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ABSTRACT 

This paper introduces a novel self-adaptive shuffling 

mechanism within the Shuffled Frog Leaping Algorithm 

(SFLA) to improve its efficacy in the tuning of fuzzy logic 

Proportional-Derivative with Gravity Compensation (PD+G) 

controllers for trajectory tracking in the UP6 robotic 

manipulator. The proposed mechanism improves the balance 

between exploration and exploitation by continually modifying 

the frequency and intensity of scrambling in accordance with 

population diversity. This adaptive approach overcomes the 

constraints of the conventional SFLA, which implements a 

static scrambling process by facilitating more efficient global 

search and local refinement. The fuzzy controller parameters 

for a 6-DOF robotic manipulator are optimized using the 

enhanced SFLA to guarantee precise trajectory tracking. The 

self-adaptive shuffling mechanism results in enhanced tracking 

accuracy and faster convergence in comparison to the standard 

SFLA, as evidenced by the simulation results. The results of 

this study suggest that the proposed method is a plausible 

solution for real-time control applications that necessitate 

efficient parameter tuning in nonlinear systems. 

General Terms 
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1. INTRODUCTION 
In robotics, the precise control of manipulators in environments 

affected by gravity is challenging. Gravitational forces can alter 

a manipulator's dynamics, leading to deviations from intended 

paths and compromising accuracy. Proportional-Derivative 

(PD) controllers have been commonly used for their 

straightforward implementation and effectiveness in various 

control tasks. However, gravity introduces complexities that 

PD controllers alone may not effectively handle. Adding 

Gravity Compensation (PD+G) to PD controllers marks a 

significant advancement in control, as it helps stabilize and 

improve manipulators' accuracy by offsetting the impact of 

gravitational forces. This makes PD+G controllers a well-

regarded choice for achieving precise control in robotic 

systems [1], [2]. 

Even with the progress made, tuning PD+G controllers remains 

a challenging task. Effective tuning requires a solid 

understanding of the manipulator’s dynamics and how gravity 

affects each joint. This challenge grows in systems with high 

degrees of freedom, where the controller must deal with 

constant dynamic changes and environmental uncertainties. 

Zhang et al. [3] took on this problem by introducing a PD 

controller combined with a Radial Basis Function (RBF) 

Neural Network designed for both gravity and inertia 

compensation. Their approach significantly enhanced 

trajectory tracking in manipulators with complex shapes and 

varying mass distributions. Experiments on a 3-DOF robotic 

arm demonstrated that this method performs better than 

traditional approaches by accurately estimating gravitational 

disturbances and adjusting the center of mass in real-time. 

Building on these concepts, Fuzzy Logic Controllers (FLC) 

have been integrated with PD+G controllers to manage 

nonlinearities and uncertainties in robotic systems. Fuzzy logic 

adds adaptability to the control process, allowing controllers to 

adjust parameters in response to changing conditions 

dynamically. Yueyuan Zhang et al. [4] introduced a fuzzy-

PD+G control scheme to improve trajectory tracking 

performance in a 3-DOF robotic manipulator by compensating 

for the nonlinear disturbances introduced by gravity. This 

approach has shown significant improvements in trajectory 

tracking accuracy and stability, making fuzzy-PD+G 

controllers a promising solution for complex robotic control 

applications. 

While PD+G controllers with fuzzy logic have demonstrated 

improvements in control accuracy, the effectiveness of these 

controllers depends heavily on the optimal tuning of their 

parameters, such as membership functions and control rules. 

Manual tuning of fuzzy controllers is time-consuming and 

often suboptimal, especially in systems with high degrees of 

freedom and dynamic environments. To address these 

challenges, metaheuristic algorithms, such as Particle Swarm 

Optimization (PSO) and Genetic Algorithms (GA), have been 

applied to tune fuzzy logic controllers. These approaches have 

shown promise in navigating the complex, multidimensional 

search spaces involved in tuning fuzzy controllers, but they 

often involve high computational costs [5], [6]. 

The Shuffled Frog Leaping Algorithm (SFLA) is a relatively 

new metaheuristic optimization technique inspired by the 

foraging behavior of frogs. SFLA has been applied successfully 

in various optimization problems due to its simplicity and 

efficiency. However, the static nature of SFLA’s shuffling 

mechanism—where frogs are shuffled at fixed intervals—

limits its ability to adapt to real-time changes in population 

diversity. This limitation reduces the algorithm’s effectiveness 

in optimizing fuzzy controllers for dynamic systems like 

robotic manipulators, where rapid adaptation is necessary for 

achieving optimal performance. 

This paper proposes a novel self-adaptive shuffling mechanism 

for the Shuffled Frog Leaping Algorithm (SFLA) to improve 

its ability to optimize fuzzy logic PD+G controllers for robotic 
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manipulators. The self-adaptive mechanism dynamically 

adjusts the shuffling process based on population diversity, 

enhancing the balance between exploration (global search) and 

exploitation (local search). By incorporating this adaptive 

shuffling mechanism, the improved SFLA is better suited for 

optimizing fuzzy controllers in real-time, where dynamic 

adjustments are critical for effective control. 

The remaining paper is organized as follows: Section 2 reviews 

the existing literature on related work. Section 3 presents an 

overview of the Shuffled Frog Leaping Algorithm (SFLA) and 

the proposed self-adaptive shuffling mechanism. The process 

of tuning the fuzzy PD+G controller parameters using the 

enhanced SFLA is detailed in Section 4. Section 5 discusses the 

simulation results, and Section 6 concludes the paper. 

2. RELATED WORK 

2.1 Enhancing the Shuffled Frog Leaping 

Algorithm 
The Shuffled Frog Leaping Algorithm (SFLA) has undergone 

considerable enhancements, focusing on its balance between 

global exploration and local exploitation in solving 

optimization problems. SFLA has been widely used in various 

fields, with researchers continuously seeking methods to 

improve its performance. One commonly used approach is 

hybridization, where SFLA is integrated with other algorithms 

such as Particle Swarm Optimization (PSO) or Genetic 

Algorithms (GA). Xi Hu et al. presented a hybrid SFLA-PSO 

model that demonstrated a marked improvement in global 

search efficiency and solution precision [7]. Similarly, Lin, 

M.J. proposed the SFLA-PSO hybrid algorithm, combining 

PSO’s fast searchability with SFLA’s global search strategy to 

address SFLA’s slow convergence and PSO’s tendency to get 

trapped in local optima [8]. Nguyen. introduced a hybrid of 

SFLA with the Bees Algorithm (BA) to further enhance 

convergence speed and solution accuracy in complex 

optimization problems [9]. 

However, a key limitation of the original SFLA is its static 

shuffling mechanism, which does not adapt to changes in 

population diversity during the optimization process. This can 

lead to premature convergence or inefficient exploration of the 

solution space. To overcome the shortcomings, Zhao, Z. et al. 

proposed a novel modified shuffled frog leaping algorithm 

(MSFLA) with inertia weight [10]. While these modifications 

have improved overall performance, the adaptive adjustment of 

the shuffling mechanism, particularly for real-time tuning 

applications like fuzzy logic controllers in robotic systems, 

remains underexplored. 

2.2 Tuning Fuzzy Logic Controllers for 

Robotic Manipulators 
Fuzzy logic controllers (FLC) have proven highly effective in 

handling nonlinearities and uncertainties in robotic systems. In 

particular, Proportional-Derivative with Gravity Compensation 

(PD+G) controllers have been widely used to enhance the 

stability and precision of robotic manipulators, especially in 

dynamic environments influenced by gravity [11]. The 

integration of fuzzy logic into PD+G control frameworks offers 

enhanced adaptability and control precision, enabling more 

responsive manipulation of complex systems. Zhang et al. [12] 

introduced a fuzzy-PD+G control scheme to improve trajectory 

tracking in robotic manipulators, specifically addressing the 

challenge of gravity compensation. By combining fuzzy logic 

with PD control, their approach dynamically adjusts to 

nonlinearities introduced by gravitational forces, 

demonstrating significant improvements in tracking accuracy. 

The tuning of fuzzy logic controllers, however, remains a 

critical challenge. Traditional methods for tuning such as trial-

and-error or manual adjustment are time-consuming and often 

suboptimal, especially when dealing with the intricacies 

introduced by the dynamic changes and uncertainties in robotic 

environments. Recent advancements have seen the adoption of 

metaheuristic algorithms like Particle Swarm Optimization 

(PSO) and Genetic Algorithms (GA) for tuning fuzzy logic 

controllers. Perrusquía, A. et al. introduce a new method for 

tuning Proportional-Derivative (PD) controllers with gravity 

compensation (PD+G) for robotic manipulators. Recognizing 

the limitations of PD controllers in compensating for 

gravitational forces, the authors propose a tuning method that 

relies on the gravitational torques vector's bound, simplifying 

the tuning process by not requiring full knowledge of the robot 

dynamics. This method is based on global asymptotic stability 

principles derived from La Salle’s theorem and robot dynamics 

properties. [13]. 

The precise control of robotic manipulators in environments 

influenced by gravitational forces remains a significant 

challenge. Gravity Compensation (PD+G) controllers enhance 

manipulator control by counteracting the effects of gravity, 

leading to improved trajectory tracking and positional 

accuracy. Zhang et al. introduced a PD controller integrated 

with a Radial Basis Function (RBF) Neural Network for both 

gravity and inertia compensation in robotic manipulators. Their 

method outperformed traditional least mean square approaches 

in terms of accurately estimating gravity disturbances and 

identifying the center of mass, resulting in improved control 

performance for a 3-DOF robotic arm [14]. 

Despite these advancements, the use of SFLA for tuning fuzzy 

controllers in PD+G frameworks is relatively new. SFLA, with 

its ability to handle nonlinear, multidimensional optimization 

tasks efficiently, provides a promising alternative to traditional 

algorithms like PSO and GA. The self-adaptive shuffling 

mechanism, as proposed in this research, aims to further 

improve SFLA’s performance by dynamically adjusting the 

shuffling process based on population diversity. This allows for 

a better balance between global exploration and local 

refinement, which is particularly beneficial in robotic control 

applications where real-time adaptation is crucial. 

3. PROPOSED METHODOLOGY 

3.1 Overview of the Shuffled Frog Leaping 

Algorithm (SFLA) 
The Shuffled Frog Leaping Algorithm (SFLA) is a population-

based optimization method inspired by the behavior of frogs 

searching for food. In SFLA, a population of frogs is divided 

into memeplexes (subgroups), where local searches are 

performed based on the best-performing frog within each 

memeplex. After several iterations, frogs are shuffled between 

memeplexes, enabling global information sharing across the 

entire population. This combination of local search (within 

memeplexes) and global exchange (shuffling between 

memeplexes) enables the algorithm to explore and exploit the 

search space effectively [15]. 

However, the standard SFLA uses a static shuffling process, 

where frogs are shuffled at fixed intervals, regardless of the 

population’s performance or diversity. This static approach can 

be inefficient, as it doesn’t adapt to changes in the search 

landscape, potentially leading to premature convergence or 

excessive exploration. 
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3.2 Self-Adaptive Shuffling Mechanism 
To address the limitations of the static shuffling process in 

SFLA, this paper proposes a self-adaptive shuffling mechanism 

that dynamically adjusts the shuffling frequency based on the 

diversity of the population. The goal is to improve the balance 

between global exploration and local exploitation, enabling the 

algorithm to respond more effectively to changes during the 

optimization process. 

3.2.1 Adaptation Based on Population Diversity 

In this proposed mechanism, the diversity of the population is 

monitored throughout the optimization process. Diversity can 

be measured using the variance of fitness values of frogs in the 

search space (eq. 1). When the diversity within memeplexes 

decreases below a certain threshold, it indicates that the 

population may be converging prematurely to a suboptimal 

solution. In this case, the shuffling frequency (eq. 2) is 

increased to encourage global exploration and prevent 

stagnation. Conversely, if the diversity remains high, shuffling 

is delayed allowing for more focused local refinement. 

Let 𝐹𝑏𝑒𝑠𝑡(𝑡) represent the fitness of the best frog at iteration 𝑡, 
and the change in fitness be defined as: 

∆𝐹 = 𝐹𝑏𝑒𝑠𝑡(𝑡) − 𝐹𝑏𝑒𝑠𝑡(𝑡 − 1)  (1) 

The algorithm adjusts the shuffling frequency 𝑆𝑓 according to 

the following rule: 

𝑆𝑓 = 𝑆𝑓 + 𝛼. 𝑠𝑖𝑔𝑛(∆𝐹)   (2) 

where 𝛼 is a control parameter that determines the rate of 

adaptation, and 𝑠𝑖𝑔𝑛(∆𝐹) is the sign function that indicates 

whether the fitness is improving or stagnating. 

3.2.2 Dynamic Shuffling Intervals 

The self-adaptive mechanism also includes dynamic 

adjustments to the shuffling intervals. Rather than using a fixed 

shuffling interval, the algorithm adjusts the interval based on 

the progress of convergence. When convergence slows down, 

the algorithm shortens the interval to introduce more frequent 

shuffling and explore new regions of the search space. On the 

other hand, when the algorithm is rapidly approaching an 

optimal solution, the interval is lengthened to allow for more 

thorough local searches within memeplexes. 

3.2.3 Pseudocode 

The pseudocode for the self-adaptive shuffling mechanism is 

presented in Fig. 1. 

Initialize frog population 

Divide population into memeplexes 

While termination condition not met: 

    For each memeplex: 

        Perform local search 

     Calculate diversity of each memeplex   

    If diversity < threshold: 

        Shuffle frogs between memeplexes 

        Increase shuffling frequency 

    Else: 

        Delay next shuffling 

        Adjust shuffling interval dynamically 

End while 

Fig. 1: Pseudocode for the Self-Adaptive Shuffling 

Mechanism in SFLA 

3.3 Application to Tuning Fuzzy PD+G 

Controllers 
The proposed self-adaptive SFLA is applied to tune the 

parameters of a fuzzy logic Proportional-Derivative with 

Gravity Compensation (PD+G) controller. Fuzzy logic 

controllers (FLC) are well-suited for handling uncertainties and 

nonlinearities in control systems, but their performance 

depends heavily on the precise tuning of parameters such as 

membership functions and rule sets. Integrating a fuzzy logic 

controller with a PD+G framework allows the system to handle 

the gravitational forces acting on a robotic manipulator, 

ensuring precise control and trajectory tracking.  

3.3.1 Modified SFLA-based fuzzy PD+G controller 

The structure of the modified SFLA-based fuzzy PD+G 

controller is illustrated in Fig. 2, where the parameters of the 

fuzzy PD+G controller are optimized using the modified SFLA 

algorithm [16]. The fuzzy controller inputs are: 

- The trajectory tracking error 𝑞̃(𝑡), defined as the 

difference between the desired position and the actual 

position of the manipulator. 

- The rate of change of the tracking error 𝑑𝑞̃(𝑡) 𝑑𝑡⁄ , which 

represents the error's velocity. 

 

Fig. 2: Structure of Modified SFLA-based fuzzy PD+G 

controller 

The membership functions for the inputs (E, ΔE) and outputs 

(U) of each axis controller have triangular shapes, as depicted 

in Fig. 3. 

 

Fig. 3: Membership functions of inputs and output 

The parameters of membership functions 𝑋1
𝑖 , 𝑋2

𝑖 , 𝑋3
𝑖  and scaling 

factors 𝐾𝐷
𝑖 , 𝐾𝑃

𝑖 , 𝐾𝑈
𝑖  will be chosen by trial and error in normal 

fuzzy PD controller and tuned by SFLA algorithm. 

3.3.2 Objective Function 

The primary objective of this research is to optimize the fuzzy 

controller’s parameters using the self-adaptive SFLA to 

improve the PD+G controller's performance. Specifically, the 

fuzzy controller's membership functions (input and output) and 

the scale values are tuned to minimize the tracking error in a 6-

DOF robotic manipulator. 
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The fitness function employed to optimize the fuzzy PD 

controller parameters is expressed as a weighted sum of 

multiple performance criteria: 

𝑓(𝑥) = 𝜔1𝐸 + 𝜔2𝑆 + 𝜔3𝑂  (3) 

where: 

- 𝑓(𝑥) represents the fitness value of the individual 𝑥, 

- 𝜔1, 𝜔2, and 𝜔3 are positive weighting factors, 

- 𝐸, 𝑆, and 𝑂 refer to the different performance criteria. 

The primary objective is to minimize the fitness function by 

identifying the optimal values for the fuzzy PD controller 

parameters. The weighting factors 𝜔1, 𝜔2, and 𝜔3 are selected 

to ensure an appropriate balance among the different 

performance criteria, allowing for effective tuning of the 

controller. The details of the fitness function and its 

formulation are presented in [17]. 

4. SIMULATION RESULTS 

4.1 Simulation parameters 

• Weighting factors of the fitness function 

The fitness function, as outlined in Section 3.3, is used to 

evaluate the performance of each solution. In the following 

simulation results, the primary focus is on improving the 

settling time. To prioritize this, the author assigns the weighting 

factors as follows: 𝜔1 = 0.3, 𝜔2 = 0.5, and 𝜔3 = 0.2. These 

weights reflect the relative importance of each performance 

criterion, with 𝜔2 (corresponding to settling time) being the 

most significant factor. This allocation of weights ensures that 

the optimization process targets faster settling times while 

maintaining a balanced focus on other relevant performance 

metrics. 

• Modified SFLA parameters 

The parameter settings for the modified Shuffled Frog Leaping 

Algorithm (SFLA) are provided in Table 1. This table outlines 

the key algorithmic parameters, including population size, 

number of memeplexes, maximum number of iterations, and 

other relevant values used to guide the optimization process. 

These settings have been carefully chosen to ensure an optimal 

balance between exploration and exploitation, enhancing the 

algorithm's ability to search the solution space effectively and 

improve the performance of the fuzzy PD+G controller. 

Table 1. The Modified SFLA parameter settings 

𝐺 𝑛 𝑐 𝑚 

500 100 2 10 
𝐷𝑚𝑎𝑥 𝑡ℎ𝑟𝑒𝑠ℎ 𝛼  

∞ 10 0.02  
 

• Termination Criteria 

The termination criteria for the optimization process in this 

study are predicated on two critical factors: the stability of the 

fitness value and the maximum number of generations. 

Initially, a limit is established on the number of generations to 

prevent the optimization process from running indefinitely, 

thereby conserving computational resources. Despite the 

complexity of the problem space, this upper constraint on the 

number of iterations guarantees that the search is managed and 

that there is no excessive runtime. 

The stability of the fitness value is the primary focus of the 

second criterion. The optimization procedure is terminated if 

the fitness value remains constant for a predetermined number 

of consecutive iterations. This absence of development implies 

that the algorithm has either reached an optimal or near-optimal 

solution, or that further progress is improbable. The 

optimization process is dynamically halted when it is evident 

that additional iterations would not result in substantial 

improvements by monitoring the change in fitness value. 

This optimization concludes under two conditions: when a 

satisfactory solution has been found, as indicated by fitness 

stability, or when the maximum number of generations is 

reached, thereby preventing superfluous computational effort. 

These termination criteria operate in tandem. This method 

maintains efficiency during the optimization process while 

simultaneously obtaining high-quality solutions. 

4.2 Simulink model 
To validate the effectiveness of the proposed method, 

simulation experiments are conducted on a 6-DOF robotic 

manipulator (UP6 Motoman). The fuzzy PD+G controller is 

applied to control the manipulator’s movements, while the self-

adaptive SFLA is used to tune the fuzzy controller’s 

parameters. The performance of the system is evaluated in 

terms of tracking accuracy and convergence speed. 

Fig. 4 illustrates the closed-loop control diagram where a fuzzy 

PD+G controller is employed to regulate the angular position 

of six axes. The system consists of six individual fuzzy PD 

controllers. Each of these controllers follows the same 

configuration, ensuring consistent control logic across all six 

axes [17]. 

 

Fig. 4: Simulink schematic controlling the UP6 robot 

In the simulation results presented below, the controller is 

responsible for regulating the angular position of the robot's 

axes, moving them from an initial position of 0 to a target final 

position of 𝑞𝑟𝑒𝑓 = [
𝜋

5
,
𝜋

6
,
𝜋

7
,
𝜋

2
,
2𝜋

3
, 𝜋]

𝑇
. The goal is to ensure 

precise and smooth transitions between these points while 

minimizing settling time, overshoot, and error.    

Figures 5 through 10 display the response results of the UP6 

robot axes using three different controllers: the modified 

SFLA-based fuzzy PD+G (FPDGMSFLA), the SFLA-based 

fuzzy PD+G (FPDGSFLA), and the standard fuzzy PD+G 

(FPDG). These results compare the performance of each 

controller in terms of key metrics such as settling time, 

overshoot, and overall control precision, highlighting the 

improvements achieved by incorporating the SFLA and its 

modified version into the fuzzy PD+G controller framework. 

Table 2 provides a summary of the performance metrics for the 

three controllers—modified SFLA-based fuzzy PD+G 

(FPDGMSFLA), SFLA-based fuzzy PD+G (FPDGSFLA), and 

fuzzy PD+G (FPDG). The table highlights key metrics 

including 2% settling time, overshoot, and error. 
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Fig. 5: Position response of the joint 1 

 

Fig. 6: Position response of the joint 2 

 

Fig. 7: Position response of the joint 3 

 

Fig. 8: Position response of the joint 4 

 

Fig. 9: Position response of the joint 5 

 

Fig. 10: Position response of the joint 6 

Table 2. Comparing the response results of the controllers 

  FPDGMS

FLA 

FPDGSF

LA 

FPDG 

A
x

is 1
 

Settling time (sec) 1.7 2.7 3.6 

Overshoot (%) 0.02 0 0 

Error 0 0 0.01 

A
x

is 2
 

Settling time (sec) 1.8 2.4 3.2 

Overshoot (%) 0 0 0 

Error 0 0 0.02 

A
x

is 3
 

Settling time (sec) 2.1 2.6 3.4 

Overshoot (%) 0.0 0.0 0 

Error 0 0 0 

A
x

is 4
 

Settling time (sec) 0.34 0.72 0.92 

Overshoot (%) 0 0 0 

Error 0 0 0 

A
x

is 5
 

Settling time (sec) 0.15 0.16 0.38 

Overshoot (%) 0 0 0 

Error 0 0 0 

A
x

is 6
 

Settling time (sec) 0.1 0.15 0.19 

Overshoot (%) 0 0 0 

Error 0 0 0 
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The results presented indicate that both the modified SFLA and 

the SFLA-based fuzzy PD+G controllers outperform the 

standard fuzzy PD+G controller, particularly in terms of 

reducing the settling time. The comparison reveals that the 

modified SFLA-based fuzzy PD+G controller achieves 

marginal improvements over the standard SFLA-based fuzzy 

PD+G controller, specifically in the regulation of axes 1, 2, 3, 

4 and 5. The differences in performance for the remaining axes 

are negligible, with both controllers yielding nearly identical 

outcomes. This suggests that, for these cases, the parameters 

are already close to optimal, leaving limited room for further 

enhancement. 

Furthermore, the slight edge provided by the modified SFLA-

based fuzzy PD+G controller in certain axes demonstrates its 

potential for fine-tuning performance in more complex 

systems, where even minor improvements can be critical. This 

enhancement can be attributed to the adaptive nature of the 

modified SFLA, which allows for a more refined search in the 

parameter space, thus achieving better control precision. 

Overall, the findings support the effectiveness of the modified 

SFLA in optimizing the controller's performance, particularly 

in scenarios where high precision and fast response times are 

essential. 

5. CONCLUSION 
The paper proposed a self-adaptive shuffling mechanism to 

enhance the performance of the Shuffled Frog Leaping 

Algorithm (SFLA) for tuning fuzzy logic Proportional-

Derivative with Gravity Compensation (PD+G) controllers in 

robotic manipulators. The self-adaptive mechanism 

dynamically adjusts the shuffling frequency and interval based 

on population diversity, improving the balance between 

exploration and exploitation throughout the optimization 

process. By incorporating these dynamic adjustments, the 

enhanced SFLA demonstrated superior convergence speed and 

accuracy compared to the standard SFLA, especially in 

complex and nonlinear optimization tasks like trajectory 

tracking in a 6-DOF robotic manipulator. 

The results of simulation studies showed that the proposed 

method not only improves the precision of trajectory tracking 

but also provides a more robust solution against environmental 

disturbances and uncertainties. The dynamic tuning of fuzzy 

controllers via the self-adaptive SFLA offers a promising 

approach for real-time control applications where system 

parameters need to be efficiently adjusted in changing 

environments. 

Future work could explore the application of the self-adaptive 

SFLA to other control systems and optimization tasks and 

further refine the adaptation criteria for more complex robotic 

configurations. 
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