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ABSTRACT 

This paper describes an innovative system designed to detect 

and monitor the compliance of Personal Protective Equipment 

(PPE) usage within construction sites. A deep learning model 

is trained using the You Only Look Once (YOLO) algorithm 

and deployed on an IoT device to monitor employees on 

construction sites continuously. By seamlessly integrating 

advanced technologies such as deep learning methodologies, 

Bluetooth Low Energy (BLE) tags, Global Positioning System 

(GPS) modules, Fitbit devices, cameras, and sophisticated 

image processing algorithms, the system ensures the proper 

utilization of essential PPE items including safety helmets, 

vests, goggles, safety mask, and boots. Utilizing the different 

sensors affixed to PPE items and IoT devices, the system 

continuously emits signals for instant identification of 

compliance or non-compliance instances, while leveraging 

state-of-the-art image recognition techniques coupled with a 

convolutional neural network (CNN) to accurately discern PPE 

usage, ensuring compliance while on site. The system's efficacy 

was assessed based on precision, recall, and mean Average 

Precision (mAP) metrics, which confirmed its reliability and 

effectiveness in real-world operational environments. This 

comprehensive approach to PPE compliance monitoring 

signifies a significant advancement in ensuring workplace 

safety standards within construction sites, thereby contributing 

to the protection and well-being of workers in hazardous 

environments.   
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1. INTRODUCTION 
Throughout its history, the construction industry has been 

plagued by significantly higher accident rates compared to 

other sectors [1]. This trend is primarily attributed to the high-

risk nature of construction activities, exposing workers to 

various hazards in perilous environments. According to the 

United States Bureau of Labor Statistics, fatalities in the 

construction sector rose steadily from 985 in 2015 to 1,038 in 

2018, reflecting an annual increase of 2% [2]. 

Despite the inherently hazardous nature of the industry, a 

significant number of injuries, illnesses, and fatalities can be 

prevented through consistent adherence to safety protocols, 

particularly the use of PPE such as helmets, safety glasses, 

gloves, and other necessary gear [3]. PPE represents the final 

layer of defence against accidents, with helmets playing a 

crucial role in protecting workers from head injuries caused by 

falling objects or impacts [4]. 

Traditionally, the manual supervision of workers wearing 

safety helmets and boots was the primary method of ensuring 

compliance. However, the extensive scope of construction 

activities rendered this approach inadequate for timely 

oversight of all workers. As a result, researchers [5] turned to 

machine learning and image processing technologies to 

automate PPE detection, aiming to enhance safety practices at 

construction sites. 

Despite advancements in PPE detection techniques, challenges 

persist in achieving continuous and precise monitoring of PPE 

compliance among construction site staff. Conventional 

methods of supervision and intermittent inspections often fall 

short, creating opportunities for non-compliance and safety 

hazards. Sensor-based approaches [6], though valuable, have 

limitations such as the need for additional hardware and lack of 

visual context, which can impede their effectiveness. 

The rationale for combining sensor-based and vision-based 

methods for monitoring PPE usage is to overcome these 

limitations and enhance the accuracy and completeness of 

assessments. Integrating sensor data with visual information 

offers real-time monitoring capabilities, allowing for 

immediate feedback and intervention if compliance issues 

arise. This proactive approach can prevent accidents and 

improve overall safety standards in the construction industry. 

The main objective of this work is to develop an artificial 

intelligence-driven system that identifies, analyzes, and 

monitors PPE use and compliance in construction sites, with 

specific aims to develop an image recognition model, integrate 

BLE tags, GPS modules, Fitbit devices, cameras, and 

implement monitoring alerts for non-compliance. By 

addressing these objectives, this work seeks to contribute to the 

enhancement of health and safety measures for construction 

workers, ultimately reducing the incidence of workplace 

accidents and injuries.  

2. LITERATURE REVIEW 

2.1 Introduction 
Advancements in computer science, particularly in information 

handling and processing, have greatly impacted the field of 
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construction management. Recent progress in computer vision 

and machine intelligence has paved the way for effective safety 

monitoring at construction sites [7]. The integration of 

Artificial Intelligence (AI) and Machine Learning (ML) into 

construction safety practices is gaining momentum, although 

research in these domains is still in its early stages. Machine 

learning techniques offer promising paths for analyzing data 

efficiently, providing timely business insights to managers. 

However, these techniques rely heavily on precise and 

extensive datasets, which can be challenging to obtain. The 

collection of such comprehensive datasets is crucial for 

accurate analysis but often poses logistical difficulties in terms 

of consistency and volume. In the context of PPE detection, 

acquiring sufficient quality data remains a significant hurdle. 

Among the different types of data collected from construction 

sites, video feeds, and images provide rich visual records of on-

site activities, and computer vision-based methods assist in 

interpreting this visual data. Methods that have recently been 

proposed in the literature can be classified as sensor-based, 

vision-based, or ML-based. 

2.2 Sensor-Based Approaches 
Sensor-based approaches [6] have been deployed to detect hard 

hat use or Personal Protective Equipment (PPE) compliance. 

Zhang et al. [4] developed a system using pressure sensors to 

detect Non-Helmet Usage (NHU), but this method had 

drawbacks such as discomfort and susceptibility to false 

readings [4]. Sensor-based methods, like RFID portals [8] and 

Cyber-Physical Systems (CPS) [9], offer the advantage of 

personal identification and data storage, enabling recognition 

of workers and their behaviour. These systems vary in design, 

from mobile RFID portals [8] to pressure sensor-based helmet 

inspection systems like "Eye on Project" (EOP) [4]. While 

sensor-based methods have advantages, they may provide 

limited information compared to image-based systems and can 

be prone to false readings.  

2.3 Vision-Based Methods 
Vision-based methods, particularly those leveraging CNNs 

[10], have gained traction in construction safety. These 

methods utilize deep learning algorithms for object detection, 

categorizing specific objects within images or video frames. 

Faster algorithms like Faster R-CNN and Single Shot MultiBox 

Detector (SSD) offer real-time detection capabilities [11]. 

Despite their effectiveness, vision-based methods face 

challenges such as blurriness, hardware dependency, and 

limitations in identifying different colours of PPE items. 

Nonetheless, they offer significant advantages over sensor-

based approaches in terms of accuracy and detail in identifying 

PPE usage. 

2.4 ML Based Methods Used 
Machine learning, particularly deep learning, plays a crucial 

role in safety management, enabling the development of 

advanced models for PPE compliance detection. CNNs are 

extensively used for image processing tasks, including PPE 

detection. Additionally, algorithms like SSD and YOLO offer 

efficient object detection capabilities [12], facilitating real-time 

monitoring of PPE usage. However, training deep learning 

models is computationally intensive and requires careful 

management of biases and variances in predictions. 

2.5 Subsequent Pages 
Despite the progress made in sensor-based and vision-based 

approaches, there are several research gaps and limitations to 

address. Sensor-based approaches face challenges related to 

sensor positioning, battery life, scalability, and limited 

information provided. Vision-based methods encounter issues 

with blurriness, hardware dependency, and the need for diverse 

datasets. Furthermore, both approaches lack comprehensive 

datasets for PPE detection, hindering the development of 

accurate and generalizable models. Additionally, privacy 

concerns and the slow adoption of new technologies pose 

challenges to the implementation of automated safety systems 

in construction settings. These research gaps underscore the 

need for further exploration and innovation in safety 

monitoring technologies for construction sites.  

Recent research has suggested the use of machine learning 

(ML) techniques to monitor construction safety, emphasizing 

the requirement for more sophisticated and reliable solutions. 

CNNs have demonstrated potential in accurately detecting and 

classifying objects about PPE compliance. Techniques like 

Faster R-CNN, SSD, and YOLO [13] give real-time detection 

capabilities for dynamic construction contexts [14,15]. 

However, research gaps remain, such as the absence of 

comprehensive datasets for training and verifying ML models, 

and the difficulties in integrating ML models with existing 

safety management systems. Furthermore, it is imperative to 

acknowledge and resolve ethical and privacy issues that arise 

from the implementation of machine learning-powered 

monitoring systems in construction sites. Continued research is 

necessary to provide stronger, more precise, and morally 

acceptable solutions, despite the advances made so far [16]. 

3. METHODOLOGY 

3.1 Introduction 
This section presents the methodology for a real-time 

monitoring system designed to ensure PPE compliance at 

construction sites. The system utilizes a PPE image dataset, 

deep learning frameworks, and IoT devices equipped with a 

YOLOv8 model for object detection. BLE tags are employed 

for accurate tracking, and the MQTT protocol is used for 

efficient data transmission. The setup also incorporates Fitbit 

for health monitoring and a GPS module for real-time location 

tracking, enhancing worker safety monitoring. 

3.2 Required Materials 
a) PPE image dataset: A comprehensive collection of images 

depicting all pertinent PPEs (including safety hard hats, 

safety vests, goggles, safety gloves, and boots) applicable 

to construction site environments. 

b) Software labelling tools: Essential tools facilitating the 

accurate labelling of images within the dataset. 

c) Frameworks for deep-learning software: Including 

PyCharm, TensorFlow, and requisite libraries for image 

dataset labelling. 

d) BLE tags: Utilized for precise detection of PPE 

compliance post-authorization for site access. 

e) Image-processing platform: Capable of expeditiously and 

effectively evaluating PPE compliance, such as the DCP 

platform. 

f) IoT device: IoT devices such as Raspberry Pi or Nvidia 

Jetson Nano deploy the trained model for detection. 

g) Fitbit: Used to monitor health-related metrics, such as 

heart rate and blood pressure, to confirm the worker's 

fitness for the assigned tasks. 

h) GPS Module: To provide real-time location details, 

including latitude and longitude.  

3.3 Vision-Based Methods 
The flowchart in Figure 1 illustrates the process of real-time 

detection of workers in the field to ensure they are adhering to 

safety measures by wearing the required Personal Protective 
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Equipment (PPE). The system leverages a trained YOLOv8 

model deployed on an IoT device, such as a Raspberry Pi or 

Nvidia Jetson, and an attached camera to achieve this.  

1. Start: The process begins with the system initialization. 

2. Camera: The camera, attached to the IoT device, captures 

images of the workers at regular intervals. 

3. IoT Device (Raspberry Pi/Nvidia Jetson):  

• Object Detection Model: The captured images are sent to 

the YOLOv8 object detection model deployed on the 

IoT device. 

• Real-Time Detection: The YOLOv8 model, known for its 

speed and accuracy, processes the images in real-time 

to detect whether workers are wearing the required 

PPE. 

4. Detection Results: The results from the detection model 

are then forwarded to an MQTT broker. 

5. MQTT Broker: Message Queuing Telemetry Transport 

(MQTT) is a lightweight messaging protocol for small 

sensors and mobile devices optimized for high-latency or 

unreliable networks. The MQTT broker facilitates the 

efficient and reliable transfer of detection results from the 

IoT device to the server. 

6. Server:  

• The server receives the detection results from the MQTT 

broker. 

• PPE Violation Check: The server processes these results 

to determine if there is a PPE violation. 

7. Decision Point - PPE Violation? 

• Yes: If a PPE violation is detected, the system generates 

notifications, such as alarms, to alert the authorities. 

This can also include access control measures to 

restrict entry or movement. 

• No: If no violation is detected, the system generates 

notifications confirming compliance. 

8. Store Data for Analysis: Regardless of the PPE 

compliance status, the results are stored for further 

analysis. This data can be used for reporting, compliance 

monitoring, and improving workplace safety protocols. 

9. Stop: The process ends here before it restarts, continuing 

the cycle of monitoring and detection. 

 
Fig 1: Flow chart of real-time detection

3.4 Dataset Preparation 
The most important part of training the machine learning 

algorithm was the collection and preparation of data to facilitate 

the validation of the model. The preparation of the dataset is 

the most time-consuming and critical component, enabling 

efficient training and accurate detection by the algorithm. Data 

was collected from online image scraping and the Pavicon 

Kenya Limited database. Once the dataset was collected, the 

data was labelled using Roboflow, and annotations were saved 

as TXT files. 
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3.5 Dataset Partitioning 
The dataset was partitioned into three subsets: training, testing, 

and validation datasets. The training dataset was used to train 

the CNN and refine its internal parameters. The testing dataset 

served the purpose of assessing the model's performance and 

making fine adjustments to its settings. Meanwhile, the 

validation data assisted in the selection of the most suitable 

model and prevented overfitting in the future. 

4. RESULTS DISCUSSION 

4.1 Introduction 
This segment delves into crucial aspects of performance 

evaluation, providing a comprehensive understanding of 

precision, recall, mAP50, training and validation box losses, 

and F1-confidence results across various classes. Each metric 

plays a significant role in assessing the model's effectiveness as 

a whole, guiding potential adjustments to improve accuracy in 

practical personal protective equipment detection application 

scenarios such as construction sites. 

4.2 Performance Evaluation 

 

Fig 2: Performance Evaluation 

 
The performance evaluation of the YOLO model for PPE 

compliance detection over 100 epochs reveals significant 

insights through various graphs representing training and 

validation losses and metrics. The training loss graphs, which 

include train/box_loss, train/cls_loss, and train/dfl_loss, show 

a consistent decrease across epochs as in Figure 2. The 

train/box_loss graph indicates that the model improves in 

predicting the bounding box coordinates for detected objects, 

as evidenced by the steadily declining loss values. Similarly, 

the train/cls_loss graph demonstrates a significant reduction in 

classification loss, reflecting the model's increasing accuracy in 

classifying detected objects like safety helmets and vests. The 

train/dfl_loss graph further supports this trend, with the focal 

loss decreasing steadily, indicating enhanced model confidence 

and precision in object detection. 

The training metrics for precision and recall provide additional 

insights into the model's performance. The 

metrics/precision(B) graph shows an upward trend and 

stabilization at higher values, suggesting the model's 

effectiveness in minimizing false positives. Concurrently, the 

metrics/recall(B) graph displays an increase over the epochs, 

signifying the model's improved ability to capture actual 

positive instances. Together, these metrics indicate that the 

model is becoming more proficient at correctly identifying and 

classifying PPE items, with fewer instances missed or falsely 

detected. 

Validation loss graphs, including val/box_loss, val/cls_loss, 

and val/dfl_loss, mirror the training loss trends, showcasing the 

model's generalization capabilities. The val/box_loss graph 

shows a decreasing trend, similar to the training phase, 

indicating accurate bounding box predictions on unseen data. 

The val/cls_loss graph, while showing some fluctuations, 

overall decreases, suggesting improvements in classification 

accuracy on validation data. The val/dfl_loss graph consistently 

decreases, reinforcing the model's growing confidence and 

accuracy in predictions. 

Metrics for validation performance, particularly 

metrics/mAP50(B) and metrics/mAP50-95(B), highlight the 

model's detection capabilities. The metrics/mAP50(B) graph 

demonstrates an improvement and stabilization at higher 

values, reflecting enhanced detection performance with a good 

balance between precision and recall at a moderate overlap 

threshold. The metrics/mAP50-95(B) graph, which considers 

multiple IoU thresholds, also shows a steady increase, albeit 

lower than mAP50. This indicates that the model performs 
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robustly across varying levels of localization strictness, 

improving overall detection accuracy and reliability. 

Overall, the graphs collectively indicate that the YOLOv8 

model effectively learns and enhances its performance across 

training and validation datasets. The steady decrease in loss 

values suggests better prediction accuracy, while the increasing 

precision and recall metrics affirm the model's reduced false 

positives and higher detection rates. The mAP metrics further 

confirm the model's reliability and robustness, demonstrating 

its potential to ensure PPE compliance on construction sites and 

contribute to improved safety and monitoring standards.  

4.3 Results 
The practical application of the YOLO model was tested in 

real-world scenarios, as shown in the figures below. In these 

images, workers on a construction site are monitored for PPE 

compliance using the trained model. In Figure 3, the uploaded 

image shows workers at a construction site, and the detected 

image highlights the model's ability to accurately identify hard 

hats and safety vests, with confidence scores provided for each 

detection. Prohibited items such as the absence of masks and 

safety vests are flagged, demonstrating the model's capability 

to detect non-compliance effectively. 

  

Fig 3: Example of PPE compliance detection in a 

telecommunication site using YOLOv8 

In Figure 4, another set of workers is analyzed. The uploaded 

image is compared with the detected image, where the model 

successfully identifies hard hats and safety vests. The model's 

detections are annotated with confidence scores, showing high 

accuracy. Again, prohibited items such as the absence of masks 

are flagged, ensuring that safety protocols are monitored and 

enforced. 

 

Fig 3: Example showcasing the model's accuracy in 

identifying PPE items and flagging non-compliance 

These results illustrate the practical utility of the YOLOv8 

model in real-time PPE compliance monitoring, providing 

reliable detections and actionable insights to improve 

workplace safety. 

5. CONCLUSIONS 
In conclusion, the thorough evaluation of the YOLOv8 object 

detection model for PPE detection yields substantial insights 

into its effectiveness and potential implications. The observed 

positive trend in precision metrics, demonstrating 

commendable improvement throughout training and 

stabilization emphasizes the model's heightened accuracy and 

precision. This improved precision is crucial for real-world 

applications, ensuring a reliable system capable of accurately 

identifying issues related to personal protective equipment 

removal and non-compliance. 

The model's proficiency in distinguishing between properly 

worn PPE and those with potential concerns (those with a good 

probability of not wearing proper PPE) implies its capability to 

provide precise recommendations for targeted corrective 

actions. Furthermore, the consistent improvement in recall 

performance, as more epochs are used in model training, 

signifies the model's evolving competence in capturing a higher 

percentage of actual positive instances related to PPE 

compliance detection. 

These findings collectively depict the YOLOv8 model 

progressing towards higher accuracy and reliability, 

establishing a robust foundation for delivering effective and 

actionable recommendations in the context of personal 

protective equipment. The successful deployment of the 

YOLOv8 object detection model further underscores its 

adaptability and practical applicability. This successful 

deployment highlights the YOLOv8 model's immediate 

practical utility in addressing challenges in PPE compliance, 

making strides toward revolutionizing safety practices. 

Practically, these conclusions hold significant implications for 

safety technology and compliance monitoring. The heightened 

accuracy and reliability of the YOLOv8 model empower users 

with a potent tool for early detection of issues related to 

personal protective equipment. This capability facilitates 

prompt and targeted interventions, contributing to improved 

workplace safety and overall adherence to safety protocols. The 

findings underscore the potential of deep learning-powered 

solutions in addressing challenges in PPE monitoring, 
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providing a scalable and efficient approach for ensuring safety 

in various industries. 

In industrial settings, the model can swiftly detect and alert 

operators to potential hazards, ensuring a proactive response to 

prevent accidents. In the context of personal protective 

equipment (PPE), the YOLOv8 model excels in recognizing 

compliance issues, ensuring that safety protocols are adhered 

to with precision. Whether in construction sites, manufacturing 

facilities, or healthcare institutions, the YOLOv8 model serves 

as an invaluable guardian, continually scanning its 

surroundings to identify and address safety concerns promptly. 

The model's ability to operate in real-time and adapt to diverse 

scenarios positions it as a key player in fostering a safer and 

more secure environment for workers and stakeholders alike. 

As technology in safety monitoring continues to advance, the 

success of the YOLOv8 model represents a notable stride 

towards leveraging technology for enhanced efficiency and 

safety in global workplace environments. 
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