
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.48, November 2024

16

Analysis of Distributed Systems

Ehsan Bazgir
School of Engineering

San Francisco Bay University
Fremont, CA 94539, USA

Tasmita Tanjim Tanha
Department of Computer

Science, School of Engineering,
San Francisco Bay University,

Fremont, CA, 94539, USA

Anwarul Azim Bhuiyan
Dept. of EEE

East West University,
Dhaka 1212, Bangladesh

Ehteshamul Haque
Department of Computer Science,

School of Engineering,
San Francisco Bay University, Fremont, CA 94539,

USA.

Md Shihab Uddin
School of Engineering

San Francisco Bay University
Fremont, CA 94539, USA

ABSTRACT

Distributed computing systems have become a pivotal aspect

of modern technology, enabling complex computations and

tasks across various industries, including telecommunications,

scientific research, and financial services. These systems

provide scalability, fault tolerance, and resource sharing across

multiple nodes, allowing for efficient handling of vast datasets.

This paper discusses the characteristics, architectural styles,

and middleware solutions that support distributed computing,

with a focus on fault tolerance mechanisms and distributed

consensus algorithms such as Paxos and Raft. Additionally, it

compares notable frameworks like Apache Spark and Ray,

which serve distinct roles in managing data processing and real-

time computational tasks, respectively. The discussion

highlights the importance of fault tolerance and resilience in

ensuring the continuous operation of distributed systems in

diverse applications.

Keywords: Distributed Systems, Fault Tolerance,

Scalability, MapReduce, Apache Spark, Ray Framework.

Middleware, Distributed File Systems, Paxos Algorithm

1. INTRODUCTION
Distributed computing is used now in a wide range of

computing activities, from video games to database

management. Without distributed computing, many software

applications—such as blockchain technology, scientific

simulations, cryptocurrency systems, and AI platforms—

would just not be possible to implement [1].

When a burden is too great for one computer or device to

manage, distributed systems kick in. When workloads

fluctuate, such on Cyber Monday when e-commerce traffic

surges or when news about your company causes an increase in

online traffic, they are essential [21].

Using the capabilities of several computers and processes,

distributed systems can offer features that would be difficult or

impossible to do on a single system. They enable, for example,

off-site server and application backups, which allow the main

catalog to ask the off-site node or nodes to deliver the segments

in case it is short on bits for a restoration. Whether sending an

email, playing a game, or reading this article online, almost

every activity done on a computing device uses the features of

distributed systems.

Many different industries have a wide range of distributed

system examples, such as: - Telecommunications networks

supporting internet and mobile networks Systems of graphic

and video rendering - Scientific computation in fields like

genetics and protein folding System of hotel and airline

reservations Systems of multiuser video conferences Systems

for processing cryptocurrency, such as Bitcoin; peer-to-peer

file-sharing Multiple player video games - Distributed

community compute systems Distribution of merchants around

the world and supply chain management.

2. CHARACTERISTICS OF

DISTRIBUTED COMPUTING SYSTEMS

2.1 Collection of autonomous computing

elements

Today's distributed systems may consist of various nodes,

ranging from powerful computers to small devices. The

primary concept is that these nodes can function independently,

even though collaboration is necessary for the system to operate

efficiently. Nodes are programmed to work towards shared

objectives by exchanging messages. Each node responds to

incoming messages, processes them, and initiates further

communication using message passing.

Due to the autonomy of nodes, each one has its own concept of

time, resulting in a lack of a universal clock. This time disparity

raises important issues related to synchronization and

coordination in distributed systems. Managing a group of nodes

involves handling membership and organization. This includes

determining which nodes are part of the system and providing

each member with a list of nodes for direct communication.

2.2 Single coherent system

A distributed system should present itself as a unified and

coherent entity, even though processes, data, and control are

spread across a network. While achieving a seamless single-

system view may be too ambitious, our definition focuses on

the system appearing coherent. Essentially, a distributed

system is considered coherent if it functions as users expect. In

a single coherent system, all nodes collectively operate

consistently, regardless of the location, time, or method of user

interaction.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.48, November 2024

17

Providing a unified view is often a difficult task. It involves

ensuring that users cannot discern where a process is running,

or if parts of a task have been delegated to other processes

elsewhere. Users should not need to know where data is stored

or be concerned with data replication for performance

improvement. This concept of distribution transparency is a

key objective in distributed system design, reminiscent of how

Unix-like operating systems offer a unified file-system

interface to abstract differences between various resources.

2.3 Middleware and distributed systems

Middleware in distributed systems plays a crucial role in

assisting the development of distributed applications by serving

as a separate layer of software placed on top of the respective

operating systems of the computers within the system. This

layer, known as middleware, acts as a manager of resources that

allows applications to efficiently share and deploy resources

across the network. In addition to resource management,

middleware provides services such as inter application

communication, security, accounting, and failure recovery.

Unlike operating systems, middleware operates in a networked

environment. YARN is a popular middleware [3], a framework

for resource management and task scheduling.

2.4 Fault Tolerant

Fault tolerance is a key feature of distributed systems, ensuring

that they remain functional even in the event of node failures.

This resilience is achieved through redundancy, where critical

data or services are duplicated across multiple nodes.

Redundant components can seamlessly take over tasks from

failed nodes, minimizing downtime and preventing data loss.

Fault tolerance is particularly important for applications that

require high availability, such as financial transaction systems,

healthcare data services, and critical infrastructure monitoring.

3. Architectural Styles in Distributed

Systems
Various architectural styles are utilized in distributed systems,

with each one being customized to address specific needs and

obstacles. This discourse delves into three notable

architectures, such as MapReduce, Apache Spark, and the

Google File System (GFS), showcasing their respective

characteristics. These architectures are all geared towards

effectively handling and overseeing extensive data sets spread

across computer clusters [4].

3.1 MapReduce

The distributed file system divides large data files, while the

MapReduce programming model splits the algorithm into

segments that can be processed on data blocks in a distributed

manner to achieve optimal computing performance. Initially

created by Google, MapReduce was later integrated into the

Apache Hadoop project to transform sequential algorithms into

a MapReduce format, enabling efficient execution on a cluster

[5, 6].

A MapReduce program consists of two fundamental processes:

Map and Reduce [7]. The Map process operates on the data

blocks of a node to produce a local outcome. This process is

carried out concurrently on multiple nodes to generate local

results independently, thereby enhancing computing

performance [8]. The Reduce process acts on the local

outcomes to produce a global result. This stage involves

transferring all local results to the nodes responsible for the

Reduce process, incurring a high data communication cost due

to shuffling and transforming data among nodes. Upon

gathering all local results at the Reduce nodes, a global result

is produced through the Reduce process [9].

When a data processing task can be accomplished with a single

set of Map and Reduce operations, such as tallying word

frequencies from numerous web pages, the MapReduce

program can effectively analyze large data files by leveraging

a large-scale cluster with numerous nodes. Conversely, if an

iterative algorithm is converted into a series of Map and Reduce

operations, the algorithm may not efficiently handle a vast

distributed dataset due to factors like I/O, communication, and

computing expenses [10].

3.2 Apache Spark

Apache Spark, originally created at the University of

California, Berkeley, is an open-source engine for processing

large-scale data. It differs from Hadoop MapReduce by storing

all interim results in a Resilient Distributed Dataset (RDD) in

memory to reduce I/O costs. It also employs a directed acyclic

graph (DAG) task segmentation method for operating on RDD,

similar to MapReduce. Spark's in-memory computing

outperforms Hadoop, making it the leading platform for batch

big data analysis [11-13].

3.3 Distributed File Systems

By employing the divide-and-conquer approach in distributed

computing, a significant data file gets divided into several small

files known as data blocks. These data blocks are then

distributed across cluster nodes' disks to enhance I/O

performance. This method of storing a large data file is termed

as a distributed data file and is effectively managed on the

cluster using various distributed file systems [14, 15] like GFS

[16], HDFS [17], TFS [18], and FastDFS [19]. These file

systems play a crucial role in facilitating big data analysis.

Figure 1 describes distributed Computing Frameworks for big

data analysis.

GFS, a Linux-based distributed file system developed by

Google, caters to the specific needs of individual companies

[20]. TFS, on the other hand, is a high-availability, high-

performance distributed file system created by Taobao to

address the storage demands of unstructured small files, usually

under 1 MB in size. FastDFS, an open-source distributed file

system, is a lightweight option ideal for online services that

utilize files as their primary medium.

HDFS, originating from the Apache Hadoop project, was

crafted to tackle the complexities of distributed data processing

within extensive clusters. It serves as a fault-tolerant data

storage system running on standard hardware, making it well-

suited for managing large volumes of big data. As a result,

HDFS has gained wide acceptance in the industry for its role in

processing and analyzing big data.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.48, November 2024

18

Fig. 1: Distributed Computing Frameworks for Big Data Analysis [4]

4. FAULT TOLERANCE AND

RESILIENCE
Distributed architecture has the major benefit of fault tolerance.

Continuous service is ensured by the ability of other nodes to

take over for a failing one. Large, complicated applications find

this architecture to be a great option because it can be readily

scaled up by adding more machines.

4.1 Fault Tolerance Mechanisms

Fault tolerance refers to the capacity of a system to function

normally even if some of its components fail. Fault tolerance in

distributed systems is frequently accomplished by use of

redundancy, replication, and error recovery techniques.

Replication: Replication is keeping copies of the same data or

service on several nodes so that the system may still access the

data from another node in the event that one fails. File and

database systems both availability [22].

Redundancy: Hardware, network, and data layers of a

distributed system can all have redundancy implemented. It is

building up backup copies of system components, including

servers or hard drives, that can take over when the main one

malfunctions [22].

Error Recovery: Error recovery methods are intended to put the

system back to a known good state after a failure. This might

entail processes like checkpointing, in which the system

routinely stores a state snapshot so that, in the event of a crash,

it can resume from this point instead of having to start over

[22].

4.2 Techniques for Detecting and Handling

Failures

Detecting and handling failures are critical for maintaining

system reliability and availability in distributed environments.

(a) Heart beating: A heartbeat is a periodic signal sent between

machines to indicate normal operation. If a heartbeat is missed,

other components in the system can assume that a failure has

occurred. This method is simple and effective for monitoring

the health of nodes in distributed systems [23].

(b) Timeouts: Timeouts are used to detect failures by setting a

time limit on certain operations or responses. If the expected

response is not received within the timeout period, the system

can assume a failure and initiate appropriate recovery or

failover procedures [23].

(c) Failure Detectors: Failure detectors help in identifying

component failures within a system. They can vary in accuracy

and speed, and are crucial for deciding when to trigger a

failover or recovery process [23].

4.3 Algorithms for Distributed Consensus

In distributed systems, consensus methods are necessary to

guarantee that every node agrees on a single data value or a

single series of events, which is critical to preserving

consistency among dispersed operations.

Fig. 2: Consensus Algorithm in Distributed System [24]

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.48, November 2024

19

4.3.1 Paxos: It allows a cluster of distributed database

nodes or other dispersed group of computers to come to an

agreement via an asynchronous network. One or more of the

computers offers Paxos a value in order to reach an agreement.

When most of the Paxos-running computers concur on a given

value, consensus is reached. Paxos chooses a single value from

among one or more suggested values and broadcasts it to every

cooperating computer. The cluster clocks ahead once every

computer (or database node) agrees on the suggested value after

the Paxos process has completed [24].

4.3.2 Raft: Raft has been designed to be more

comprehensible than Paxos and functions on the basis of a

robust leader concept. The system is partitioned into three

primary constituents: Leader Election, Log Replication, and

Safety.

5. RAY FRAMEWORK
Ray is a framework that is open-source and offers a

straightforward, universal API for constructing distributed

applications. Ray is specifically engineered to deliver

exceptional performance and scalability, especially for

applications that require advanced computational capabilities,

such as machine learning and artificial intelligence [29]. Figure

6 and 7 describes Ray architecture.

Fig. 6: Ray ecosystem [30]

Fig. 7: Ray Core [30]

5.1 PERFORMANCE CHARACTERISTICS

(a) High Throughput and Low Latency: Ray's task execution

framework is optimized to provide high throughput and low

latency in task scheduling and execution. This makes it well-

suited for applications that require high performance.

(b) Scalability: Ray has the potential to easily handle hundreds

to thousands of nodes in a horizontal manner, enabling

applications to efficiently utilize more computational resources

as required, without seeing a substantial decline in

performance.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.48, November 2024

20

5.2 Comparison between Spark and Ray

Spark is primarily built for data processing workflows and

batch processing. It also supports streaming data through

micro-batching. It is very suitable for tasks such as ETL

workloads, batch queries, and data transformation workflows.

Ray is specifically designed for applications that require real-

time processing and high speed. It has built-in support for both

batch processing and streaming data. It performs exceptionally

well in situations that need immediate decision-making and

interactive computing.

Spark utilizes a resilient distributed dataset (RDD) and directed

acyclic graph (DAG) to execute tasks. However, this approach

may not be as effective for iterative algorithms that involve

managing a large amount of mutable state.

Ray supports the execution of dynamic task graphs, which can

be more efficient for applications that require frequent

modifications to state or that benefit from precise task

management.

Spark executes computations in memory, and its efficiency

greatly depends on memory management and the capability to

store datasets in memory throughout the cluster.

Ray utilizes an object store to manage shared memory among

activities, hence minimizing the costs associated with data

transportation and duplication.

Spark and Ray can be used synergistically in IoT applications.

Spark can handle the initial stages of data ingestion, cleaning,

and aggregation, while Ray can focus on real-time processing,

decision-making, and AI model deployment. By leveraging the

strengths of both frameworks, IoT systems can achieve scalable

data handling, robust analytics, and dynamic performance

optimization, addressing the diverse demands of modern IoT

ecosystems [31-36].

Distributed systems can integrate AI to provide predictive

analytics, automated diagnosis, and optimized treatment plans.

Blockchain offers secure, decentralized data management and

ensures the integrity of healthcare records. 5G enhances the

connectivity and reliability of IoT devices in distributed

systems, enabling real-time data transmission [37-45].

6. CONCLUSION
Distributed systems play an essential role in enabling scalable

and fault-tolerant solutions for handling large datasets and

complex computations. Through mechanisms like replication,

redundancy, and failure detection, these systems ensure high

availability and resilience. The architectural styles explored,

including MapReduce, Spark, and the Google File System,

provide a strong foundation for big data processing. As

technology continues to evolve, frameworks such as Ray offer

enhanced capabilities for real-time processing and machine

learning applications, making distributed computing

indispensable in the modern digital landscape. Future

advancements will likely focus on improving fault tolerance,

reducing latency, and enhancing scalability to meet the

growing demands of data-intensive industries.

7. REFERENCES
[1] https://www.splunk.com/en_us/blog/learn/distributed-

systems.html#:~:text=Distributed%20systems%20are%2

0used%20when,to%20news%20about%20your%20organ

ization.

[2] van Steen, M., Tanenbaum, A.S. A brief introduction to

distributed systems. Computing 98, 967–1009 (2016).

https://doi.org/10.1007/s00607-016-0508-7

[3] P. S. Janardhanan and P. Samuel, "Launch overheads of

spark applications on standalone and hadoop YARN

clusters" in Advances in Electrical and Computer

Technologies, Singapore:Springer, pp. 47-54, 2020.

[4] X. Sun, Y. He, D. Wu and J. Z. Huang, "Survey of

Distributed Computing Frameworks for Supporting Big

Data Analysis," in Big Data Mining and Analytics, vol. 6,

no. 2, pp. 154-169, June 2023, doi:

10.26599/BDMA.2022.9020014.

[5] R. Gu, X. Yang, J. Yan, Y. Sun, B. Wang, C. Yuan, et al.,

"SHadoop: Improving MapReduce performance by

optimizing job execution mechanism in hadoop clusters",

J. Parallel Distribut. Comput., vol. 74, no. 3, pp. 2166-

2179, 2014.

[6] I. Polato, R. Ré, A. Goldman and F. Kon, "A

comprehensive view of hadoop research-A systematic

literature review", J. Network Comput. Applicat., vol. 46,

pp. 1-25, 2014.

[7] Y. Wang, W. Jiang and G. Agrawal, "SciMATE: A novel

MapReduce-like framework for multiple scientific data

formats", Proc. 2012 12 th IEEE/ACM Int. Symp. Cluster

Cloud and Grid Computing (CCGRID 2012) , pp. 443-

450, 2012.

[8] J. Dean and S. Ghemawat, "MapReduce: Simplified data

processing on large clusters", Commun ACM, vol. 51, no.

1, pp. 107-113, 2008.

[9] M. R. Ghazi and D. Gangodkar, "Hadoop MapReduce and

HDFS: A developers perspective", Proc. Comput. Sci.,

vol. 48, pp. 45-50, 2015.

[10] Y. Zhang, Q. Gao, L. Gao and C. Wang, "iMapReduce: A

distributed computing framework for iterative

computation", J. Grid Comput., vol. 10, no. 1, pp. 47-68,

2012.

[11] J. Yu, J. Wu and M. Sarwat, "A demonstration of

geoSpark: A cluster computing framework for processing

big spatial data", Proc. 2016 IEEE 32 nd Int. Conf. Data

Engineering (ICDE) , pp. 1410-1413, 2016.

[12] Z. Yang, C. Zhang, M. Hu and F. Lin, "OPC: A distributed

computing and memory computing-based effective

solution of big data", Proc. 2015 IEEE Int. Conf. Smart

City/ SocialCom/SustainCom (SmartCity), pp. 50-53,

2015.

[13] V. Taran, O. Alienin, S. Stirenko, Y. Gordienko and A.

Rojbi, "Performance evaluation of distributed computing

environments with Hadoop and spark frameworks", Proc.

2017 IEEE Int. Young Scientists Forum on Applied

Physics and Engineering (YSF), pp. 80-83, 2017.

[14] T. D. Thanh, S. Mohan, E. Choi, S. Kim and P. Kim, "A

taxonomy and survey on distributed file systems", Proc.

2008 4 th Int. Conf. Networked Computing and Advanced

Information Management , pp. 144-149, 2008.

[15] J. Blomer, "A survey on distributed file system

technology", J. Phys. Conf. Ser., vol. 608, pp. 012039,

2015.

[16] S. Ghemawat, H. Gobioff and S. T. Leung, "The google

file system", ACM SIGOPS Oper. Syst. Rev., vol. 73, no.

5, pp. 29-43, 2003.

[17] L. Jiang, B. Li and M. Song, "The optimization of HDFS

based on small files", Proc. 2010 3 rd IEEE Int. Conf.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.48, November 2024

21

Broadband Network and Multimedia Technology (IC-

BNMT) , pp. 912-915, 2010.

[18] S. Zhuo, X. Wu, W. Zhang and W. Dou, "Distributed file

system and classification for small images", Proc. 2013

IEEE Int. Conf. Green Computing and Communications

and IEEE Internet of Things and IEEE Cyber Physical and

Social Computing, pp. 2231-2234, 2013.

[19] H. Che and H. Zhang, "Exploiting fastDFS client-based

small file merging", Proc. 2016 Int. Conf Artificial

Intelligence and Engineering Applications, pp. 242-246,

2016.

[20] Z. Ullah, S. Jabbar, M. H. Bin, Tariq Alvi and A. Ahmad,

"Analytical study on performance challenges and future

considerations of Google file system", Int. J. Computer

Communicat. Eng., vol. 3, no. 4, pp. 279-284, 2014.

[21] https://medium.com/@ayeshwery/architectures-in-

distributed-system-b2ace2fca6bb

[22] Tanenbaum, A.S., & Van Steen, M. (2017). "Distributed

Systems: Principles and Paradigms."

[23] Chandra, T.D., & Toueg, S. (1996). "Unreliable Failure

Detectors for Reliable Distributed Systems."

[24] https://medium.com/@mani.saksham12/raft-and-paxos-

consensus-algorithms-for-distributed-systems-

138cd7c2d35a

[25] Ongaro, D., & Ousterhout, J. (2014). "In Search of an

Understandable Consensus Algorithm."

[26] https://kafka.apache.org/documentation/

[27] https://medium.com/@kajol_singh/unveiling-apache-

kafka-a-comprehensive-guide-to-core-concepts-and-

functionality-2efd51de2b89

[28] https://bair.berkeley.edu/blog/2018/01/09/ray/

[29] Moritz, Philipp, et al. "Ray: A distributed framework for

emerging {AI} applications." 13th USENIX symposium

on operating systems design and implementation (OSDI

18). 2018.

[30] https://www.datacamp.com/tutorial/distributed-

processing-using-ray-framework-in-python

[31] Hoque, K., Hossain, M. B., Sami, A., Das, D., Kadir, A.,

& Rahman, M. A. (2024). Technological trends in 5G

networks for IoT-enabled smart healthcare: A review.

International Journal of Science and Research Archive,

12(2), 1399-1410.

[32] Md Shihab Uddin. Addressing IoT Security Challenges

through AI Solutions. International Journal of Computer

Applications. 186, 45 (Oct 2024), 50-55.

DOI=10.5120/ijca2024924107

[33] Khandoker Hoque, Md Boktiar Hossain, Denesh Das,

Partha Protim Roy. Integration of IoT in Energy Sector.

International Journal of Computer Applications. 186, 36

(Aug 2024), 32-40. DOI=10.5120/ijca2024923981

[34] Md Maniruzzaman, Md Shihab Uddin, Md Boktiar

Hossain, Khandoker Hoque, “Understanding COVID-19

Through Tweets using Machine Learning: A Visualization

of Trends and Conversations”, European Journal of

Advances in Engineering and Technology, Vol. 10, Issue:

5, pp. 108-114, 2023.

[35] Md Boktiar Hossain, Khandoker Hoque, Mohammad

Atikur Rahman, Priya Podder, Deepak Gupta, “Hepatitis

C Prediction Applying Different ML Classification

Algorithm”, International Conference on Computing and

Communication Networks 2024 (ICCCNet 2024), 2024.

[36] Javed Mehedi Shamrat, F. M., Tasnim, Z., Chowdhury, T.

R., Shema, R., Uddin, M. S., & Sultana, Z. (2022).

Multiple cascading algorithms to evaluate performance of

face detection. In Pervasive Computing and Social

Networking: Proceedings of ICPCSN 2021 (pp. 89-102).

Springer Singapore.

[37] Javed Mehedi Shamrat, F. M., Ghosh, P., Tasnim, Z.,

Khan, A. A., Uddin, M. S., & Chowdhury, T. R. (2022).

Human Face recognition using eigenface, SURF method.

In Pervasive Computing and Social Networking:

Proceedings of ICPCSN 2021 (pp. 73-88). Springer

Singapore.

[38] Kowsher, M., Tahabilder, A., Sanjid, M. Z. I., Prottasha,

N. J., Uddin, M. S., Hossain, M. A., & Jilani, M. A. K.

(2021). LSTM-ANN & BiLSTM-ANN: Hybrid deep

learning models for enhanced classification accuracy.

Procedia Computer Science, 193, 131-140.

[39] Mondai, R., & Rahman, M. M. (2017, July). Dynamic

analysis of variable structure based sliding mode

intelligent load frequency control of interconnected

nonlinear conventional and renewable power system. In

2017 International Conference on Intelligent Computing,

Instrumentation and Control Technologies (ICICICT) (pp.

393-400). IEEE.

[40] Bharati, S., Rahman, M. A., Mondal, R., Podder, P., Alvi,

A. A., & Mahmood, A. (2020). Prediction of energy

consumed by home appliances with the visualization of

plot analysis applying different classification algorithm.

In Frontiers in Intelligent Computing: Theory and

Applications: Proceedings of the 7th International

Conference on FICTA (2018), Volume 2 (pp. 246-257).

Springer Singapore.

[41] Hoque, R., Maniruzzaman, M., Michael, D. L., & Hoque,

M. (2024). Empowering blockchain with SmartNIC:

Enhancing performance, security, and scalability. World

Journal of Advanced Research and Reviews, 22(1), 151-

162.

[42] Amit Deb Nath, Rahmanul Hoque, Md. Masum Billah,

Numair Bin Sharif, Mahmudul Hoque. Distributed

Parallel and Cloud Computing: A Review. International

Journal of Computer Applications. 186, 16 (Apr 2024),

25-32. DOI=10.5120/ijca2024923547

[43] Maniruzzaman, M., Sami, A., Hoque, R., & Mandal, P.

(2024). Pneumonia prediction using deep learning in chest

X-ray Images. International Journal of Science and

Research Archive, 12(1), 767-773.

[44] M. S. Miah and M. S. Islam, "Big Data Analytics

Architectural Data Cut off Tactics for Cyber Security and

Its Implication in Digital forensic," 2022 International

Conference on Futuristic Technologies (INCOFT),

Belgaum, India, 2022, pp. 1-6, doi:

10.1109/INCOFT55651.2022.10094342.

[45] Obaida, M. A., Miah, M. S., & Horaira, M. A. (2011).

Random Early Discard (RED-AQM) Performance

Analysis in Terms of TCP Variants and Network

Parameters: Instability in High-Bandwidth-Delay

Network. International Journal of Computer Applications,

27(8), 40-44.

IJCATM : www.ijcaonline.org

