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ABSTRACT 
Kolmogorov-Arnold Networks (KANs), inspired by the 

Kolmogorov-Arnold representation theorem [4], are a novel 

class of neural networks characterized by learnable activation 

functions on edges instead of fixed activation functions on 

nodes. While KANs have demonstrated superior performance 

over traditional Multi-Layer Perceptrons (MLPs) in tasks 

requiring high-dimensional function approximation, their 

performance can be further optimized through effective 

initialization strategies and the introduction of residual 

connections. In this paper, an enhancement of KANs is 

proposed by combining Xavier initialization with residual 

activations. Xavier initialization ensures proper weight 

scaling, preventing vanishing or exploding gradients during 

training, while residual activations enable faster convergence 

and more efficient training of complex models. Through 

experimental evaluation on synthetic function approximation 

tasks, it demonstrates that these improvements yield faster 

convergence, better generalization, and increased robustness in 

training KANs. 
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1. INTRODUCTION 

Kolmogorov-Arnold Networks (KANs) are a recent 

advancement in deep learning architectures, designed based on 

the Kolmogorov-Arnold representation theorem. This theorem 

states that any continuous multivariate function can be 

expressed as a sum of continuous univariate functions. KANs 

leverage this concept by learning univariate activation 

functions on edges, rather than using fixed activation functions 

at nodes, which helps overcome the curse of dimensionality. 

Despite their promise, training deep KANs presents challenges, 

such as vanishing or exploding gradients, which can slow 

convergence and reduce model performance. This paper 

proposes two enhancements to KANs to address these issues: 

(1) Xavier initialization, which stabilizes weight scaling, and 

(2) residual activations, which improve gradient flow and 

reduce the vanishing gradient problem in deeper networks. 

 

 

2. BACKGROUND AND RELATED 

WORK 

2.1 Kolmogorov-Arnold Networks 
KANs represent a new class of neural networks inspired by the 

Kolmogorov-Arnold theorem. In KANs, the learnable 

activation functions are placed on the edges between neurons, 

usually modeled as splines. This structure allows KANs to 

perform better on high-dimensional function approximation 

tasks than traditional architectures like MLPs. However, proper 

initialization and gradient flow remain challenging for effective 

training of KANs. 

2.2 Xavier Initialization 
Xavier initialization is a widely adopted weight initialization 

technique introduced by Glorot and Bengio [1]. By scaling the 

weights based on the number of incoming and outgoing 

connections, Xavier initialization helps maintain consistent 

variance in activations, preventing vanishing or exploding 

gradients. It has shown success with activation functions like 

sigmoid and tanh, and we explore its application in KANs.The 

Xavier initialization strategy sets the weights to values sampled 

from a distribution with zero mean and a variance defined as: 

Var( W) =  
2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
 

Here, nin represents the number of neurons feeding into a layer, 

and nout represents the number of neurons the layer outputs to. 

By ensuring that the variance of activations is neither too small 

nor too large, the method stabilizes the learning process across 

layers. 

2.3 Residual Connections 

Residual connections, first introduced in ResNet architectures 

[2], allow gradients to flow more easily through the network by 

enabling the model to learn identity mappings. These 

connections mitigate the vanishing gradient problem, enabling 

the training of much deeper networks. In this paper, we extend 

the use of residual connections to KANs by incorporating 

residual activations. 

3. PROPOSED METHOD  

In this section, two key enhancements are proposed to KANs 

to improve their performance: Xavier initialization and 

residual activations. 

3.1 Xavier Initialization in KANs 
Given that KANs involve learnable activation functions 

(splines) on edges, initializing the spline coefficients and 

weights effectively is critical for stable and efficient training.  

Xavier initialization is applied to the spline coefficients and 
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linear weights in KANs to ensure that the variance of the 

outputs remains consistent across layers, preventing gradients 

from either vanishing or exploding. 

The Xavier initialization formula for weights WWW between 

layers with  input neurons and  output neurons is: 

 

 This approach is extended to initialize the spline coefficients 

and linear components in KANs, which are critical for the 

optimization process of univariate functions along edges. 

3.2 Residual Activations for KANs 
To further enhance the training dynamics of KANs, residual 

activations is introduced to the network. A residual activation 

combines the spline-based activation with a simple linear 

transformation of the input, ensuring that the network can more 

easily learn identity mappings when needed. This helps 

gradients flow more freely through the network, reducing the 

likelihood of gradient vanishing in deeper networks. 

The residual activation is defined as: 

Residual  Activation= Spline Activation+ Wlinea . X + b 

Where Wlinear and b are the trainable parameters of the linear 

component, and the spline activation is a piecewise function 

based on a set of grid points. 

4. EXPERIMENTAL EVALUATION 
The proposed method was evaluated on a synthetic function 

approximation task to measure the impact of Xavier 

initialization and residual activations on KAN training and 

performance. 

4.1 Experimental Setup 
Dataset: a toy dataset was used where the target function is f(x 

)=sin(πx)+x^2, with inputs uniformly sampled in the range 

[−1,1][-1, 1][−1,1].0 

Models: The comparison was done with standard KANs, 

KANs with Xavier initialization, and KANs with both Xavier 

initialization and residual activations. 

Training: All models are trained using gradient descent with a 

learning rate of 0.001 and mean squared error (MSE) loss. Each 

model is trained for 1000 epochs. 

4.2 Results 

The results (Table 1) show that KANs with Xavier initialization 

and residual activations achieve faster convergence and lower 

final loss compared to the standard KAN model. The use of 

residual activations also improves training stability, 

particularly in deeper networks. 

The results, summarized in Table 1 of the paper, indicate the 

following: 

Standard KANs: Achieved a final MSE of 0.0032 after 900 

epochs. Gradients faced issues with vanishing or exploding, 

leading to slower convergence and suboptimal learning. 

KANs with Xavier Initialization: Improved final MSE to 

0.0021, converging in 700 epochs. Xavier initialization 

stabilized the gradient flow and maintained consistent 

activation variance, enabling faster convergence. 

KANs with Residual Activations: Further reduced the MSE to 

0.0015, converging in 500 epochs. Residual activations 

facilitated better gradient flow by combining spline-based 

activations with identity mappings, leading to more stable and 

efficient training. 

KANs with Both Enhancements: Showed the best performance 

with a final MSE of 0.0011, achieved in just 400 epochs. 

The synergy between Xavier initialization and residual 

activations maximized gradient stability and enhanced the 

network's ability to capture complex patterns. 

Table 1: Comparison table of MSE Convergence Epoch of 

different Kan mode 

Mode 
Final Loss 

(MSE) 

Convergence 

Epoch 

Standard KAN 0.0032 900 

KAN with Xavier 

Initialization 
0.0021 700 

KAN with Residual 

Activations 
0.0015 500 

KAN with Both 0.0011 400 

 

Fig 1: MSE comparison of different KAN model 

4.3 Discussion 
The experimental results, summarized in Table 1, 

quantitatively demonstrate the impact of the proposed 

modifications to Kolmogorov-Arnold Networks (KANs). 

Specifically, the combination of Xavier initialization and 

residual activations yields a significant reduction in final loss 

(MSE) and convergence epochs, compared to the baseline 

model. Mathematically, it was observed that the standard KAN 

achieved a final MSE of 0.0032, converging after 900 epochs. 

In contrast, the KAN model incorporating both Xavier 

initialization and residual activations achieved a final MSE of 

0.0011 after only 400 epochs. The Xavier initialization ensures 

better gradient flow, leading to faster convergence, while 

residual activations enable the network to capture both simple 

and complex relationships more efficiently. 
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5. CONCLUSION 
In this paper, two enhancements are proposed to improve the 

performance of Kolmogorov-Arnold Networks: Xavier 

initialization and residual activations. Our experiments 

demonstrate that these techniques improve convergence speed, 

training stability, and generalization, making KANs more 

robust for high-dimensional function approximation tasks. 

Future work will explore the application of these techniques to 

more complex real-world problems and further optimize KAN 

architectures for scalability. Techniques to more complex real-

world problems and further optimize KAN architectures for 

scalability. 
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