 
deterioration of facility with time and shifts at a random time 

to an out of control state and begins to produce defective items..  

The traditional EPQ/EOQ model was extended by Salameh and 

Jaber [13] through  incorporating  of an imperfect quality items 
into the EPQ/EOQ formulation. It was assumed in the study 

that poor-quality items were sold as a single batch at the end of 

the screening process. Hayek and Salameh [6] investigated the 

effects of imperfect quality items on the finite production 

system incorporating a rework process for defective items at a 

constant rate following production stoppage. In this study the 

percentage of defective items was treated as a random variable, 

characterized by a known probability density function. Sana 

[12] investigated  the random time in which the  production 

facility transitioned from an in-control state to an out-of-control 

state for an imperfect production system. In this article they 

removed the barrier of the basic assumption of the classical 

EPL model is that 100% of produced items are perfect quality 

which not valid for most of the production environments. 

A single-stage manufacturing system of an economic 

production quantity (EPQ) under planned backorders model 

with rework process was developed by Sarkar et el. [14]. A 

production model with possible preventive measures to reduce 

imperfect production was developed by Shah et al. [15]. This 

model was designed on the basis of stocking strategies 

screening and maintain customer goodwill. Production models 

based on two categories of defective products-reworkable and 

rejected items- were proposed by Kang et al. [7].  Four types of 
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distribution density functions, including uniform, triangular, 

double triangular and beta distribution were used to represent 

the defective items produced. 

The effects of learning on economical lot-sizing models were 

investigated by Marchi et al. [10] and strategies to optimize cost 

functions associated with imperfect quality items were 

formulated. 

The effect of imperfect quality items on a production system 

was analyzed by Khanna et al. [8], and has been further 

developed under the inspection and rework process. Two 

situations for the imperfect quality items have been handled: 

either they are sold at a reduced price or reworked.   A two stage 

production model was designed by Glock and Jaber [5], 

incorporating the effects of learning and forgetting under the 

position of a potential bottleneck in the system,  where the first 

stage is used to make semi-finished items and second stage is 

used to make finished items. An inventory model was 

constructed by Gautam et al. [6] to handle only defective 

products, applying a proficient rework to make the product fit 

to be sold at the primary price. The demand for the product has 

been assumed to depend on the selling price and 

advertisements. 

Every produced or ordered lot may contain some fraction of 

defectives, which may differ from process to process. The 

situation becomes more susceptible when the items are 

deteriorating in nature. A credit financing  policy for 

deteriorating imperfect quality items was constructed by 

Khanna et al. [9], incorporating allowable shortages, in which 

a screening procedure was also applied to separate the good and 

defective items. In this article an EOQ model for imperfect 

quality items under credit financing scheme allowing with 

shortage has been developed. Furthermore, the learning effects 

on the screening process have been analyzed under the learning 

curve effects. We have used Sigmoid function (curve) which is 

governed by the formula 𝑥(𝑛) = (
𝐴

𝐺+𝑒𝐵𝑛
), where 𝑥(𝑛) is 

defective percentage rate of item in the single batch,  n number 

of efforts, 𝐴, 𝐵, 𝐺 > 0 are constants parameters as Wright T. 

P.[17] and Nigwal et al [11]. 

2. NOTATIONS AND ASSUMPTIONS 

2.1 Assumptions: Assumptions that are 

used to develop the model  
• The demand rate is deterministic constant and 

continuous, 

• Shortages are allowed, Backlogged demand is 

fulfilled it right time up after completion of 

screening process, 

• The supplier offers a certain credit period M to 

settle the account to the retailer, 

• The screening process and demand proceeds 

simultaneously, but 𝝀 > 𝑫, 
• An interest rate is charged by supplier between the 

interval 𝑴 to 𝑻. 
• The credit period  𝑴  lies between 𝟎 to 𝑻. 

 

 

2.2 Notations: Notations that are used to 

develop the model 
1. 𝒚: Ordering cost, 

2. 𝒄𝒑: chasing cost per unit for retailer, 

3. 𝒉𝒄: Holding cost per unit item per unit time, 

4. 𝒙(𝒏): Fraction of imperfect quality items, 

5. 𝝀: Screening rate in units/unit time, 

6. 𝜷: Screening cost per unit items, 

7. 𝒕𝒔: Screening time, where 𝒕𝒔 =
𝝓𝒏

𝝀
, 

8. 𝝓𝒏: Ordered quantity, 

9. 𝑻: Replenishment cycle length, 

10. 𝑫: Constant demand rate/unit time, 

11. 𝑰𝒆: Earned interest per unit time, 

12. 𝑰𝒑: Paid interest per unit time, 

13. 𝒃: Allowable maximum backordered level per 

cycle, 

14. 𝒑: Selling price per unit item, 

15. 𝑴: Permissible delay period in square off the 

account, 

16. 𝒄𝟏: Shortage cost per unit per unit time, 

17. 𝒄𝒔: Selling price per unit of imperfect quality items, 

18. 𝑰𝟏(𝒕): Inventory level during the time interval 
(𝟎, 𝒕𝒔), 

19. 𝑰𝟐(𝒕): Inventory level during the time interval 
(𝒕𝒔  𝒕𝟏). 

 

3. THE MATHEMATICAL MODEL 
The problem of initial batch size ∅𝒏 supplied instantaneously 

to a retailer with the purchasing price 𝒄𝒑 per unit and ordering 

cost 𝒚 has been encounterd. As per assumptions each delivered 

batch contains some fractions of imperfect quality items 𝐱(𝐧). 
A 100% screening process is applied on received upon each 

received batch   at a screening rate 𝝀 per unit time. The 

imperfect quality items are separated through screening and 

kept in stock as single batch and sold  at a discounted price 𝑪𝒔 

per unit at the end of the cycle  where 𝒄𝒑 > 𝑪𝒔. Let D be the 

demand rate per unit time, 𝒕𝒔 be the screening time for unit 

cycle and 𝑻 be the cycle length. It has been assumed that the 

backlogged demand is fulfilled after the completiting 

screening. Moreover, let b be the backordered level, and t2 the 

time to build backordered level of b units at the rate D, 𝒕𝟐 =
𝒃

𝑫
. 

During the time interval(𝟎, 𝒕𝒔) and (𝒕𝒔, 𝒕𝟏)  inventory levels be 

𝑰𝟏(𝒕) and 𝑰𝟐(𝒕), respectively. Due to demand inventory level 

𝑰𝟐(𝒕) reaches zero at 𝒕𝟏.  At the time 𝒕𝟏 the backordered 

demand starts building at the demand rate 𝑫 until the initiating 

of a new cycle, when a new batch of size ∅𝒏  is received. The 

backordered level is still pending shortly after receiving the 

new batch until screening process of the new batch is 

completed at the time 𝒕𝒔. After instantaneously backordered 

demand is fulfilled. Let 𝑰𝟏(𝒕) be the inventory level  in the time 

interval (𝟎, 𝒕𝒔), at any movement inventory status is 

represented by the differential equation 

  
𝒅𝑰𝟏(𝒕)

𝒅𝒕
= −𝑫,           𝟎 ≤ 𝒕 ≤ 𝒕𝒔                  (𝟑. 𝟏) 

With the initial and boundary conditions at   𝒕 =
𝟎,    𝑰𝟏(𝒕) = ∅𝒏 and  at    𝒕 = 𝒕𝒔,    𝑰𝟏(𝒕𝒔) = (𝟏 −
𝒙(𝒏))∅𝒏 

The solution of the  equation (3.1) together with the 

boundary condition  𝒕 = 𝒕𝒔,    𝑰𝟏(𝒕𝒔) = (𝟏 −
𝒙(𝒏))∅𝒏  is 

   𝑰𝟏(𝒕) = −𝑫𝒕 + 𝑫𝒕𝒔 + (𝟏 − 𝒙(𝒏))∅𝒏           (𝟑. 𝟐)    

Since the screening process is applied on the batch of 
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imperfect quality items, therefore after the screening 

process the number of defective items at time 𝒕𝒔   will be  

  𝒙(𝒏)∅𝒏  and let the back ordered will be b. Furthermore 

the effective inventory level at 𝒕 = 𝒕𝒔, after removing the 

defective items and backorders is given by 

                    𝑰𝒆𝒇𝒇(𝒕𝒔) = (𝟏 − 𝒙(𝒏))∅𝒏 − 𝒃              (𝟑. 𝟑)  

Let  𝑰𝟐(𝒕) be the another inventory level at any time 

interval (𝒕𝒔 ≤ 𝒕 ≤ 𝒕𝟏). 

The inventory status for the period  𝒕𝒔 ≤ 𝒕 ≤ 𝒕𝟏 is 

governed by  

             
𝒅𝑰𝟐(𝒕)

𝒅𝒕
= −𝑫,           𝒕𝒔 ≤ 𝒕 ≤ 𝒕𝟏               (𝟑. 𝟒) 

With the initial and  boundary conditions at   𝒕 =
𝒕𝒔,    𝑰𝟐(𝒕) =  𝑰𝒆𝒇𝒇(𝒕𝒔). 

The solution of the  equation (3.4) together with the 

boundary condition 𝒕 = 𝒕𝒔,    𝑰𝟐(𝒕) =  𝑰𝒆𝒇𝒇(𝒕𝒔) is given 

by  

          𝑰𝟐(𝒕) = 𝑫(𝒕𝒔 − 𝒕) + (𝟏 − 𝒙(𝒏))∅𝒏 − 𝒃          (𝟑. 𝟓)  

We have to solve the equation for 𝒕𝟏 with the condition  

𝒕 = 𝒕𝟏, 𝑰𝟐(𝒕𝟏) = 𝟎. 

Figure-1 

𝒕𝟏 =
𝑫𝒕𝒔 + (𝟏 − 𝒙(𝒏))∅𝒏 − 𝒃

𝑫
                         (𝟑. 𝟔) 

                               𝑻 = 𝒕𝟏 + 𝒕𝟐                    (𝟑. 𝟕)        

Where 𝒕𝟏 =
𝒃

𝑫
 

The present article has been developed on the basis of 

permissible delay in payment. therefore,  retailer's total 

profit function 𝒛𝒋 𝒋 = 𝟏, 𝟐, 𝟑 𝒗𝒊𝒛. must be depended upon 

the credit period, We focus on three distinct possible 

cases, which was explained here 

 3.1 Case 1:0 ≤ 𝑀 ≤ 𝑡𝑠 

 3.2 Case 2:𝑡𝑠 ≤ 𝑀 ≤ 𝑡1 

 3.3 Case 3:𝑡1 ≤ 𝑀 ≤ 𝑡2 
retailers total profit function can be determined  by 

considering the following components: 

𝑧𝑗 = 𝑆𝑎𝑙𝑒𝑠 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑐𝑎𝑠𝑡 

−𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 − 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 − 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡
+  𝐸𝑎𝑟𝑛𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 – 𝑃𝑎𝑖𝑑 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡                    (3.8)  

1. Total Sales revenue = sales of perfect 

quality items + sales of imperfect quality 

items =p(1 −

x(n))∅𝑛+𝐶𝑠 x(n)∅𝑛      (3.9) 

2. Ordering cost per cycle =
 𝑦                                     (3.10)   

3. Screening cost per unit items   

=   𝛽∅𝑛                        (3.11)   
4. Shortage cost  = 𝑐1𝑏(𝑡2 +

2𝑡𝑠)                     (3.12)   
5. Holding cost during the two time interval 

[0, 𝑡𝑠] and [𝑡𝑠, 𝑡1] 

                            = ℎ𝑐 [∫ 𝐼𝟏(𝑡)𝒅𝒕
𝑡𝑠

0
+ ∫ 𝐼𝟐(𝑡)𝒅𝒕

𝑡1

𝑡𝑠
]   

 = ℎ𝑐 [𝐷𝑡1𝑡𝑠 −
𝐷𝑡1

2

2
+ (1 − 𝑥(𝑛))∅𝑛𝑡1   + 𝑏(𝑡𝑠 −

                        𝑡1)]                                                     (3.13)   

  To get the formula of last two components viz earned and paid 

interest were considered the following three different cases 

Case 1:0 ≤ 𝑀 ≤ 𝑡𝑠    
In this case retailer can earn interest on revenue generated from 

the sales up to credit period 𝑀. After the credit period 𝑀 retailer 

can pay the interest at some specified  rate from 𝑀 to 𝑇. 

 
Figure-2 

Interest Earned  = 𝑝𝐼𝑒 ∫ 𝐷𝑡𝑑𝑡 = 𝑝𝐼𝑒
𝐷𝑀2

2
         (3.14)

𝑡𝑠

0
 

               Interest Payable   = 𝑐𝑝𝐼𝑝 [∫ 𝐼𝟏(𝑡)𝒅𝒕
𝑡𝑠

𝑀
+ ∫ 𝐼𝟐(𝑡)𝒅𝒕

𝑡1

𝑡𝑠
] 

= 𝑐𝑝𝐼𝑝 [𝐷𝑡1 (𝑡𝑠 −
𝑡1
2

) + (1 − 𝑥(𝑛))∅𝑛(𝑡1 − 𝑀)

− 𝐷𝑀 (𝑡1 −
𝑀

2
) + 𝑏(𝑡𝑠 − 𝑡1)]      (3.15) 

 

On inserting the values of various components from equations 
[(3.9) − (3.15)] in to the question (3.8) the total profit 

function for Case 1, 𝒛𝟏(∅𝒏, 𝒃)becomes 

𝑧1(∅𝑛 , 𝑏)= 𝑝(1 − 𝑥(𝑛))∅𝑛+𝐶𝑠 𝑥(𝑛)∅𝑛 − 𝑦 − 𝛽∅𝑛 −

𝑐1𝑏(𝑡2 + 2𝑡𝑠) − ℎ𝑐 [𝐷𝑡1𝑡𝑠 −
𝐷𝑡1

2

2
+ (1 − 𝑥(𝑛))∅𝑛𝑡1 + 𝑏(𝑡𝑠 −

𝑡1)] + 𝑝𝐼𝑒
𝐷𝑀2

2
− 𝑐𝑝𝐼𝑝 [𝐷𝑡1 (𝑡𝑠 −

𝑡1

2
) + (1 − 𝑥(𝑛))∅𝑛(𝑡1 −

𝑀) − 𝐷𝑀 (𝑡1 −
𝑀

2
) + 𝑏(𝑡𝑠 − 𝑡1)]                              (3.16)  

 

Proposition3.1: An order quantity  𝝓𝒏 and credit period back 

ordered level 𝒃   have an optimal point (𝝓𝒏
∗ , 𝒃∗),   

Proof: As per the conditions  of optimality the total profit 

function  has an optimal  point (𝝓𝒏
∗ , 𝒃∗),   if the first order 

partial derivatives are disappears at point (𝝓𝒏
∗ , 𝒃∗),  , i.e. 

𝜕𝑧1(∅𝑛,𝑏)

𝜕∅𝑛
= 0 and  

𝜕𝑧1(∅𝑛,𝑏)

𝜕𝑏
= 0 Therefore, 

𝑝(1 − 𝑥(𝑛))+𝐶𝑠 𝑥(𝑛) − 𝛽 −
2𝑐1𝑏 

𝜆
− ℎ𝑐 [

𝐷𝑡1

𝜆
−

𝐷𝜙𝑛𝑡1
′

𝜆
−
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𝐷𝑡1
′𝑡1 + (1 − 𝑥(𝑛))∅𝑛𝑡1

′ + (1 − 𝑥(𝑛))𝑡1
′ + 𝑏(

1

𝜆
− 𝑡1

′)] −

𝑐𝑝𝐼𝑝 [𝐷𝑡1 (
1

𝜆
−

𝑡1
′

2
) + 𝐷𝑡1

′ (
𝜙𝑛

𝜆
−

𝑡1

2
) + (1 − 𝑥(𝑛))(𝑡1 − 𝑀) +

(1 − 𝑥(𝑛))∅𝑛𝑡1
′ − 𝐷𝑀𝑡1

′ + 𝑏(
1

𝜆
− 𝑡1

′)]   = 0               (3.16𝑎)  

 

2𝑐1𝑏

𝐷
−

2𝑐1∅𝑛

𝜆
− ℎ𝑐 [

𝑏

𝐷
−

(1 − 𝑥(𝑛))∅𝑛

𝐷
] 

−𝑐𝑝𝐼𝑝 [
𝑏

𝐷
−

(1 − 𝑥(𝑛))∅𝑛

𝐷
+ 𝑀] = 0            (3.16𝑏) 

 

The optimal value of 𝝓𝒏 and  𝒃 can be obtained from the 

Solution of the above system of two equations. 

Proposition 3.2: The total cost function 𝑧1(∅𝑛, 𝑏) shows 

jointly concavity  for an optimum point (𝝓𝒏, 𝒃) if    𝑅𝑇 −
𝑆2 > 0, and 𝑅 < 0. i.e 

ℎ𝑐 [
2𝐷𝑡1

′

𝜆
− 𝐷𝑡1

′2 + 2(1 − 𝑥(𝑛))𝑡1
′ + 𝑏(

1

𝜆
−

𝑡1
′)]−𝑐𝑝𝐼𝑝 [2𝐷𝑡1

′ (
1

𝜆
−

𝑡1
′

2
) + 2(1 − 𝑥(𝑛))𝑡1

′] [
2𝑐1

𝐷
+

ℎ𝑐

𝐷
+

𝑐𝑝𝐼𝑝

𝐷
] − [

2𝑐1 

𝜆
− 𝑐𝑝𝐼𝑝 [

(1−𝑥(𝑛))

𝐷
+ 𝑡1

′)]]
2

>0, and   ℎ𝑐 [
2𝐷𝑡1

′

𝜆
−

𝐷𝑡1
′2 + 2(1 − 𝑥(𝑛))𝑡1

′ + 𝑏(
1

𝜆
− 𝑡1

′)] 𝑐𝑝𝐼𝑝 [2𝐷𝑡1
′ (

1

𝜆
−

𝑡1
′

2
) +

2(1 − 𝑥(𝑛))𝑡1
′ ] < 0.                                                        (3.16𝑐) 

 

Proof: After differentiate twice partially of  equation (3.16) 
with respect to ∅𝑛, 𝒃,  can obtain the derivatives   
𝜕2𝑧1(∅𝑛,𝑏)

𝜕∅𝑛
2 =-ℎ𝑐 [

2𝐷𝑡1
′

𝜆
− 𝐷𝑡1

′2 + 2(1 − 𝑥(𝑛))𝑡1
′ + 𝑏(

1

𝜆
−

𝑡1
′)]−𝑐𝑝𝐼𝑝 [2𝐷𝑡1

′ (
1

𝜆
−

𝑡1
′

2
) + 2(1 − 𝑥(𝑛))𝑡1

′]              (3.16𝑑) 

 
𝜕2𝑧1(∅𝑛,𝑏)

𝜕𝑏2 =-[2𝑐1

𝐷
+

ℎ𝑐

𝐷
+

𝑐𝑝𝐼𝑝

𝐷
]                                          (3.16𝑒)   

 
𝜕2𝑧1(∅𝑛,𝑏)

𝜕∅𝑛𝑏
= −

2𝑐1 

𝜆
+ 𝑐𝑝𝐼𝑝 [

(1−𝑥(𝑛))

𝐷
+ 𝑡1

′)]                (3.16𝑓)   
The Hassian matrix H of the profit function 𝒛𝟏(∅𝒏, 𝒃) is 

square matrix of order 2 of partial derivatives of  𝒛𝟏(∅𝒏, 𝒃): 

 

                     H(∅𝒏, 𝒃)=

[
 
 
 
 
 𝜕

2
𝑧1(∅𝑛,𝑏)

𝜕∅𝑛
2

𝜕
2
𝑧1(∅𝑛,𝑏)
𝜕∅𝑛𝑏

𝜕
2
𝑧1(∅𝑛,𝑏)
𝜕∅𝑛𝑏

𝜕
2
𝑧1(∅𝑛,𝑏)

𝜕𝑏
2 ]

 
 
 
 
 

 

 

The determinant of this Hassian matrix is positive and 
𝜕2𝑧1(∅𝑛,𝑏)

𝜕∅𝑛𝑏
 is negative at an optimum point (𝝓𝒏

∗ , 𝒃∗),  , this 

condition has been satisfied  and illustrated with numerical 

data analysis and examples.   After simplification of above we 

can obtain above  equation  (3.16𝑐), This shows the jointly 

concavity property of profit function. 
 

Case 2:𝒕𝒔 ≤ 𝑴 ≤ 𝒕𝟏 
In this case retailer can earn interest on revenue generated from 

the sales up to credit period 𝑀. Retailer can also earn interest 

for the shortage which yield during the period 𝑀 − 𝑡𝑠 and due 

to the sale of defective items during 𝑀 − 𝑡𝑠. 

 
Figure-3 

Interest Earned  = 𝑝𝐼𝑒 [∫ 𝐷𝑡
𝑀

0
𝑑𝑡 + 𝑏(𝑀 − 𝑡𝑠)] +

𝐶𝑠𝑥(𝑛)∅𝑛𝐼𝑒(𝑀 − 𝑡𝑠) 

= 𝑝𝐼𝑒 [
𝐷𝑀2

2
+ 𝑏(𝑀 − 𝑡𝑠)] + 𝐶𝑠𝑥(𝑛)∅𝑛𝐼𝑒(𝑀 − 𝑡𝑠)       (3.17) 

 Interest Payable   = 𝑐𝑝𝐼𝑝 [∫ 𝐼𝟐(𝑡)𝑑𝑡
𝑡1

𝑀
] 

 

           = 𝑐𝑝𝐼𝑝 [𝐷𝑡𝑠(𝑡1 − 𝑀) −
𝐷(𝑡1

2−𝑀2)

2
+ (1 − 𝑥(𝑛))∅𝑛(𝑡1 −

𝑀) + 𝑏(𝑀 − 𝑡1)]               (3.18) 

On inserting the values of various components from equations 
[(3.9) − (3.13)], Eq. (3.17) and Eq. (3.18) in the question 
(3.8) the total profit function for Case 2, 𝑧2(∅𝑛, 𝑏)becomes 

 
𝑧2(∅𝑛, 𝑏) = 𝑝(1 − 𝑥(𝑛))∅𝑛+𝐶𝑠 𝑥(𝑛)∅𝑛 − 𝑦 − 𝛽∅𝑛 −

𝑐1𝑏(𝑡2 + 2𝑡𝑠) − ℎ𝑐 [𝐷𝑡1𝑡𝑠 −
𝐷𝑡1

2

2
+ (1 − 𝑥(𝑛))∅𝑛𝑡1 + 𝑏(𝑡𝑠 −

𝑡1)] + 𝑝𝐼𝑒 [
𝐷𝑀2

2
+ 𝑏(𝑀 − 𝑡𝑠)] + 𝐶𝑠𝑥(𝑛)∅𝑛𝐼𝑒(𝑀 − 𝑡𝑠) −

𝑐𝑝𝐼𝑝 [𝐷𝑡𝑠(𝑡1 − 𝑀) −
𝐷(𝑡1

2−𝑀2)

2
+ (1 − 𝑥(𝑛))∅𝑛(𝑡1 − 𝑀) +

𝑏(𝑀 − 𝑡1)]                       (3.19)  

Proposition3.3: An order quantity  𝝓𝒏 and credit period back 

ordered level 𝒃   have an optimal point (𝜙𝑛
∗ , 𝑏∗),   

Proof: As per the conditions  of optimality the total profit 

function  has an optimal  point (𝝓𝒏
∗ , 𝒃∗),   if the first order 

partial derivatives are disappears at point (𝝓𝒏
∗ , 𝒃∗),  , i.e. 

𝜕𝑧2(∅𝑛,𝑏)

𝜕∅𝑛
= 0 and  

𝜕𝑧2(∅𝑛,𝑏)

𝜕𝑏
= 0 Therefore, 

𝑝(1 − 𝑥(𝑛))+𝐶𝑠 𝑥(𝑛) − 𝛽 −
2𝑐1𝑏 

𝜆
− ℎ𝑐 [

𝐷𝑡1

𝜆
−

𝐷𝜙𝑛𝑡1
′

𝜆
−

𝐷𝑡1
′𝑡1 + (1 − 𝑥(𝑛))∅𝑛𝑡1

′ + (1 − 𝑥(𝑛))𝑡1
′ + 𝑏(

1

𝜆
− 𝑡1

′)] −

𝑐𝑝𝐼𝑝 [𝐷𝑡1 (
1

𝜆
−

𝑡1
′

2
) + 𝐷𝑡1

′ (
𝜙𝑛

𝜆
−

𝑡1

2
) + (1 − 𝑥(𝑛))(𝑡1 − 𝑀) +

(1 − 𝑥(𝑛))∅𝑛𝑡1
′ − 𝐷𝑀𝑡1

′ + 𝑏(
1

𝜆
− 𝑡1

′)]   = 0       (3.19𝑎)    

 
2𝑐1𝑏

𝐷
−

2𝑐1∅𝑛

𝜆
− ℎ𝑐 [

𝑏

𝐷
−

(1 − 𝑥(𝑛))∅𝑛

𝐷
]

− 𝑐𝑝𝐼𝑝 [
𝑏

𝐷
−

(1 − 𝑥(𝑛))∅𝑛

𝐷
+ 𝑀]

= 0                                  (3.19𝑏)    
 
The optimal value of 𝝓𝒏 and  𝒃 can be obtained from the 

solution of the above system of two equations. 

Proposition 3.4: The total cost function 𝑧2(∅𝑛, 𝑏) shows 

jointly concavity  for an optimum point (𝝓𝒏, 𝒃) if    𝑅𝑇 −
𝑆2 > 0, and 𝑅 < 0. i.e 

    ℎ𝑐 [
2𝐷𝑡1

′

𝜆
− 𝐷𝑡1

′2 + 2(1 − 𝑥(𝑛))𝑡1
′ + 𝑏(

1

𝜆
−
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𝑡1
′)]−𝑐𝑝𝐼𝑝 [2𝐷𝑡1

′ (
1

𝜆
−

𝑡1
′

2
) + 2(1 − 𝑥(𝑛))𝑡1

′] [
2𝑐1

𝐷
+

ℎ𝑐

𝐷
+

𝑐𝑝𝐼𝑝

𝐷
] − [

2𝑐1 

𝜆
− 𝑐𝑝𝐼𝑝 [

(1−𝑥(𝑛))

𝐷
+ 𝑡1

′)]]
2

>0, and   ℎ𝑐 [
2𝐷𝑡1

′

𝜆
−

𝐷𝑡1
′2 + 2(1 − 𝑥(𝑛))𝑡1

′ + 𝑏(
1

𝜆
− 𝑡1

′)] 𝑐𝑝𝐼𝑝 [2𝐷𝑡1
′ (

1

𝜆
−

𝑡1
′

2
) +

2(1 − 𝑥(𝑛))𝑡1
′ ] < 0.                                                       (3.19𝑐) 

Proof: After differentiate twice partially of  equation (3.16) 

with respect to ∅𝑛, 𝒃   can be obtained the derivatives   
𝜕2𝑧2(∅𝑛,𝑏)

𝜕∅𝑛
2 =-ℎ𝑐 [

2𝐷𝑡1
′

𝜆
− 𝐷𝑡1

′2 + 2(1 − 𝑥(𝑛))𝑡1
′ + 𝑏(

1

𝜆
−

𝑡1
′)]−𝑐𝑝𝐼𝑝 [2𝐷𝑡1

′ (
1

𝜆
−

𝑡1
′

2
) + 2(1 − 𝑥(𝑛))𝑡1

′]         (3.19𝑑) 

 
𝜕2𝑧2(∅𝑛,𝑏)

𝜕𝑏2
=-[

2𝑐1

𝐷
+

ℎ𝑐

𝐷
+

𝑐𝑝𝐼𝑝

𝐷
]                                     (3.19𝑒) 

 

 
𝜕2𝑧2(∅𝑛,𝑏)

𝜕∅𝑛𝑏
= −

2𝑐1 

𝜆
+ 𝑐𝑝𝐼𝑝 [

(1−𝑥(𝑛))

𝐷
+ 𝑡1

′)]             (3.19𝑓) 

 

 

The Hassian matrix H of the profit function 𝒛𝟐(∅𝒏, 𝒃) is 

square matrix of order 2 of partial derivatives of  𝒛𝟐(∅𝒏, 𝒃): 

 

                     H(∅𝒏, 𝒃)=

[
 
 
 
 
 𝜕

2
𝑧2(∅𝑛,𝑏)

𝜕∅𝑛
2

𝜕
2
𝑧2(∅𝑛,𝑏)
𝜕∅𝑛𝑏

𝜕
2
𝑧2(∅𝑛,𝑏)
𝜕∅𝑛𝑏

𝜕
2
𝑧2(∅𝑛,𝑏)

𝜕𝑏
2 ]

 
 
 
 
 

 

 

The determinant of this Hassian matrix is positive and 

𝜕2𝑧2(∅𝑛,𝑏)

𝜕∅𝑛𝑏
 is negative at an optimum point (𝝓𝒏

∗ , 𝒃∗),  , this 

condition has been satisfied  and illustrated with the numerical 

data analysis and examples.   After simplification of above it 

can obtain above  equation  (3.19𝑐), This shows the jointly 

concavity property of profit function. 

 

 

Case 3: 𝒕𝟏 ≤ 𝑴 ≤ 𝒕𝟐 
The situation in which inventory cycle is less then or 

equal to credit offered period was dealt in this case. Therefore 

in  this situation payable interest by retailer is zero and in 

addition earned interest for the demand fulfilled for the time 

period 𝑀 − 𝑡1. 

 

Figure-4 

Interest Earned = pIe [∫ 𝐷𝑡
𝑡1

0
𝑑𝑡 + [𝐷𝑡1][𝑀 − 𝑡1] + 𝑏[𝑀 −

𝑡𝑠]] + 𝐶𝑠𝑥(𝑛)∅𝑛𝐼𝑒(𝑀 − 𝑡𝑠)  

= pIe [
𝐷𝑡1

2

2
+ [𝐷𝑡1][𝑀 − 𝑡1] + 𝑏[𝑀 − 𝑡𝑠]]

+ 𝐶𝑠𝑥(𝑛)∅𝑛𝐼𝑒(𝑀 − 𝑡𝑠)         (3.20) 

On inserting the values of various components from equations 
[(3.9) − (3.13)], Eq. (3.19) and Eq. (3.20) in the question 
(3.8) the total profit function for Case 3, 𝑧3(∅𝑛, 𝑏)becomes 

 

𝑧3(∅𝑛, 𝑏) = 𝑝(1 − 𝑥(𝑛))∅𝑛 + 𝐶𝑠 𝑥(𝑛)∅𝑛 − 𝑦 − 𝛽

− 𝑐1𝑏(𝑡2 + 2𝑡𝑠)

− ℎ𝑐 [𝐷𝑡1𝑡𝑠 −
𝐷𝑡1

2

2
+ (1 − 𝑥(𝑛))∅𝑛𝑡1

+ 𝑏(𝑡𝑠 − 𝑡1)]  

+ 𝑝𝐼𝑒 [
𝐷𝑡1

2

2
+ [𝐷𝑡1][𝑀 − 𝑡1]

+ 𝑏[𝑀 − 𝑡𝑠]]

+ 𝐶𝑠𝑥(𝑛)∅𝑛𝐼𝑒(𝑀 − 𝑡𝑠)          (3.21) 
 

Proposition3.5: An order quantity  𝝓𝒏 and credit period 

back ordered level 𝒃   have an optimal point (𝝓𝒏
∗ , 𝒃∗),   

Proof: As per the conditions  of optimality the total profit 

function  has an optimal  point (𝝓𝒏
∗ , 𝒃∗),   if the first order 

partial derivatives are disappears at point (𝝓𝒏
∗ , 𝒃∗),   i.e. 

𝜕𝑧3(∅𝑛,𝑏)

𝜕∅𝑛
= 0 and  

𝜕𝑧3(∅𝑛,𝑏)

𝜕𝑏
= 0 Therefore, 

𝑝(1 − 𝑥(𝑛))+𝐶𝑠 𝑥(𝑛) − 𝛽 −
2𝑐1𝑏 

𝜆
− ℎ𝑐 [

𝐷𝑡1

𝜆
−

𝐷𝜙𝑛𝑡1
′

𝜆
−

𝐷𝑡1
′𝑡1 + (1 − 𝑥(𝑛))∅𝑛𝑡1

′ + (1 − 𝑥(𝑛))𝑡1
′ + 𝑏(

1

𝜆
− 𝑡1

′)] −

𝑐𝑝𝐼𝑝 [𝐷𝑡1 (
1

𝜆
−

𝑡1
′

2
) + 𝐷𝑡1

′ (
𝜙𝑛

𝜆
−

𝑡1

2
) + (1 − 𝑥(𝑛))(𝑡1 − 𝑀) +

(1 − 𝑥(𝑛))∅𝑛𝑡1
′ − 𝐷𝑀𝑡1

′ + 𝑏(
1

𝜆
− 𝑡1

′)]   = 0          (3.21𝑎)    

 

2𝑐1𝑏

𝐷
−

2𝑐1∅𝑛

𝜆
− ℎ𝑐 [

𝑏

𝐷
−

(1 − 𝑥(𝑛))∅𝑛

𝐷
]

− 𝑐𝑝𝐼𝑝 [
𝑏

𝐷
−

(1 − 𝑥(𝑛))∅𝑛

𝐷
+ 𝑀]

= 0                  (3.21𝑏)  
 

The optimal value of 𝝓𝒏 and  𝒃 can be obtained from the 

Solution of the above system of two equations. 

Proposition 3.6: The total cost function 𝑧3(∅𝑛, 𝑏) shows 

jointly concavity  for an optimum point (𝝓𝒏, 𝒃) if    𝑅𝑇 −
𝑆2 > 0, and 𝑅 < 0. i.e 

ℎ𝑐 [
2𝐷𝑡1

′

𝜆
− 𝐷𝑡1

′2 + 2(1 − 𝑥(𝑛))𝑡1
′ + 𝑏(

1

𝜆
−

𝑡1
′)]−𝑐𝑝𝐼𝑝 [2𝐷𝑡1

′ (
1

𝜆
−

𝑡1
′

2
) + 2(1 − 𝑥(𝑛))𝑡1

′] [
2𝑐1

𝐷
+

ℎ𝑐

𝐷
+

𝑐𝑝𝐼𝑝

𝐷
] − [

2𝑐1 

𝜆
− 𝑐𝑝𝐼𝑝 [

(1−𝑥(𝑛))

𝐷
+ 𝑡1

′)]]
2

>0, and   ℎ𝑐 [
2𝐷𝑡1

′

𝜆
−

𝐷𝑡1
′2 + 2(1 − 𝑥(𝑛))𝑡1

′ + 𝑏(
1

𝜆
− 𝑡1

′)] 𝑐𝑝𝐼𝑝 [2𝐷𝑡1
′ (

1

𝜆
−

𝑡1
′

2
) +

2(1 − 𝑥(𝑛))𝑡1
′ ] < 0.                                                 (3.21𝑐) 

Proof: After twicly differentiate partially of  equation (3.21) 
with respect to ∅𝑛, 𝒃  the following derivatives  are obtained 
𝜕2𝑧3(∅𝑛,𝑏)

𝜕∅𝑛
2 =-ℎ𝑐 [

2𝐷𝑡1
′

𝜆
− 𝐷𝑡1

′2 + 2(1 − 𝑥(𝑛))𝑡1
′ + 𝑏(

1

𝜆
−

𝑡1
′)]−𝑐𝑝𝐼𝑝 [2𝐷𝑡1

′ (
1

𝜆
−

𝑡1
′

2
) + 2(1 − 𝑥(𝑛))𝑡1

′]      (3.21𝑑) 

 
𝜕2𝑧3(∅𝑛,𝑏)

𝜕𝑏2 =-[
2𝑐1

𝐷
+

ℎ𝑐

𝐷
+

𝑐𝑝𝐼𝑝

𝐷
]                                  (3.21𝑒) 

 

 
𝜕2𝑧3 (∅𝑛,𝑏)

𝜕∅𝑛𝑏
= −

2𝑐1 

𝜆
+ 𝑐𝑝𝐼𝑝 [

(1−𝑥(𝑛))

𝐷
+ 𝑡1

′)]        (3.21𝑓) 
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The Hassian matrix H of the profit function 𝒛𝟑(∅𝒏, 𝒃) is 

square matrix of order 2 of partial derivatives of  𝒛𝟑(∅𝒏, 𝒃): 

 

                     H(∅𝒏, 𝒃)=

[
 
 
 
 
 𝜕

2
𝑧3(∅𝑛,𝑏)

𝜕∅𝑛
2

𝜕
2
𝑧3(∅𝑛,𝑏)
𝜕∅𝑛𝑏

𝜕
2
𝑧3(∅𝑛,𝑏)
𝜕∅𝑛𝑏

𝜕
2
𝑧3(∅𝑛,𝑏)

𝜕𝑏
2 ]

 
 
 
 
 

 

 

The determinant of this Hassian matrix is positive and 

𝜕2𝑧3(∅𝑛,𝑏)

𝜕∅𝑛𝑏
 is negative at an optimum point (𝝓𝒏

∗ , 𝒃∗),   this 

condition has been satisfied  and illustrated with the numerical 

data analysis and examples.   After simplification of above it 

can obtain above  equation  (3.19𝑐), This shows the jointly 

concavity property of profit function. 

Above  equation  (3.21𝑐) can be obtained after simplification 

of above terms. This condition has been satisfied  and 

illustrated numerical analysis and examples. 

 

 

Example 1: (Case-1)  An example is developed to illustrate 

the case 1 of model: The following data set of input 

paramenters have considered : 𝐷 = 76000 𝑈𝑛𝑖𝑡𝑠/𝑦𝑒𝑎𝑟, 𝑦 =
100 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 𝑐𝑝 = $25 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑝 = $21 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 ℎ𝑐 =

$15 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡,𝛽 = $0.7 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡,𝑛 = 1,𝑀 =
0.001 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟,  𝐼𝑒 = 0.1 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟, 

𝜆 = 60000 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒, 𝐼𝑒 = 0.25  𝑝𝑒𝑟 𝑦𝑒𝑎𝑟, 𝑐𝑠 =
$10.5 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡,    𝑐1 = $8 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟, 

𝐴 = 40,𝐵 = 1 𝐺 = 999,  𝑟𝑡 − 𝑠2 =6.79488E-07 

Optimum outputs are: 𝜙𝑛 = 14207 𝑢𝑛𝑖𝑡𝑠 ,  𝑡𝑠 = 0.237, 𝑏 =
38.66 𝑢𝑛𝑖𝑡𝑠,  𝑡1 = 0.416  𝑍1(𝜙𝑛, 𝑏) = 311445. 
Example 2: (case-II) An example is developed to illustrate 

the case 1 of model: The following data set of input 

paramenters have considered: 𝐷 = 76000 𝑈𝑛𝑖𝑡𝑠/𝑦𝑒𝑎𝑟, 𝑦 =
100 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 𝑐𝑝 = $25 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑝 = $21 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 ℎ𝑐 =

$15 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡,𝛽 = $0.7 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡,𝑛 = 1,𝑀 =
0.001 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟,  𝐼𝑒 = 0.1 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟, 

𝜆 = 60000 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒, 𝐼𝑒 = 0.25  𝑝𝑒𝑟 𝑦𝑒𝑎𝑟, 𝑐𝑠 =
$10.5 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡,    𝑐1 = $8 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟, 

𝐴 = 40,𝐵 = 1 𝐺 = 999, ,  𝑟𝑡 − 𝑠2 =2.53452E-07 

 Optimum outputs are: 𝜙𝑛 = 23602 𝑢𝑛𝑖𝑡𝑠 ,  𝑡𝑠 = 0.3933, 

𝑏 = 8232 𝑢𝑛𝑖𝑡𝑠,  𝑡1 = 0.5832 𝑍2(𝜙𝑛, 𝑏) = 438690.  
Example 3: (case-III) An example is developed to illustrate 

the case 1 of model: The following data set of input 

paramenters are considered: 𝐷 = 76000 𝑈𝑛𝑖𝑡𝑠/𝑦𝑒𝑎𝑟, 𝑦 =
100 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 𝑐𝑝 = $25 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑝 = $21 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 ℎ𝑐 =

$15 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡,𝛽 = $0.7 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡,𝑛 = 1,𝑀 = 0.42 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟,  

𝐼𝑒 = 0.1 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟,  𝜆 = 60000 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒, 𝐼𝑒 =
0.25  𝑝𝑒𝑟 𝑦𝑒𝑎𝑟, 𝑐𝑠 = $10.5 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡,    𝑐1 = $8 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟, 

𝐴 = 40,𝐵 = 1 𝐺 = 999, ,  𝑟𝑡 − 𝑠2 =12.30066. 

 Optimum outputs are: 𝜙𝑛 = 17690 𝑢𝑛𝑖𝑡𝑠 ,  𝑡𝑠 = 0.295, 𝑏 =
7420 𝑢𝑛𝑖𝑡𝑠,  𝑡1 = 0.4206  𝑍3(𝜙𝑛, 𝑏) = 411617. 

4. SENSITIVITY ANALYSIS  

Table1: Effects of Learning on Various Outputs For 
Case 1: 

n ∅𝒏 𝒕𝒔 b 𝒕𝟏 
(𝟏
− 𝐱(𝐧))∅𝒏 

Profit 

1 14207 0.23 38.65 0.42 0.96 318445 

3 14204 0.23 44.16 0.42 0.96 318547 

5 14179 0.23 79.57 0.42 0.97 319119 

7 14092 0.23 205.81 0.42 0.98 321196 

9 14012 0.23 322.012 0.42 1.00 323114 

    Table2: Effects of Learning on Various Outputs 

For Case 2: 

n ∅𝒏 𝒕𝒔 b 𝒕𝟏 
(𝟏
− 𝐱(𝐧))∅𝒏 

Profit 

1 23603 0.39 8232.566 0.58 0.96 438690 

3 23601 0.39 8237.477 0.58 0.96 438873 

5 23581 0.39 8251.978 0.58 0.96 440093 

7 23515 0.39 8317.42 0.58 0.98 444434 

9 23455 0.39 8380.835 0.58 0.99 448453 

    Table3: Effects of Learning on Various Outputs For 
Case 3: 

n ∅𝒏 𝒕𝒔 b 𝒕𝟏 
(𝟏
− 𝐱(𝐧))∅𝒏 

Profit 

1 17690 0.29 7420 0.42 0.96 411617 

3 17688 0.29 7425 0.42 0.96 411748 

5 17666 0.29 7456 0.42 0.96 412479 

7 17594 0.29 7569 0.42 0.98 415178 

9 17528 0.29 7673 0.42 0.99 417685 

 

The comparative study of profit function with respect to 

decision variable under three difference cases have been 

prepared and made individual data table for showing effects of 

learning effects on screening process.  Analysis of data table 1 

shows that the maximum back ordered level and profit function 

both are linear positively correlated where as ordered quantity  

not shows any relation with number of learning efforts see 

Figure 5.  

 
Figure-5 

 Analysis of data table 2 shows that the maximum back ordered 

level and profit function both are moderate positively 

correlated where as ordered quantity  shows moderate 

negatively correlated  with number of learning efforts see 

Figure 6. 

Analysis of data table 3 shows that the maximum back ordered 

level and profit function both are strongly positively correlated 

where as ordered quantity  shows moderate negatively 

correlated  with number of learning efforts see Figure 7. 
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Figure-6 

 
Figure-7 

 

Table4:Comparative study data table for various cases: 
Number 

of 

learning 

efforts 

Case ∅𝒏 b Profit 

n=1 

1 14207 38.65 318445 

2 
23603 8232.57 

438690(Maximum)  
In this position case there 
are no requirement of 
skilled persons. 

3 17690 7420.09 411617 

n=3 

1 14204 44.17 318547 

2 

23601 8237.48 

438873(Maximum)  In this 
position case there is few 
remarkable improvement 
from learning skills. 

3 17688 7425.47 411748 

n=5 

1 14179 79.57 319119 

2 

23581 8251.98 

440093(Maximum)In this 
position case there is few 
remarkable improvement 
from learning skills. 

3 17666 7456.30 412479 

n=7 

1 14092 205.81 321196 

2 

23581 8251.98 

440093(Maximum)In this 
position case there is 
some remarkable 
improvement from 
learning skills. 

3 17594 7569.29 415178 

n=9 

1 14012 322.01 323114 

2 

23455 8380.4 

448453 (Maximum)In this 
position case there is 
maximum remarkable 
improvement from 
learning skills. 

3 17528 7673.94 417685 

The behavior of profit function with respect to some another 

main key parameters as follows: 

1. The first partial derivative  
∂z1(∅n,b)

∂𝜆
 >0, profit 

function  shows growing property with respect to 

lambda it mean screening rate increases the profit of 

vendor 

2. The first partial derivative 
𝜕𝑧1(∅𝑛,𝑏)

𝜕𝑛
 >0 if and only if  

𝑝 − 𝑐𝑠 > 0, profit function shows growing property  

with respect to 𝜆 it means screening rate increases 

the profit of vendor. where p price of perfect quality 

item and  𝑐𝑠 is a price of imperfect quality items 

3. The first partial derivative  
𝜕𝑧1(∅𝑛,𝑏)

𝜕𝑀
 >0, 0 if and 

only if  𝑀 > 𝑡1, (it is applicable for case 2 and case 

3 only), shows growing property profit  with respect 

to lambda it mean screening rate increases the profit 

of vendor, where 𝑀 is a permissible delay period in 

square off the account. 

4. The first partial derivatives  
∂z1(∅n,b)

∂𝑐1
 <0,   

∂z1(∅n,b)

∂𝑦
 <0,and  

∂z1(∅n,b)

∂ℎ𝑐
 <0 it means, reducing 

property  with respect to 𝑐1, y,  𝑎𝑛𝑑 ℎ𝑐. 

 

5. CONCLUSION 
This article suggested an inventory model for a retailer 

handling imperfect quality  items under permissible delay in 

payments. For separating the perfect and imperfect quality 

items, a screening process is applied on each batch 

incorporating with learning effects are also analyzed under 

allowable shortages and fully backlogged demand. Such 

strategies have been made in this study so that the order 

quantity, shortages and the number of repetitions on screening 

process are optimized and the total profit is maximum as per 

given limitations. As per sensitivity analysis case 2 (𝒕𝒔 ≤ 𝑴 ≤
𝒕𝟏), is the most favorable case for available circumstances.  

Suggestions and Recommendations: 

(i) It is a suggestion for retailer to make such 

strategy with  their supplier for maintaining the 

limitations of case2. 

(ii)  Retailer's must recruit skilled and efficient 

those workers whose engaged in screening 

process. 

(iii) Retailer can be also applied rework process on 

imperfect quality  items to make extra sales 

revenue and consequently earn extra interest 

and profit. 

Extensions: 

(i) This article can be extended by incorporating 

credit period to their customers. 

(ii) This article is made for fully backlogged 

demand, it can be extended by incorporating 

partial backlogged demand. 

(iii) This article can be also extended by 

incorporating rework process on imperfect 

quality items. 
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