International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.48, November 2024

Analysis of Distributed Systems

Ehsan Bazgir
School of Engineering
San Francisco Bay University
Fremont, CA 94539, USA

Tasmita Tanjim Tanha
Department of Computer
Science, School of Engineering,
San Francisco Bay University,

Anwarul Azim Bhuiyan
Dept. of EEE
East West University,
Dhaka 1212, Bangladesh

Fremont, CA, 94539, USA

Ehteshamul Haque
Department of Computer Science,
School of Engineering,

San Francisco Bay University, Fremont, CA 94539,

USA.

ABSTRACT

Distributed computing systems have become a pivotal aspect
of modern technology, enabling complex computations and
tasks across various industries, including telecommunications,
scientific research, and financial services. These systems
provide scalability, fault tolerance, and resource sharing across
multiple nodes, allowing for efficient handling of vast datasets.
This paper discusses the characteristics, architectural styles,
and middleware solutions that support distributed computing,
with a focus on fault tolerance mechanisms and distributed
consensus algorithms such as Paxos and Raft. Additionally, it
compares notable frameworks like Apache Spark and Ray,
which serve distinct roles in managing data processing and real-
time computational tasks, respectively. The discussion
highlights the importance of fault tolerance and resilience in
ensuring the continuous operation of distributed systems in
diverse applications.

Keywords

Distributed Systems, Fault Tolerance, Scalability, MapReduce,
Apache Spark, Ray Framework. Middleware, Distributed File
Systems, Paxos Algorithm

1. INTRODUCTION

Distributed computing is used now in a wide range of
computing activities, from video games to database
management. Without distributed computing, many software
applications—such as blockchain technology, scientific
simulations, cryptocurrency systems, and Al platforms—
would just not be possible to implement [1].

When a burden is too great for one computer or device to
manage, distributed systems kick in. When workloads
fluctuate, such on Cyber Monday when e-commerce traffic
surges or when news about your company causes an increase in
online traffic, they are essential [21].

Using the capabilities of several computers and processes,
distributed systems can offer features that would be difficult or
impossible to do on a single system. They enable, for example,
off-site server and application backups, which allow the main
catalog to ask the off-site node or nodes to deliver the segments
in case it is short on bits for a restoration. Whether sending an
email, playing a game, or reading this article online, almost
every activity done on a computing device uses the features of
distributed systems.

Md Shihab Uddin
School of Engineering
San Francisco Bay University
Fremont, CA 94539, USA

Many different industries have a wide range of distributed
system examples, such as: - Telecommunications networks
supporting internet and mobile networks Systems of graphic
and video rendering - Scientific computation in fields like
genetics and protein folding System of hotel and airline
reservations Systems of multiuser video conferences Systems
for processing cryptocurrency, such as Bitcoin; peer-to-peer
file-sharing Multiple player video games - Distributed
community compute systems Distribution of merchants around
the world and supply chain management.

2. CHARACTERISTICS OF
DISTRIBUTED COMPUTING SYSTEMS
2.1 Collection of autonomous computing

elements

Today's distributed systems may consist of various nodes,
ranging from powerful computers to small devices. The
primary concept is that these nodes can function independently,
even though collaboration is necessary for the system to operate
efficiently. Nodes are programmed to work towards shared
objectives by exchanging messages. Each node responds to
incoming messages, processes them, and initiates further
communication using message passing.

Due to the autonomy of nodes, each one has its own concept of
time, resulting in a lack of a universal clock. This time disparity
raises important issues related to synchronization and
coordination in distributed systems. Managing a group of nodes
involves handling membership and organization. This includes
determining which nodes are part of the system and providing
each member with a list of nodes for direct communication.

2.2 Single coherent system

A distributed system should present itself as a unified and
coherent entity, even though processes, data, and control are
spread across a network. While achieving a seamless single-
system view may be too ambitious, our definition focuses on
the system appearing coherent. Essentially, a distributed
system is considered coherent if it functions as users expect. In
a single coherent system, all nodes collectively operate
consistently, regardless of the location, time, or method of user
interaction.

Providing a unified view is often a difficult task. It involves
ensuring that users cannot discern where a process is running,
or if parts of a task have been delegated to other processes

16

elsewhere. Users should not need to know where data is stored
or be concerned with data replication for performance
improvement. This concept of distribution transparency is a
key objective in distributed system design, reminiscent of how
Unix-like operating systems offer a unified file-system
interface to abstract differences between various resources.

2.3 Middleware and distributed systems

Middleware in distributed systems plays a crucial role in
assisting the development of distributed applications by serving
as a separate layer of software placed on top of the respective
operating systems of the computers within the system. This
layer, known as middleware, acts as a manager of resources that
allows applications to efficiently share and deploy resources
across the network. In addition to resource management,
middleware provides services such as inter application
communication, security, accounting, and failure recovery.
Unlike operating systems, middleware operates in a networked
environment. YARN is a popular middleware [3], a framework
for resource management and task scheduling.

2.4 Fault Tolerant

Fault tolerance is a key feature of distributed systems, ensuring
that they remain functional even in the event of node failures.
This resilience is achieved through redundancy, where critical
data or services are duplicated across multiple nodes.
Redundant components can seamlessly take over tasks from
failed nodes, minimizing downtime and preventing data loss.
Fault tolerance is particularly important for applications that
require high availability, such as financial transaction systems,
healthcare data services, and critical infrastructure monitoring.

3. ARCHITECTURAL STYLES IN
DISTRIBUTED SYSTEMS

Various architectural styles are utilized in distributed systems,
with each one being customized to address specific needs and
obstacles. This discourse delves into three notable
architectures, such as MapReduce, Apache Spark, and the
Google File System (GFS), showcasing their respective
characteristics. These architectures are all geared towards
effectively handling and overseeing extensive data sets spread
across computer clusters [4].

3.1 MapReduce

The distributed file system divides large data files, while the
MapReduce programming model splits the algorithm into
segments that can be processed on data blocks in a distributed
manner to achieve optimal computing performance. Initially
created by Google, MapReduce was later integrated into the
Apache Hadoop project to transform sequential algorithms into
a MapReduce format, enabling efficient execution on a cluster
[5, 6].

A MapReduce program consists of two fundamental processes:
Map and Reduce [7]. The Map process operates on the data
blocks of a node to produce a local outcome. This process is
carried out concurrently on multiple nodes to generate local
results independently, thereby enhancing computing

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.48, November 2024

performance [8]. The Reduce process acts on the local
outcomes to produce a global result. This stage involves
transferring all local results to the nodes responsible for the
Reduce process, incurring a high data communication cost due
to shuffling and transforming data among nodes. Upon
gathering all local results at the Reduce nodes, a global result
is produced through the Reduce process [9].

When a data processing task can be accomplished with a single
set of Map and Reduce operations, such as tallying word
frequencies from numerous web pages, the MapReduce
program can effectively analyze large data files by leveraging
a large-scale cluster with numerous nodes. Conversely, if an
iterative algorithm is converted into a series of Map and Reduce
operations, the algorithm may not efficiently handle a vast
distributed dataset due to factors like 1/0, communication, and
computing expenses [10].

3.2 Apache Spark

Apache Spark, originally created at the University of
California, Berkeley, is an open-source engine for processing
large-scale data. It differs from Hadoop MapReduce by storing
all interim results in a Resilient Distributed Dataset (RDD) in
memory to reduce 1/0 costs. It also employs a directed acyclic
graph (DAG) task segmentation method for operating on RDD,
similar to MapReduce. Spark's in-memory computing
outperforms Hadoop, making it the leading platform for batch
big data analysis [11-13].

3.3 Distributed File Systems

By employing the divide-and-conquer approach in distributed
computing, a significant data file gets divided into several small
files known as data blocks. These data blocks are then
distributed across cluster nodes' disks to enhance 1/O
performance. This method of storing a large data file is termed
as a distributed data file and is effectively managed on the
cluster using various distributed file systems [14, 15] like GFS
[16], HDFS [17], TFS [18], and FastDFS [19]. These file
systems play a crucial role in facilitating big data analysis.
Figure 1 describes distributed Computing Frameworks for big
data analysis.

GFS, a Linux-based distributed file system developed by
Google, caters to the specific needs of individual companies
[20]. TFS, on the other hand, is a high-availability, high-
performance distributed file system created by Taobao to
address the storage demands of unstructured small files, usually
under 1 MB in size. FastDFS, an open-source distributed file
system, is a lightweight option ideal for online services that
utilize files as their primary medium.

HDFS, originating from the Apache Hadoop project, was
crafted to tackle the complexities of distributed data processing
within extensive clusters. It serves as a fault-tolerant data
storage system running on standard hardware, making it well-
suited for managing large volumes of big data. As a result,
HDFS has gained wide acceptance in the industry for its role in
processing and analyzing big data.

17

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.48, November 2024

Resource [YARN I l Kubernetes] [Mesos]
management
Online analysis ; c
. Drud Kylin Impala Presto
processing |
—
. — alls
Mahout Hive SparkML Pig Latin (5] 3]
Analysis ,
[Hadoop Spark Flink Storm 8 E
N
Data storage [Hbase [HDFS | GEFS I Redis | TiDB
Acquisition and [Flume | [Canal] | Kafka] | Sqoop
transport |

Fig. 1: Distributed Computing Frameworks for Big Data Analysis [4]

4. FAULT TOLERANCE AND
RESILIENCE

Distributed architecture has the major benefit of fault tolerance.
Continuous service is ensured by the ability of other nodes to
take over for a failing one. Large, complicated applications find
this architecture to be a great option because it can be readily
scaled up by adding more machines.

4.1 Fault Tolerance Mechanisms

Fault tolerance refers to the capacity of a system to function
normally even if some of its components fail. Fault tolerance in
distributed systems is frequently accomplished by use of
redundancy, replication, and error recovery techniques.

Replication: Replication is keeping copies of the same data or
service on several nodes so that the system may still access the
data from another node in the event that one fails. File and
database systems both availability [22].

Redundancy: Hardware, network, and data layers of a
distributed system can all have redundancy implemented. It is
building up backup copies of system components, including
servers or hard drives, that can take over when the main one
malfunctions [22].

Error Recovery: Error recovery methods are intended to put the
system back to a known good state after a failure. This might
entail processes like checkpointing, in which the system
routinely stores a state snapshot so that, in the event of a crash,
it can resume from this point instead of having to start over
[22].

4.2 Techniques for Detecting and Handling
Failures

Detecting and handling failures are critical for maintaining
system reliability and availability in distributed environments.

(a) Heart beating: A heartbeat is a periodic signal sent between
machines to indicate normal operation. If a heartbeat is missed,
other components in the system can assume that a failure has
occurred. This method is simple and effective for monitoring
the health of nodes in distributed systems [23].

(b) Timeouts: Timeouts are used to detect failures by setting a
time limit on certain operations or responses. If the expected
response is not received within the timeout period, the system
can assume a failure and initiate appropriate recovery or
failover procedures [23].

(c) Failure Detectors: Failure detectors help in identifying
component failures within a system. They can vary in accuracy
and speed, and are crucial for deciding when to trigger a
failover or recovery process [23].

4.3 Algorithms for Distributed Consensus

In distributed systems, consensus methods are necessary to
guarantee that every node agrees on a single data value or a
single series of events, which is critical to preserving
consistency among dispersed operations.

\
\

Bb&
& &

Fig. 2: Consensus Algorithm in Distributed System [24]

4.3.1 Paxos: It allows a cluster of distributed database
nodes or other dispersed group of computers to come to an
agreement via an asynchronous network. One or more of the
computers offers Paxos a value in order to reach an agreement.
When most of the Paxos-running computers concur on a given
value, consensus is reached. Paxos chooses a single value from
among one or more suggested values and broadcasts it to every

18

cooperating computer. The cluster clocks ahead once every
computer (or database node) agrees on the suggested value after
the Paxos process has completed [24].

4.3.2 Raft: Raft has been designed to be more
comprehensible than Paxos and functions on the basis of a
robust leader concept. The system is partitioned into three
primary constituents: Leader Election, Log Replication, and
Safety.

Native Libraries

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.48, November 2024

5. RAY FRAMEWORK

Ray is a framework that is open-source and offers a
straightforward, universal APl for constructing distributed
applications. Ray is specifically engineered to deliver
exceptional performance and scalability, especially for
applications that require advanced computational capabilities,
such as machine learning and artificial intelligence [29]. Figure
6 and 7 describes Ray architecture.

3rd Party Libraries

ib & dmlc /‘\ﬁ @
l %% spaCy xGBoost (gb Clas\%\;ision mlflow
tune O - I obLt I“vi'HllI". .
O raysgd | |anavmcs j7 . =:: MODIN T
Z DASK .© 2 MARS IR Wé&B

O§) Ray Framework for distributed Python

s

2Y=)

Fig. 6: Ray ecosystem [30]

namespace_c

I Ray Operator I

|

— ~
RayClusterl CRD RayCluster2
ECZ2 instance ECZ2 instance
|||| __ |||| ___ namespace_b
H @ray head I :
|
Tomia s
worker pod 1 worker pod 2 worker pod 3 worker pod 4 Y,
M "S- =mmmmmmmmmm-ememmmmmmmmmsmemm—memmmmemmmmmme == e e e e e e e mmm—m—mmmmm o m -

namespace_a

Fig. 7: Ray Core [30]

5.1 PERFORMANCE CHARACTERISTICS

(a) High Throughput and Low Latency: Ray's task execution
framework is optimized to provide high throughput and low
latency in task scheduling and execution. This makes it well-
suited for applications that require high performance.

(b) Scalability: Ray has the potential to easily handle hundreds
to thousands of nodes in a horizontal manner, enabling
applications to efficiently utilize more computational resources
as required, without seeing a substantial decline in
performance.

5.2 Comparison between Spark and Ray

Spark is primarily built for data processing workflows and
batch processing. It also supports streaming data through
micro-batching. It is very suitable for tasks such as ETL
workloads, batch queries, and data transformation workflows.

Ray is specifically designed for applications that require real-
time processing and high speed. It has built-in support for both
batch processing and streaming data. It performs exceptionally
well in situations that need immediate decision-making and
interactive computing.

Spark utilizes a resilient distributed dataset (RDD) and directed
acyclic graph (DAG) to execute tasks. However, this approach
may not be as effective for iterative algorithms that involve
managing a large amount of mutable state.

Ray supports the execution of dynamic task graphs, which can
be more efficient for applications that require frequent
modifications to state or that benefit from precise task
management.

Spark executes computations in memory, and its efficiency
greatly depends on memory management and the capability to
store datasets in memory throughout the cluster.

19

Ray utilizes an object store to manage shared memory among
activities, hence minimizing the costs associated with data
transportation and duplication.

Spark and Ray can be used synergistically in 10T applications.
Spark can handle the initial stages of data ingestion, cleaning,
and aggregation, while Ray can focus on real-time processing,
decision-making, and Al model deployment. By leveraging the
strengths of both frameworks, 10T systems can achieve scalable
data handling, robust analytics, and dynamic performance
optimization, addressing the diverse demands of modern loT
ecosystems [31-36].

Distributed systems can integrate Al to provide predictive
analytics, automated diagnosis, and optimized treatment plans.
Blockchain offers secure, decentralized data management and
ensures the integrity of healthcare records. 5G enhances the
connectivity and reliability of loT devices in distributed
systems, enabling real-time data transmission [37-45].

Distributed systems play a role in environmental monitoring.
Deploying sensor networks across cities or industrial areas to
monitor pollutants like CO., NOx, and particulate matter
(PM2.5/PM10). Distributed sensors in rivers, lakes, and oceans
to monitor pH levels, dissolved oxygen, turbidity, and
pollutants [46-50].

6. CONCLUSION

Distributed systems play an essential role in enabling scalable
and fault-tolerant solutions for handling large datasets and
complex computations. Through mechanisms like replication,
redundancy, and failure detection, these systems ensure high
availability and resilience. The architectural styles explored,
including MapReduce, Spark, and the Google File System,
provide a strong foundation for big data processing. As
technology continues to evolve, frameworks such as Ray offer
enhanced capabilities for real-time processing and machine
learning applications, making distributed computing
indispensable in the modern digital landscape. Future
advancements will likely focus on improving fault tolerance,
reducing latency, and enhancing scalability to meet the
growing demands of data-intensive industries.

7. REFERENCES

[1] https://iwww.splunk.com/en_us/blog/learn/distributed-
systems.html#:~:text=Distributed%20systems%20are%2
Oused%20when,t0%20news%20about%20your%20orga
nization.

[2] van Steen, M., Tanenbaum, A.S. A brief introduction to
distributed systems. Computing 98, 967-1009 (2016).
https://doi.org/10.1007/s00607-016-0508-7

[3] P.S. Janardhanan and P. Samuel, "Launch overheads of
spark applications on standalone and hadoop YARN
clusters” in Advances in Electrical and Computer
Technologies, Singapore:Springer, pp. 47-54, 2020.

[4] X. Sun, Y. He, D. Wu and J. Z. Huang, "Survey of
Distributed Computing Frameworks for Supporting Big
Data Analysis," in Big Data Mining and Analytics, vol. 6,
no. 2, pp. 154-169, June 2023, doi:
10.26599/BDMA.2022.9020014.

[5] R.Gu, X. Yang, J. Yan, Y. Sun, B. Wang, C. Yuan, etal.,
"SHadoop: Improving MapReduce performance by
optimizing job execution mechanism in hadoop clusters",
J. Parallel Distribut. Comput., vol. 74, no. 3, pp. 2166-
2179, 2014.

[6] I. Polato, R. Ré, A. Goldman and F. Kon, "A
comprehensive view of hadoop research-A systematic

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.48, November 2024

literature review", J. Network Comput. Applicat., vol. 46,
pp. 1-25, 2014.

[7] Y.Wang, W. Jiang and G. Agrawal, "SCIMATE: A novel
MapReduce-like framework for multiple scientific data
formats", Proc. 2012 12 th IEEE/ACM Int. Symp. Cluster
Cloud and Grid Computing (CCGRID 2012) , pp. 443-
450, 2012.

[8] J. Dean and S. Ghemawat, "MapReduce: Simplified data
processing on large clusters", Commun ACM, vol. 51, no.
1, pp. 107-113, 2008.

[9] M.R. Ghazi and D. Gangodkar, "Hadoop MapReduce and
HDFS: A developers perspective”, Proc. Comput. Sci.,
vol. 48, pp. 45-50, 2015.

[10] Y. Zhang, Q. Gao, L. Gao and C. Wang, "iMapReduce: A
distributed computing framework for iterative
computation”, J. Grid Comput., vol. 10, no. 1, pp. 47-68,
2012.

[11] J. Yu, J. Wu and M. Sarwat, "A demonstration of
geoSpark: A cluster computing framework for processing
big spatial data”, Proc. 2016 IEEE 32 nd Int. Conf. Data
Engineering (ICDE) , pp. 1410-1413, 2016.

[12] Z. Yang, C. Zhang, M. Hu and F. Lin, "OPC: A distributed
computing and memory computing-based effective
solution of big data", Proc. 2015 IEEE Int. Conf. Smart
City/ SocialCom/SustainCom (SmartCity), pp. 50-53,
2015.

[13] V. Taran, O. Alienin, S. Stirenko, Y. Gordienko and A.
Rojbi, "Performance evaluation of distributed computing
environments with Hadoop and spark frameworks", Proc.
2017 IEEE Int. Young Scientists Forum on Applied
Physics and Engineering (YSF), pp. 80-83, 2017.

[14] T. D. Thanh, S. Mohan, E. Choi, S. Kim and P. Kim, "A
taxonomy and survey on distributed file systems", Proc.
2008 4 th Int. Conf. Networked Computing and Advanced
Information Management , pp. 144-149, 2008.

[15] J. Blomer, "A survey on distributed file system
technology”, J. Phys. Conf. Ser., vol. 608, pp. 012039,
2015.

[16] S. Ghemawat, H. Gobioff and S. T. Leung, "The google
file system", ACM SIGOPS Oper. Syst. Rev., vol. 73, no.
5, pp. 29-43, 2003.

[17] L. Jiang, B. Li and M. Song, "The optimization of HDFS
based on small files", Proc. 2010 3 rd IEEE Int. Conf.
Broadband Network and Multimedia Technology (IC-
BNMT) , pp. 912-915, 2010.

[18] S. Zhuo, X. Wu, W. Zhang and W. Dou, "Distributed file
system and classification for small images”, Proc. 2013
IEEE Int. Conf. Green Computing and Communications
and IEEE Internet of Things and IEEE Cyber Physical and
Social Computing, pp. 2231-2234, 2013.

[19] H. Che and H. Zhang, "Exploiting fastDFS client-based
small file merging", Proc. 2016 Int. Conf Artificial
Intelligence and Engineering Applications, pp. 242-246,
2016.

[20] Z. Ullah, S. Jabbar, M. H. Bin, Tarig Alvi and A. Ahmad,
"Analytical study on performance challenges and future
considerations of Google file system", Int. J. Computer
Communicat. Eng., vol. 3, no. 4, pp. 279-284, 2014.

[21] https://medium.com/@ayeshwery/architectures-in-
distributed-system-b2ace2fca6bb

[22] Tanenbaum, A.S., & Van Steen, M. (2017). "Distributed
Systems: Principles and Paradigms.”

[23] Chandra, T.D., & Toueg, S. (1996). "Unreliable Failure
Detectors for Reliable Distributed Systems."

[24] https://medium.com/@mani.saksham12/raft-and-paxos-
consensus-algorithms-for-distributed-systems-
138cd7c2d35a

20

[25] Ongaro, D., & Ousterhout, J. (2014). "In Search of an
Understandable Consensus Algorithm."

[26] https://kafka.apache.org/documentation/

[27] https://medium.com/@kajol_singh/unveiling-apache-
kafka-a-comprehensive-guide-to-core-concepts-and-
functionality-2efd51de2b89

[28] https://bair.berkeley.edu/blog/2018/01/09/ray/

[29] Moritz, Philipp, et al. "Ray: A distributed framework for
emerging {Al} applications." 13th USENIX symposium
on operating systems design and implementation (OSDI
18). 2018.

[30] https://www.datacamp.com/tutorial/distributed-
processing-using-ray-framework-in-python

[31] Hoque, K., Hossain, M. B., Sami, A., Das, D., Kadir, A.,
& Rahman, M. A. (2024). Technological trends in 5G
networks for loT-enabled smart healthcare: A review.
International Journal of Science and Research Archive,
12(2), 1399-1410.

[32] Md Shihab Uddin. Addressing loT Security Challenges
through Al Solutions. International Journal of Computer
Applications. 186, 45 (Oct 2024), 50-55.
DOI=10.5120/ijca2024924107

[33] Khandoker Hoque, Md Boktiar Hossain, Denesh Das,
Partha Protim Roy. Integration of 10T in Energy Sector.
International Journal of Computer Applications. 186, 36
(Aug 2024), 32-40. DOI=10.5120/ijca2024923981

[34] Md Maniruzzaman, Md Shihab Uddin, Md Boktiar
Hossain, Khandoker Hoque, “Understanding COVID-19
Through Tweets using Machine Learning: A Visualization
of Trends and Conversations”, European Journal of
Advances in Engineering and Technology, Vol. 10, Issue:
5, pp. 108-114, 2023.

[35] Md Boktiar Hossain, Khandoker Hoque, Mohammad
Atikur Rahman, Priya Podder, Deepak Gupta, “Hepatitis
C Prediction Applying Different ML Classification
Algorithm”, International Conference on Computing and
Communication Networks 2024 (ICCCNet 2024), 2024.

[36] Javed Mehedi Shamrat, F. M., Tasnim, Z., Chowdhury, T.
R., Shema, R., Uddin, M. S., & Sultana, Z. (2022).
Multiple cascading algorithms to evaluate performance of
face detection. In Pervasive Computing and Social
Networking: Proceedings of ICPCSN 2021 (pp. 89-102).
Springer Singapore.

[37] Javed Mehedi Shamrat, F. M., Ghosh, P., Tasnim, Z.,
Khan, A. A., Uddin, M. S.; & Chowdhury, T. R. (2022).
Human Face recognition using eigenface, SURF method.
In Pervasive Computing and Social Networking:
Proceedings of ICPCSN 2021 (pp. 73-88). Springer
Singapore.

[38] Kowsher, M., Tahabilder, A., Sanjid, M. Z. 1., Prottasha,
N. J., Uddin, M. S., Hossain, M. A., & Jilani, M. A. K.
(2021). LSTM-ANN & BILSTM-ANN: Hybrid deep
learning models for enhanced classification accuracy.
Procedia Computer Science, 193, 131-140.

[39] Mondai, R., & Rahman, M. M. (2017, July). Dynamic
analysis of variable structure based sliding mode
intelligent load frequency control of interconnected
nonlinear conventional and renewable power system. In
2017 International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT) (pp.
393-400). IEEE.

[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 186 — No.48, November 2024

[40] Bharati, S., Rahman, M. A., Mondal, R., Podder, P., Alvi,
A. A., & Mahmood, A. (2020). Prediction of energy
consumed by home appliances with the visualization of
plot analysis applying different classification algorithm.
In Frontiers in Intelligent Computing: Theory and
Applications: Proceedings of the 7th International
Conference on FICTA (2018), Volume 2 (pp. 246-257).
Springer Singapore.

[41] Hoque, R., Maniruzzaman, M., Michael, D. L., & Hoque,
M. (2024). Empowering blockchain with SmartNIC:
Enhancing performance, security, and scalability. World
Journal of Advanced Research and Reviews, 22(1), 151-
162.

[42] Amit Deb Nath, Rahmanul Hoque, Md. Masum Billah,
Numair Bin Sharif, Mahmudul Hoque. Distributed
Parallel and Cloud Computing: A Review. International
Journal of Computer Applications. 186, 16 (Apr 2024),
25-32. DOI=10.5120/ijca2024923547

[43] Maniruzzaman, M., Sami, A., Hoque, R., & Mandal, P.
(2024). Pneumonia prediction using deep learning in chest
X-ray Images. International Journal of Science and
Research Archive, 12(1), 767-773.

[44] M. S. Miah and M. S. Islam, "Big Data Analytics
Architectural Data Cut off Tactics for Cyber Security and
Its Implication in Digital forensic,” 2022 International
Conference on Futuristic Technologies (INCOFT),
Belgaum, India, 2022, pp. 1-6, doi:
10.1109/INCOFT55651.2022.10094342.

[45] Obaida, M. A., Miah, M. S., & Horaira, M. A. (2011).
Random Early Discard (RED-AQM) Performance
Analysis in Terms of TCP Variants and Network
Parameters: Instability in High-Bandwidth-Delay
Network. International Journal of Computer Applications,
27(8), 40-44.

[46] Sunny, M. A. U. (2024). Unveiling spatial insights:
navigating the parameters of dynamic Geographic
Information Systems (GIS) analysis. International Journal
of Science and Research Archive, 11(2), 1976-1985.

[47] Sunny, M. A. U. (2024). Sustainable Water Management
in Urban Environments. European Journal of Advances in
Engineering and Technology, 11(4), 88-95.

[48] Sunny, M. A. U. (2024). Eco-Friendly Approach:
Affordable Bio-Crude Isolation from Faecal Sludge
Liquefied Product. Journal of Scientific and Engineering
Research, 11(5), 18-25.

[49] Sunny, M. A. U. (2024). Effects of Recycled Aggregate
on the Mechanical Properties and Durability of Concrete:
A Comparative Study. Journal of Civil and Construction
Engineering, 7-14.

[50] Partha Protim Roy, Md Shahriar Abdullah, Mohammad
Aman Ullah Sunny, “Revolutionizing Structural
Engineering: Innovations in Sustainable Design and
Construction”, European Journal of Advances in
Engineering and Technology, Vol. 11, Issue: 5, pp. 94-99,
2024.

[51] Jubair Bin Sharif, Mobasher Hasan, Md. Kwosar, Md.
Faysal Ahmed and Pabitra Mandal, “A short review of
Mobile Financial Services in Bangladesh”, World Journal
of Advanced Research and Reviews, 2024, 23(02), 2479—
2485.

21

