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ABSTRACT 

Distributed computing systems have become a pivotal aspect 

of modern technology, enabling complex computations and 

tasks across various industries, including telecommunications, 

scientific research, and financial services. These systems 

provide scalability, fault tolerance, and resource sharing across 

multiple nodes, allowing for efficient handling of vast datasets. 

This paper discusses the characteristics, architectural styles, 

and middleware solutions that support distributed computing, 

with a focus on fault tolerance mechanisms and distributed 

consensus algorithms such as Paxos and Raft. Additionally, it 

compares notable frameworks like Apache Spark and Ray, 

which serve distinct roles in managing data processing and real-

time computational tasks, respectively. The discussion 

highlights the importance of fault tolerance and resilience in 

ensuring the continuous operation of distributed systems in 

diverse applications. 

Keywords: Distributed Systems, Fault Tolerance, 

Scalability, MapReduce, Apache Spark, Ray Framework. 

Middleware, Distributed File Systems, Paxos Algorithm 
  

1. INTRODUCTION 
Distributed computing is used now in a wide range of 

computing activities, from video games to database 

management. Without distributed computing, many software 

applications—such as blockchain technology, scientific 

simulations, cryptocurrency systems, and AI platforms—

would just not be possible to implement [1]. 

When a burden is too great for one computer or device to 

manage, distributed systems kick in. When workloads 

fluctuate, such on Cyber Monday when e-commerce traffic 

surges or when news about your company causes an increase in 

online traffic, they are essential [21]. 

Using the capabilities of several computers and processes, 

distributed systems can offer features that would be difficult or 

impossible to do on a single system. They enable, for example, 

off-site server and application backups, which allow the main 

catalog to ask the off-site node or nodes to deliver the segments 

in case it is short on bits for a restoration. Whether sending an 

email, playing a game, or reading this article online, almost 

every activity done on a computing device uses the features of 

distributed systems. 

Many different industries have a wide range of distributed 

system examples, such as: - Telecommunications networks 

supporting internet and mobile networks Systems of graphic 

and video rendering - Scientific computation in fields like 

genetics and protein folding System of hotel and airline 

reservations Systems of multiuser video conferences Systems 

for processing cryptocurrency, such as Bitcoin; peer-to-peer 

file-sharing Multiple player video games - Distributed 

community compute systems Distribution of merchants around 

the world and supply chain management. 

2. CHARACTERISTICS OF 

DISTRIBUTED COMPUTING SYSTEMS 

2.1 Collection of autonomous computing 

elements 

Today's distributed systems may consist of various nodes, 

ranging from powerful computers to small devices. The 

primary concept is that these nodes can function independently, 

even though collaboration is necessary for the system to operate 

efficiently. Nodes are programmed to work towards shared 

objectives by exchanging messages. Each node responds to 

incoming messages, processes them, and initiates further 

communication using message passing. 

Due to the autonomy of nodes, each one has its own concept of 

time, resulting in a lack of a universal clock. This time disparity 

raises important issues related to synchronization and 

coordination in distributed systems. Managing a group of nodes 

involves handling membership and organization. This includes 

determining which nodes are part of the system and providing 

each member with a list of nodes for direct communication. 

2.2 Single coherent system 

A distributed system should present itself as a unified and 

coherent entity, even though processes, data, and control are 

spread across a network. While achieving a seamless single-

system view may be too ambitious, our definition focuses on 

the system appearing coherent. Essentially, a distributed 

system is considered coherent if it functions as users expect. In 

a single coherent system, all nodes collectively operate 

consistently, regardless of the location, time, or method of user 

interaction. 
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Providing a unified view is often a difficult task. It involves 

ensuring that users cannot discern where a process is running, 

or if parts of a task have been delegated to other processes 

elsewhere. Users should not need to know where data is stored 

or be concerned with data replication for performance 

improvement. This concept of distribution transparency is a 

key objective in distributed system design, reminiscent of how 

Unix-like operating systems offer a unified file-system 

interface to abstract differences between various resources. 

2.3 Middleware and distributed systems 

Middleware in distributed systems plays a crucial role in 

assisting the development of distributed applications by serving 

as a separate layer of software placed on top of the respective 

operating systems of the computers within the system. This 

layer, known as middleware, acts as a manager of resources that 

allows applications to efficiently share and deploy resources 

across the network. In addition to resource management, 

middleware provides services such as inter application 

communication, security, accounting, and failure recovery. 

Unlike operating systems, middleware operates in a networked 

environment. YARN is a popular middleware [3], a framework 

for resource management and task scheduling.  

2.4 Fault Tolerant 

Fault tolerance is a key feature of distributed systems, ensuring 

that they remain functional even in the event of node failures. 

This resilience is achieved through redundancy, where critical 

data or services are duplicated across multiple nodes. 

Redundant components can seamlessly take over tasks from 

failed nodes, minimizing downtime and preventing data loss. 

Fault tolerance is particularly important for applications that 

require high availability, such as financial transaction systems, 

healthcare data services, and critical infrastructure monitoring. 

3. Architectural Styles in Distributed 

Systems 
Various architectural styles are utilized in distributed systems, 

with each one being customized to address specific needs and 

obstacles. This discourse delves into three notable 

architectures, such as MapReduce, Apache Spark, and the 

Google File System (GFS), showcasing their respective 

characteristics. These architectures are all geared towards 

effectively handling and overseeing extensive data sets spread 

across computer clusters [4]. 

3.1 MapReduce 

The distributed file system divides large data files, while the 

MapReduce programming model splits the algorithm into 

segments that can be processed on data blocks in a distributed 

manner to achieve optimal computing performance. Initially 

created by Google, MapReduce was later integrated into the 

Apache Hadoop project to transform sequential algorithms into 

a MapReduce format, enabling efficient execution on a cluster 

[5, 6]. 

A MapReduce program consists of two fundamental processes: 

Map and Reduce [7]. The Map process operates on the data 

blocks of a node to produce a local outcome. This process is 

carried out concurrently on multiple nodes to generate local 

results independently, thereby enhancing computing 

performance [8]. The Reduce process acts on the local 

outcomes to produce a global result. This stage involves 

transferring all local results to the nodes responsible for the 

Reduce process, incurring a high data communication cost due 

to shuffling and transforming data among nodes. Upon 

gathering all local results at the Reduce nodes, a global result 

is produced through the Reduce process [9]. 

When a data processing task can be accomplished with a single 

set of Map and Reduce operations, such as tallying word 

frequencies from numerous web pages, the MapReduce 

program can effectively analyze large data files by leveraging 

a large-scale cluster with numerous nodes. Conversely, if an 

iterative algorithm is converted into a series of Map and Reduce 

operations, the algorithm may not efficiently handle a vast 

distributed dataset due to factors like I/O, communication, and 

computing expenses [10]. 

3.2 Apache Spark 

Apache Spark, originally created at the University of 

California, Berkeley, is an open-source engine for processing 

large-scale data. It differs from Hadoop MapReduce by storing 

all interim results in a Resilient Distributed Dataset (RDD) in 

memory to reduce I/O costs. It also employs a directed acyclic 

graph (DAG) task segmentation method for operating on RDD, 

similar to MapReduce. Spark's in-memory computing 

outperforms Hadoop, making it the leading platform for batch 

big data analysis [11-13].  

3.3 Distributed File Systems 

By employing the divide-and-conquer approach in distributed 

computing, a significant data file gets divided into several small 

files known as data blocks. These data blocks are then 

distributed across cluster nodes' disks to enhance I/O 

performance. This method of storing a large data file is termed 

as a distributed data file and is effectively managed on the 

cluster using various distributed file systems [14, 15] like GFS 

[16], HDFS [17], TFS [18], and FastDFS [19]. These file 

systems play a crucial role in facilitating big data analysis. 

Figure 1 describes distributed Computing Frameworks for big 

data analysis.  

GFS, a Linux-based distributed file system developed by 

Google, caters to the specific needs of individual companies 

[20]. TFS, on the other hand, is a high-availability, high-

performance distributed file system created by Taobao to 

address the storage demands of unstructured small files, usually 

under 1 MB in size. FastDFS, an open-source distributed file 

system, is a lightweight option ideal for online services that 

utilize files as their primary medium. 

HDFS, originating from the Apache Hadoop project, was 

crafted to tackle the complexities of distributed data processing 

within extensive clusters. It serves as a fault-tolerant data 

storage system running on standard hardware, making it well-

suited for managing large volumes of big data. As a result, 

HDFS has gained wide acceptance in the industry for its role in 

processing and analyzing big data. 
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Fig. 1: Distributed Computing Frameworks for Big Data Analysis [4] 

4. FAULT TOLERANCE AND 

RESILIENCE 
Distributed architecture has the major benefit of fault tolerance. 

Continuous service is ensured by the ability of other nodes to 

take over for a failing one. Large, complicated applications find 

this architecture to be a great option because it can be readily 

scaled up by adding more machines. 

4.1 Fault Tolerance Mechanisms 

Fault tolerance refers to the capacity of a system to function 

normally even if some of its components fail. Fault tolerance in 

distributed systems is frequently accomplished by use of 

redundancy, replication, and error recovery techniques. 

Replication: Replication is keeping copies of the same data or 

service on several nodes so that the system may still access the 

data from another node in the event that one fails. File and 

database systems both availability [22]. 

Redundancy: Hardware, network, and data layers of a 

distributed system can all have redundancy implemented. It is 

building up backup copies of system components, including 

servers or hard drives, that can take over when the main one 

malfunctions [22]. 

Error Recovery: Error recovery methods are intended to put the 

system back to a known good state after a failure. This might 

entail processes like checkpointing, in which the system 

routinely stores a state snapshot so that, in the event of a crash, 

it can resume from this point instead of having to start over 

[22]. 

4.2 Techniques for Detecting and Handling 

Failures 

Detecting and handling failures are critical for maintaining 

system reliability and availability in distributed environments. 

(a) Heart beating: A heartbeat is a periodic signal sent between 

machines to indicate normal operation. If a heartbeat is missed, 

other components in the system can assume that a failure has 

occurred. This method is simple and effective for monitoring 

the health of nodes in distributed systems [23]. 

(b) Timeouts: Timeouts are used to detect failures by setting a 

time limit on certain operations or responses. If the expected 

response is not received within the timeout period, the system 

can assume a failure and initiate appropriate recovery or 

failover procedures [23]. 

(c) Failure Detectors: Failure detectors help in identifying 

component failures within a system. They can vary in accuracy 

and speed, and are crucial for deciding when to trigger a 

failover or recovery process [23]. 

4.3 Algorithms for Distributed Consensus 

In distributed systems, consensus methods are necessary to 

guarantee that every node agrees on a single data value or a 

single series of events, which is critical to preserving 

consistency among dispersed operations. 

 

Fig. 2: Consensus Algorithm in Distributed System [24] 
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4.3.1 Paxos: It allows a cluster of distributed database 

nodes or other dispersed group of computers to come to an 

agreement via an asynchronous network. One or more of the 

computers offers Paxos a value in order to reach an agreement. 

When most of the Paxos-running computers concur on a given 

value, consensus is reached. Paxos chooses a single value from 

among one or more suggested values and broadcasts it to every 

cooperating computer. The cluster clocks ahead once every 

computer (or database node) agrees on the suggested value after 

the Paxos process has completed [24]. 

4.3.2 Raft: Raft has been designed to be more 

comprehensible than Paxos and functions on the basis of a 

robust leader concept. The system is partitioned into three 

primary constituents: Leader Election, Log Replication, and 

Safety. 

5. RAY FRAMEWORK 
Ray is a framework that is open-source and offers a 

straightforward, universal API for constructing distributed 

applications. Ray is specifically engineered to deliver 

exceptional performance and scalability, especially for 

applications that require advanced computational capabilities, 

such as machine learning and artificial intelligence [29]. Figure 

6 and 7 describes Ray architecture.   

 

Fig. 6: Ray ecosystem [30]  

 

Fig. 7: Ray Core [30]

5.1 PERFORMANCE CHARACTERISTICS 

(a) High Throughput and Low Latency: Ray's task execution 

framework is optimized to provide high throughput and low 

latency in task scheduling and execution. This makes it well-

suited for applications that require high performance. 

(b) Scalability: Ray has the potential to easily handle hundreds 

to thousands of nodes in a horizontal manner, enabling 

applications to efficiently utilize more computational resources 

as required, without seeing a substantial decline in 

performance. 



International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.48, November 2024 

20 

5.2 Comparison between Spark and Ray 

Spark is primarily built for data processing workflows and 

batch processing. It also supports streaming data through 

micro-batching. It is very suitable for tasks such as ETL 

workloads, batch queries, and data transformation workflows. 

Ray is specifically designed for applications that require real-

time processing and high speed. It has built-in support for both 

batch processing and streaming data. It performs exceptionally 

well in situations that need immediate decision-making and 

interactive computing. 

Spark utilizes a resilient distributed dataset (RDD) and directed 

acyclic graph (DAG) to execute tasks. However, this approach 

may not be as effective for iterative algorithms that involve 

managing a large amount of mutable state. 

Ray supports the execution of dynamic task graphs, which can 

be more efficient for applications that require frequent 

modifications to state or that benefit from precise task 

management. 

Spark executes computations in memory, and its efficiency 

greatly depends on memory management and the capability to 

store datasets in memory throughout the cluster. 

Ray utilizes an object store to manage shared memory among 

activities, hence minimizing the costs associated with data 

transportation and duplication. 

Spark and Ray can be used synergistically in IoT applications. 

Spark can handle the initial stages of data ingestion, cleaning, 

and aggregation, while Ray can focus on real-time processing, 

decision-making, and AI model deployment. By leveraging the 

strengths of both frameworks, IoT systems can achieve scalable 

data handling, robust analytics, and dynamic performance 

optimization, addressing the diverse demands of modern IoT 

ecosystems [31-36]. 

Distributed systems can integrate AI to provide predictive 

analytics, automated diagnosis, and optimized treatment plans. 

Blockchain offers secure, decentralized data management and 

ensures the integrity of healthcare records. 5G enhances the 

connectivity and reliability of IoT devices in distributed 

systems, enabling real-time data transmission [37-45]. 

6. CONCLUSION 
Distributed systems play an essential role in enabling scalable 

and fault-tolerant solutions for handling large datasets and 

complex computations. Through mechanisms like replication, 

redundancy, and failure detection, these systems ensure high 

availability and resilience. The architectural styles explored, 

including MapReduce, Spark, and the Google File System, 

provide a strong foundation for big data processing. As 

technology continues to evolve, frameworks such as Ray offer 

enhanced capabilities for real-time processing and machine 

learning applications, making distributed computing 

indispensable in the modern digital landscape. Future 

advancements will likely focus on improving fault tolerance, 

reducing latency, and enhancing scalability to meet the 

growing demands of data-intensive industries. 

7. REFERENCES 
[1] https://www.splunk.com/en_us/blog/learn/distributed-

systems.html#:~:text=Distributed%20systems%20are%2

0used%20when,to%20news%20about%20your%20organ

ization. 

[2] van Steen, M., Tanenbaum, A.S. A brief introduction to 

distributed systems. Computing 98, 967–1009 (2016). 

https://doi.org/10.1007/s00607-016-0508-7 

[3] P. S. Janardhanan and P. Samuel, "Launch overheads of 

spark applications on standalone and hadoop YARN 

clusters" in Advances in Electrical and Computer 

Technologies, Singapore:Springer, pp. 47-54, 2020. 

[4] X. Sun, Y. He, D. Wu and J. Z. Huang, "Survey of 

Distributed Computing Frameworks for Supporting Big 

Data Analysis," in Big Data Mining and Analytics, vol. 6, 

no. 2, pp. 154-169, June 2023, doi: 

10.26599/BDMA.2022.9020014. 

[5] R. Gu, X. Yang, J. Yan, Y. Sun, B. Wang, C. Yuan, et al., 

"SHadoop: Improving MapReduce performance by 

optimizing job execution mechanism in hadoop clusters", 

J. Parallel Distribut. Comput., vol. 74, no. 3, pp. 2166-

2179, 2014. 

[6] I. Polato, R. Ré, A. Goldman and F. Kon, "A 

comprehensive view of hadoop research-A systematic 

literature review", J. Network Comput. Applicat., vol. 46, 

pp. 1-25, 2014. 

[7] Y. Wang, W. Jiang and G. Agrawal, "SciMATE: A novel 

MapReduce-like framework for multiple scientific data 

formats", Proc. 2012 12 th IEEE/ACM Int. Symp. Cluster 

Cloud and Grid Computing (CCGRID 2012) , pp. 443-

450, 2012. 

[8] J. Dean and S. Ghemawat, "MapReduce: Simplified data 

processing on large clusters", Commun ACM, vol. 51, no. 

1, pp. 107-113, 2008. 

[9] M. R. Ghazi and D. Gangodkar, "Hadoop MapReduce and 

HDFS: A developers perspective", Proc. Comput. Sci., 

vol. 48, pp. 45-50, 2015. 

[10] Y. Zhang, Q. Gao, L. Gao and C. Wang, "iMapReduce: A 

distributed computing framework for iterative 

computation", J. Grid Comput., vol. 10, no. 1, pp. 47-68, 

2012. 

[11] J. Yu, J. Wu and M. Sarwat, "A demonstration of 

geoSpark: A cluster computing framework for processing 

big spatial data", Proc. 2016 IEEE 32 nd Int. Conf. Data 

Engineering (ICDE) , pp. 1410-1413, 2016. 

[12] Z. Yang, C. Zhang, M. Hu and F. Lin, "OPC: A distributed 

computing and memory computing-based effective 

solution of big data", Proc. 2015 IEEE Int. Conf. Smart 

City/ SocialCom/SustainCom (SmartCity), pp. 50-53, 

2015. 

[13] V. Taran, O. Alienin, S. Stirenko, Y. Gordienko and A. 

Rojbi, "Performance evaluation of distributed computing 

environments with Hadoop and spark frameworks", Proc. 

2017 IEEE Int. Young Scientists Forum on Applied 

Physics and Engineering (YSF), pp. 80-83, 2017. 

[14] T. D. Thanh, S. Mohan, E. Choi, S. Kim and P. Kim, "A 

taxonomy and survey on distributed file systems", Proc. 

2008 4 th Int. Conf. Networked Computing and Advanced 

Information Management , pp. 144-149, 2008. 

[15] J. Blomer, "A survey on distributed file system 

technology", J. Phys. Conf. Ser., vol. 608, pp. 012039, 

2015. 

[16] S. Ghemawat, H. Gobioff and S. T. Leung, "The google 

file system", ACM SIGOPS Oper. Syst. Rev., vol. 73, no. 

5, pp. 29-43, 2003. 

[17] L. Jiang, B. Li and M. Song, "The optimization of HDFS 

based on small files", Proc. 2010 3 rd IEEE Int. Conf. 



International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.48, November 2024 

21 

Broadband Network and Multimedia Technology (IC-

BNMT) , pp. 912-915, 2010. 

[18] S. Zhuo, X. Wu, W. Zhang and W. Dou, "Distributed file 

system and classification for small images", Proc. 2013 

IEEE Int. Conf. Green Computing and Communications 

and IEEE Internet of Things and IEEE Cyber Physical and 

Social Computing, pp. 2231-2234, 2013. 

[19] H. Che and H. Zhang, "Exploiting fastDFS client-based 

small file merging", Proc. 2016 Int. Conf Artificial 

Intelligence and Engineering Applications, pp. 242-246, 

2016. 

[20] Z. Ullah, S. Jabbar, M. H. Bin, Tariq Alvi and A. Ahmad, 

"Analytical study on performance challenges and future 

considerations of Google file system", Int. J. Computer 

Communicat. Eng., vol. 3, no. 4, pp. 279-284, 2014. 

[21] https://medium.com/@ayeshwery/architectures-in-

distributed-system-b2ace2fca6bb 

[22] Tanenbaum, A.S., & Van Steen, M. (2017). "Distributed 

Systems: Principles and Paradigms." 

[23] Chandra, T.D., & Toueg, S. (1996). "Unreliable Failure 

Detectors for Reliable Distributed Systems." 

[24] https://medium.com/@mani.saksham12/raft-and-paxos-

consensus-algorithms-for-distributed-systems-

138cd7c2d35a 

[25] Ongaro, D., & Ousterhout, J. (2014). "In Search of an 

Understandable Consensus Algorithm." 

[26] https://kafka.apache.org/documentation/ 

[27] https://medium.com/@kajol_singh/unveiling-apache-

kafka-a-comprehensive-guide-to-core-concepts-and-

functionality-2efd51de2b89  

[28] https://bair.berkeley.edu/blog/2018/01/09/ray/  

[29] Moritz, Philipp, et al. "Ray: A distributed framework for 

emerging {AI} applications." 13th USENIX symposium 

on operating systems design and implementation (OSDI 

18). 2018. 

[30] https://www.datacamp.com/tutorial/distributed-

processing-using-ray-framework-in-python 

[31] Hoque, K., Hossain, M. B., Sami, A., Das, D., Kadir, A., 

& Rahman, M. A. (2024). Technological trends in 5G 

networks for IoT-enabled smart healthcare: A review. 

International Journal of Science and Research Archive, 

12(2), 1399-1410. 

[32] Md Shihab Uddin. Addressing IoT Security Challenges 

through AI Solutions. International Journal of Computer 

Applications. 186, 45 (Oct 2024), 50-55. 

DOI=10.5120/ijca2024924107 

[33] Khandoker Hoque, Md Boktiar Hossain, Denesh Das, 

Partha Protim Roy. Integration of IoT in Energy Sector. 

International Journal of Computer Applications. 186, 36 

(Aug 2024), 32-40. DOI=10.5120/ijca2024923981 

[34] Md Maniruzzaman, Md Shihab Uddin, Md Boktiar 

Hossain, Khandoker Hoque, “Understanding COVID-19 

Through Tweets using Machine Learning: A Visualization 

of Trends and Conversations”, European Journal of 

Advances in Engineering and Technology, Vol. 10, Issue: 

5, pp. 108-114, 2023.  

[35] Md Boktiar Hossain, Khandoker Hoque, Mohammad 

Atikur Rahman, Priya Podder, Deepak Gupta, “Hepatitis 

C Prediction Applying Different ML Classification 

Algorithm”, International Conference on Computing and 

Communication Networks 2024 (ICCCNet 2024), 2024. 

[36] Javed Mehedi Shamrat, F. M., Tasnim, Z., Chowdhury, T. 

R., Shema, R., Uddin, M. S., & Sultana, Z. (2022). 

Multiple cascading algorithms to evaluate performance of 

face detection. In Pervasive Computing and Social 

Networking: Proceedings of ICPCSN 2021 (pp. 89-102). 

Springer Singapore. 

[37] Javed Mehedi Shamrat, F. M., Ghosh, P., Tasnim, Z., 

Khan, A. A., Uddin, M. S., & Chowdhury, T. R. (2022). 

Human Face recognition using eigenface, SURF method. 

In Pervasive Computing and Social Networking: 

Proceedings of ICPCSN 2021 (pp. 73-88). Springer 

Singapore. 

[38] Kowsher, M., Tahabilder, A., Sanjid, M. Z. I., Prottasha, 

N. J., Uddin, M. S., Hossain, M. A., & Jilani, M. A. K. 

(2021). LSTM-ANN & BiLSTM-ANN: Hybrid deep 

learning models for enhanced classification accuracy. 

Procedia Computer Science, 193, 131-140. 

[39] Mondai, R., & Rahman, M. M. (2017, July). Dynamic 

analysis of variable structure based sliding mode 

intelligent load frequency control of interconnected 

nonlinear conventional and renewable power system. In 

2017 International Conference on Intelligent Computing, 

Instrumentation and Control Technologies (ICICICT) (pp. 

393-400). IEEE. 

[40] Bharati, S., Rahman, M. A., Mondal, R., Podder, P., Alvi, 

A. A., & Mahmood, A. (2020). Prediction of energy 

consumed by home appliances with the visualization of 

plot analysis applying different classification algorithm. 

In Frontiers in Intelligent Computing: Theory and 

Applications: Proceedings of the 7th International 

Conference on FICTA (2018), Volume 2 (pp. 246-257). 

Springer Singapore. 

[41] Hoque, R., Maniruzzaman, M., Michael, D. L., & Hoque, 

M. (2024). Empowering blockchain with SmartNIC: 

Enhancing performance, security, and scalability. World 

Journal of Advanced Research and Reviews, 22(1), 151-

162. 

[42] Amit Deb Nath, Rahmanul Hoque, Md. Masum Billah, 

Numair Bin Sharif, Mahmudul Hoque. Distributed 

Parallel and Cloud Computing: A Review. International 

Journal of Computer Applications. 186, 16 (Apr 2024), 

25-32. DOI=10.5120/ijca2024923547 

[43] Maniruzzaman, M., Sami, A., Hoque, R., & Mandal, P. 

(2024). Pneumonia prediction using deep learning in chest 

X-ray Images. International Journal of Science and 

Research Archive, 12(1), 767-773. 

[44] M. S. Miah and M. S. Islam, "Big Data Analytics 

Architectural Data Cut off Tactics for Cyber Security and 

Its Implication in Digital forensic," 2022 International 

Conference on Futuristic Technologies (INCOFT), 

Belgaum, India, 2022, pp. 1-6, doi: 

10.1109/INCOFT55651.2022.10094342. 

[45] Obaida, M. A., Miah, M. S., & Horaira, M. A. (2011). 

Random Early Discard (RED-AQM) Performance 

Analysis in Terms of TCP Variants and Network 

Parameters: Instability in High-Bandwidth-Delay 

Network. International Journal of Computer Applications, 

27(8), 40-44. 

 

IJCATM : www.ijcaonline.org 


