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ABSTRACT 

Quantum computing utilizes the inherent randomness 

characteristic of quantum mechanics, offering a promising 

framework for various applications, including random number 

generation (RNG), which is critical for cryptography and 

secure communication. This paper introduces a digital twin of 

a photon beam splitter experiment, simulated utilizing the 

QuTiP Python library, to model and analyse the probabilities of 

photon detection at varying beam splitter angles. By employing 

quantum principles such as superposition and entanglement, we 

illustrate how alterations in the angles of the beam splitter 

influence both the randomness and the convergence rate of the 

generated photon detection events. The resulting randomness, 

validated through rigorous statistical testing, emphasizes the 

potential of photon-based experiments to enhance RNG 

models. This investigation highlights the significance of 

quantum computing methodologies in the context of RNG and 

examines how digital twin simulations can improve the 

efficiency and security of quantum cryptographic systems. 

Furthermore, another motivation for this research is to explore 

diverse quantum methods for generating randomness, as the 

entire field of quantum computation is engaged in continually 

exploring efficient problem-solving strategies. The study 

carefully navigates this exploration to identify various means 

of integrating the intrinsic randomness of quantum systems 

with practical applications in the real world. 
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1. INTRODUCTION 
Quantum mechanics, with its intrinsic randomness, has long 

been a cornerstone for advancing technologies in various fields, 

including computing, complex mathematical problem solving, 

cryptography, and secure communication[1]. The field of 

quantum computing takes this randomness a step further by 

leveraging quantum phenomena such as superposition, 

uncertainty, and entanglement to solve complex problems with 

unprecedented efficiency. One critical area of cryptography or 

network security is to use a trustworthy randomness source. We 

will use the classical machine to generate or produce good-

quality randomness in digital electronics. Classical machines 

are deterministic, and determinism is unsuitable for generating 

random sequences[2]. In this domain, the inherent randomness 

of quantum computers or quantum mechanics plays a crucial 

role. Unlike classical RNG, which is deterministic and can be 

predicted or reverse-engineered, quantum-based RNGs utilizes 

the inherent uncertainty of quantum systems to produce truly 

random sequences, which is essential for cryptographic 

applications and enhancing data security. 

This study focuses on photon-based random number generation 

using a digital twin model of a quantum experiment, wherein a 

photon beam splitter directs photons toward two detectors, 

simulating their probabilistic behaviour[3]. The experiment 

employs quantum principles to model how variations in the 

angle of the beam splitter affect photon detection probabilities. 

These variations lead to the generation of random numbers, 

which are tested for reliability using rigorous statistical 

methods[4], [5]. 

In quantum mechanics, beam splitters are vital in experiments 

dealing with light and photons. When a photon light pulse 

passes through a beam splitter, it has a probabilistic chance of 

being either reflected or transmitted, resulting in detection by 

one of two detectors. This phenomenon is a crucial enabler for 

generating randomness in quantum systems. Previous studies 

have shown that the inherent randomness of quantum events 

like photon detection can be effectively connected to develop 

RNG models. However, the specific effect of beam splitter 

angles on the convergence and quality of randomness has yet 

to be fully explored. 

This paper explores how varying the angle of the photon beam 

splitter influences the randomness and convergence rate of 

photon detection events. By simulating the behaviour of 

photons passing through a beam splitter with different angles, 

we categorize the results into two distinct types based on their 

convergence rates. Some angles result in rapid convergence to 

an equal probability distribution between the two detectors, 

while others show delayed convergence. These findings shed 

light on the dynamic behaviour of photons in quantum systems 

and their implications for optimizing RNG processes. 

To test the experiment, we use the QuTiP python package to 

build up a digital twin model of the experiment. The digital twin 

allows us to precisely simulate and control experimental 

parameters, offering insights into the practical application of 

quantum mechanics for RNG. In doing so, we advance our 

understanding of how quantum mechanics can be applied to 

real-world problems, particularly in the domain of quantum 

cryptography[6]. 

2. RELATED STUDY 
Quantum mechanics, with its inherent randomness, offers a 

fundamentally unpredictable source for generating random 

numbers, which are crucial for cryptographic protocols. While 
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traditional RNG methods rely on deterministic algorithms, 

making them vulnerable to prediction, QRNGs exploit 

quantum phenomena such as superposition and entanglement 

to ensure unpredictability[7].  

Previous research has demonstrated various ways quantum 

mechanics can be integrated into RNG models. Studies such as 

explore the combination of artificial intelligence (AI) and 

cryptography to detect randomness in encrypted data streams, 

highlighting the need for robust encryption algorithms in 

securing digital communications[8]. Although these AI-based 

methods offer improvements in randomness detection, they still 

rely on classical mechanics and deterministic processes, which 

cannot fully replicate the unpredictability of quantum systems. 

Digital twin technology, while historically applied in fields 

such as manufacturing and healthcare, has recently begun to 

play a role in quantum mechanics[9], [10]. Digital twins create 

virtual replicas of physical systems, allowing precise 

simulations that mirror real-world quantum experiments. 

Researchers like have utilized digital twins to simulate complex 

systems, including quantum optical devices, enabling the 

exploration of phenomena like photon detection and light 

interference[11]. Despite the progress in integrating digital 

twins into quantum research, there remain challenges in scaling 

these models for large-scale applications and optimizing their 

use for random number generation[12].  

Our work addresses these challenges by applying digital twin 

simulations to quantum random number generation using 

photon beam splitters. Quantum mechanics-based randomness 

has also been explored in device-independent randomness 

generation, where quantum systems produce certified 

randomness without needing a detailed model of the generating 

device[13]. This approach demonstrates the potential for 

cryptographic security, as it leverages the fundamental 

properties of quantum systems to ensure randomness. 

Studies such as[14] have examined the broader applications of 

quantum computing in cryptography, emphasizing its potential 

for secure communication protocols. However, the role of 

quantum random number generators in these systems is still 

under investigation. 

By simulating the behaviour of quantum systems like photon 

beam splitters, researchers aim to optimize the generation of 

random numbers, ensuring that these sequences meet the 

rigorous statistical criteria required for cryptographic use. Our 

research builds on these foundations by using QuTiP[15], a 

quantum simulation library, to model photon detection 

probabilities and assess the impact of beam splitter angles on 

the randomness of detection events. In conclusion, the literature 

highlights the transformative impact of quantum computing on 

randomness generation and cryptographic security[16]. 

3. KEY TERMS 

3.1 Quantum Computation 
Quantum computation works on the principles of quantum 

mechanics, offering capabilities beyond classical computing. 

The fundamental unit of quantum information is the qubit, 

which, unlike classical bits, can exist in a superposition of 

states (both 0 and 1 simultaneously). This enables quantum 

computers to perform many calculations in parallel, vastly 

increasing their potential for complex problem-solving. 

Entanglement, yet another important phenomenon which 

occurs within the domain of quantum; the two qubits are 

correlated so that the state of one affects the other, regardless 

of distance. It is interdependence that leads to many of the most 

powerful applications in quantum algorithms and secure 

communication. 

Then the Quantum gates applicable to build up quantum circuit, 

like the way classical gates manipulate bits. Hadamard and 

CNOT gates from this class of quantum gates create 

superposition and entanglement, which forms the very basis of 

quantum calculations. 

Other quantum algorithms exploit these principles to solve 

problems like the factors of big numbers and database search 

efficiently. In random number generation, for instance, 

quantum computers exploit the intrinsic randomness in the 

behaviour of photons in quantum mechanics to produce all 

random sequences demanded for security in cryptography. 

3.2 Inherent Randomness 
Inherent randomness refers to the fundamental unpredictability 

observed in various natural phenomena, where outcomes 

cannot be precisely determined in advance due to the 

probabilistic nature of underlying processes. Unlike 

deterministic systems governed by fixed rules and initial 

conditions, inherently random processes exhibit spontaneous 

fluctuations and variability that withstand precise prediction. 

In the domain of physics, inherent randomness manifests in 

several fundamental phenomena. One prominent example is the 

decay of radioactive isotopes, such as uranium or carbon-14. 

The timing of individual decay events cannot be predicted with 

certainty, as they occur randomly and independently of external 

influences. This randomness is intrinsic to the quantum nature 

of particles and their interactions, leading to a probabilistic 

distribution of decay times. 

3.3 Digital Twin 
Digital twins represent virtual counterparts of physical objects, 

processes, or systems, facilitating real-time monitoring, 

analysis, and optimization. By uniting data from sensors, 

simulations, and other inputs, they construct precise digital 

replicas mirroring the behaviour and attributes of their real-

world counterparts. 

Quantum digital twins extend the concept of digital twins into 

quantum mechanics, where they simulate quantum systems and 

phenomena with high fidelity. These virtual replicas leverage 

quantum computing techniques to model the behaviour of 

quantum particles, such as photons, electrons, and qubits, in 

complex quantum systems. 

4. SIMULATION FRAMEWORK 
The primary objective of this work is to develop a 

deterministic-free random number generation model by taking 

advantage of a quantum mechanical process known for its 

inherent randomness. The selected experiment involves the 

interaction of single-photon light sources with a beam splitter, 

followed by detection by two light detectors. It is well-

established that these detectors exhibit a 50/50 probability of 

capturing the photon light pulses from the beam splitter, 

providing a reliable source of inherent randomness. 

To simulate this quantum experiment and generate random 

strings of zeros and ones, we utilize the QuTiP package 

provided by the Python language. The simulation process 

involves the following steps: 
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Textbox a: Pseudo Code of the Model Using QuTiP 

 

Textbox b: Steps for Simulation Using Digital Twin of 

Photon Beam Splitter Experiment 

 
Figure 1: Graphical Abstract of The Simulated Framework 

1. Initialize Parameters: 
   - Define the number of modes for the quantum 

system. 

   - Set the angle of the beam splitter. 
 

2. Define Operators: 

   - Create annihilation and creation operators for 
each mode. 

   - Calculate the beam splitter Hamiltonian based on 

the specified angle. 
 

3. Initial State: 
   - Prepare the initial quantum state with a single 

photon in mode 0. 

 
4. Evolution: 

   - Define the time steps for the evolution of the 

quantum state. 
   - Apply the beam splitter Hamiltonian to evolve 

the state over time. 

 
5. Measurement: 

   - Calculate the probabilities of detecting photons in 

each mode based on the evolved quantum state. 
   - Generate random outcomes for each time step 

based on the calculated probabilities. 

1. Initialize Parameters:  

    num_modes = modes 

    theta = angle 

2. Define Operators: 

    for each mode: 

        Create annihilation and 

creation operators (a) 

 

    Calculate Beam Splitter 

Hamiltonian (H_bs) 

3. Initial State: 

    Prepare initial quantum state 

(psi0) with single photon in mode 

0 

4. Evolution: 

    Define time steps (times) for 

evolution 

    Evolve state through H_bs 

using mesolve 

5. Measurement: 

    Calculate probabilities of 

detecting photons (p1, p2) 

    for each time step: 

Generate random outcome based on p1 and 

p2 probabilities 
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5. PLOTS AND RESULTS 

 

 

Figure 2: Photon counts over time plot (type_A) 

 

 

Figure 3: Photon counts over time plot (type_B) 
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Table 1 Test Data & NIST Test Suite Result for Beam Splitter 135 Degree 15 Timespan 1300 Steps (type_A) 

Type of Test                                      P-Value             Conclusion Column1

1. frequency_rounak_visvabharati_testtypeone 0.067173616 testone_ran_pass

2. frequencyblock_rounak_visvabharati_testtypeone 9.89E-39 testone_ran_fail

3. run_test_rounak_visvabharati_testtypeone 5.10E-28 testone_ran_fail

4. longest_ones_block_rounak_visvabharati_testtypeone 5.08E-08 testone_ran_fail

5. binary_matrix_rank_rounak_visvabharati_testtypeone 0.039104616 testone_ran_pass

6. discrete_fourier_trans_rounak_visvabharati_testtypeone 0.001465531 testone_ran_fail

7. non-overlapping_templ_rounak_visvabharati_testtypeone 2.36E-12 testone_ran_fail

8. overlapping_template_rounak_visvabharati_testtypeone 0.295708275 testone_ran_pass

9. maurers_univer_statis_rounak_visvabharati_testtypeone -1 testone_ran_fail

10.linear_complexity_rounak_visvabharati_testtypeone 0.919688854 testone_ran_pass

11. serial_rounak_visvabharati_testtypeone 0 testone_ran_fail

0 testone_ran_fail

12. approximate_entropy_rounak_visvabharati_testtypeone 0.154215379 testone_ran_pass

13. cumul_sums_forward_rounak_visvabharati_testtypeone 0.080263409 testone_ran_pass

14. cumul_sums_reverse_rounak_visvabharati_testtypeone 0.003788618 testone_ran_fail

15. ran_excursions_rounak_visvabharati_testtypeone

State     Chi Squared         P-Value             Conclusion

-4 127.5714286 7.80E-26 testone_ran_fail

-3 40.888 9.88E-08 testone_ran_fail

-2 34.46666667 1.92E-06 testone_ran_fail

-1 3.8 0.578555291 testone_ran_pass

1 5 0.415880187 testone_ran_pass

2 7.355555556 0.195511394 testone_ran_pass

3 18.2416 0.002658367 testone_ran_fail

4 28.40408163 3.03E-05 testone_ran_fail

16. ran_excursions_variant_rounak_visvabharati_testtypeone

State     COUNTS              P-Value             Conclusion

-9 6 0.93886499 testone_ran_pass

-8 6 0.934925312 testone_ran_pass

-7 5 1 testone_ran_pass

-6 5 1 testone_ran_pass

-5 5 1 testone_ran_pass

-4 6 0.904861129 testone_ran_pass

-3 7 0.777297411 testone_ran_pass

-2 6 0.855132141 testone_ran_pass

-1 5 1 testone_ran_pass

1 4 0.751829634 testone_ran_pass

2 5 1 testone_ran_pass

3 6 0.887537084 testone_ran_pass

4 5 1 testone_ran_pass

5 5 1 testone_ran_pass

6 5 1 testone_ran_pass

7 5 1 testone_ran_pass

8 6 0.934925312 testone_ran_pass

9 7 0.878088367 testone_ran_pass  

 

 

 

 

 

 

 

 

 

 

 

 

Test Data: 
0000000000000010000001000000000000010001100000000000010000010010001001000000001010
0010110010111111010110101001101111111011111111111111111111111111111111111111111111
1111111111111111111110111111111101111101111101111111101111110101001010100101100100
1001100010000100100001010100000000000010000000000000000000000000000000000000000000
0000000000000000000000000000000011101000110000000000010001010000110000101110101000
1110010010011111111010111011011111111011110110101111111111111011111101111111111111
1111111101110111111111111111111110011011011111111111111100001000000011101101000000
0101010001100100001100010001000100100000001100000000000000000001010000000010001100
1000100000010001001101011111010000001001000000000101110001000001100100010010000001
0001110001111111111011001011111001111111010111011100011011111101111110111001101111
1011110010101001000110110010100001110111100101001111001111001100110100111001110000
1000000110100100100101001101000000011000000010110000000001110100000011000000000011
1001000001100001101011000111000000011100110000110011001001000101001010001111011111
0011110011101000001110111111111000110000111100001100001011011011111010011101011110
0001100110111111000001110111111110011001011000100110011110111101100000011000000001
1110111010001101000111111001000000000110100011001010001001000000011000 
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Table 2: Test Data & NIST Test Suite Result for Beam Splitter 360 Degree 18 Timespan 1300 Steps (type_B) 

 

 
 

6. RESULT DISCUSSION 
The execution of the `twin_Photon_Beam_Splt` function with 

varying parameters yielded interesting results, leading to the 

categorization of generated plots into two distinct types: Type 

A and Type B.  

Type_A Plots (Figure 2): Type A plots illustrate scenarios 

where the detectors initially exhibit a 50/50 probability of 

detecting photon light pulses from the beam splitter. 

Alternatively, they may achieve this desired probability after a 

considerable time interval. For instance, plots corresponding to 

angles 0, 1, 35, 270, and 330 exemplify such behaviour. In these 

cases, the prolonged duration required to reach equilibrium 

may indicate complex interactions within the quantum system, 

resulting in delayed convergence to the desired outcome. 

Type_B Plots (Figure 3): In contrast, Type B plots showcase 

parameter configurations where the detectors rapidly achieve 

the desired 50/50 probability. This quick convergence suggests 

a more efficient and predictable behaviour of the quantum 

system under specific parameter settings. Angles like 30, 45, 

180, and 360 produce similar plot patterns and behave similarly 

in the random number generation process. 

NIST Results (Table 1 & Table 2): To further investigate the 

randomness of the generated binary strings, representative 

samples from both Type_A and Type_B plots underwent 

rigorous testing using the NIST randomness test suite. This 

suite comprises 16 statistical tests designed to assess the quality 

of random sequences. A remarkable observation emerged after 

scrutinizing the NIST test results: the binary strings generated 

from Type B plots consistently passed all tests within the NIST 

suite. This robust performance across a comprehensive range 

of statistical measures underscores the inherent randomness 

Type of Test                                      P-Value             Conclusion Conclusion

1. frequency_rounak_visvabharati_testType2 0.04043901 test2_ran_pass

2. frequencyblock_rounak_visvabharati_testType2 0.368482932 test2_ran_pass

3. run_test_rounak_visvabharati_testType2 0.086814556 test2_ran_pass

4. longest_ones_block_rounak_visvabharati_testType2 0.806728839 test2_ran_pass

5. binary_matrix_rank_rounak_visvabharati_testType2 0.693720141 test2_ran_pass

6. discrete_fourier_trans_rounak_visvabharati_testType2 0.566530538 test2_ran_pass

7. non-overlapping_templ_rounak_visvabharati_testType2 0.068364769 test2_ran_pass

8. overlapping_template_rounak_visvabharati_testType2 0.886588558 test2_ran_pass

9. maurers_univer_statis_rounak_visvabharati_testType2 -1 test1_ran_fail

10.linear_complexity_rounak_visvabharati_testType2 0.919688854 test2_ran_pass

11. serial_rounak_visvabharati_testType2 0.978588151 test2_ran_pass

0.900823599 test2_ran_pass

12. approximate_entropy_rounak_visvabharati_testType2 0.481417971 test2_ran_pass

13. cumul_sums_forward_rounak_visvabharati_testType2 0.080878019 test2_ran_pass

14. cumul_sums_reverse_rounak_visvabharati_testType2 0.075546268 test2_ran_pass

15. ran_excursions_rounak_visvabharati_testType2

State     Chi Squared         P-Value             Conclusion

-4 16.85714286 0.004778852 test1_ran_fail

-3 11.66 0.039755555 test2_ran_pass

-2 8.444444444 0.13338289 test2_ran_pass

-1 6 0.306218918 test2_ran_pass

1 2 0.849145036 test2_ran_pass

2 1.333333333 0.931464617 test2_ran_pass

3 0.8 0.977033344 test2_ran_pass

4 0.571428571 0.989273997 test2_ran_pass

16. ran_excursions_variant_rounak_visvabharati_testType2

State     COUNTS              P-Value             Conclusion

-9 10 0.606905427 test2_ran_pass

-8 7 0.784191229 test2_ran_pass

-7 5 0.921886184 test2_ran_pass

-6 2 0.83117041 test2_ran_pass

-5 1 0.72367361 test2_ran_pass

-4 2 0.789268026 test2_ran_pass

-3 3 0.874367061 test2_ran_pass

-2 4 1 test2_ran_pass

-1 4 1 test2_ran_pass

1 2 0.479500122 test2_ran_pass

Test Data: 

100011100000111000000011001000101001110000111100101110000101000101101000100011100100

101001100110000011010100001101000111001000000011000001000001110110101001110010100100

101110000011111011011010001110110100011100001001011110110111100111100100000000111000

000000000010001110010110100001011110001100011001101010000010011111011111000001100010

111110010101100111011101000011110110010110110110111110001100110100100110110000101011

010010000100110111101010010110001010001011011001111101010010000010001111111011110101

000011100100100001001100000110110010111011100100001111010101001101000001111110010100

100011100111110110111010010101100001100011111011001010000000001111100111000100101011

100010111111010111111000010000101110011101001001101010111000101010001001111100110111

110000100011101000100011011100111001000010110110101111001000001110000001101011010000

100110000000000001001001011001000111110110001101101101100011010111011000110011011110

001100000100111010101000011000101100001110000100100011001111100100011110101001101001

110111010001100111000011100100100100001011001000011000001100110010011110000100001110

110110000110111100001100100010001110001101010011101110101100110100001111000100000011

101111110110010111011000111110001011101000010001011001100110010011011000010000110111

000100000 
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and reliability of the numbers generated under Type B 

configurations. 

The significance of this finding cannot be overstated, 

particularly in the cryptographic applications and secure 

communication protocols. The ability to produce random 

numbers that withstand rigorous statistical scrutiny ensures the 

integrity and unpredictability required for safeguarding 

sensitive information and data privacy. 

The difference between Type A and Type B plots highlights the 

subtle dynamics of quantum systems under various conditions, 

which helps deepen the understanding of quantum behaviour 

and guides future experiments and simulations for practical use 

of quantum phenomena. 

In summary, the illustration between Type A and Type B plots, 

coupled with the validation of Type B plots through the NIST 

randomness test suite, underscores the importance of parameter 

selection and experimental design in achieving desired 

randomness characteristics in simulated quantum experiments. 

These findings floor the way for developing more robust and 

reliable random number generation techniques with broad 

applications across various domains. 

7. CONCLUSION 
In conclusion, the study proposes an innovative approach to 

address the short-comings of classical random number 

generation by utilizing the inherent unpredictability of quantum 

mechanics. Through this research, introduce a deterministic 

free random number generation model implanted in quantum 

properties, ensuring the generation of random numbers devoid 

of deterministic biases. This work advances random number 

generation and paves the way for leveraging quantum 

mechanical simulations to gather insights into various quantum 

phenomena, thereby contributing to a broader comprehension 

and utilization of quantum mechanics across diverse domains. 

Executing the `twin_Photon_Beam_Splt` function with varying 

parameters yields intriguing results, categorizing generated 

plots into two distinct types: Type_A and Type_B. Type A 

plots illustrate scenarios where detectors initially exhibit a 

50/50 probability of detecting photon light pulses from the 

beam splitter. Type_B plots showcase configurations where 

detectors rapidly achieve the desired 50/50 probability. Further 

investigation into the randomness of the generated binary 

strings using the NIST randomness test suite reveals that strings 

generated from Type_B plots consistently pass all tests, 

underscoring their inherent randomness and reliability. 

In nutshell, this study highlights the importance of parameter 

selection and experimental design in achieving desired 

randomness characteristics in simulated quantum experiments. 

These findings also help in developing more robust and reliable 

random number generation techniques with broad applications 

across simulation, secure key generation, leader election, 

forecasting and model where any kind of randomness is 

required. 

Future work could further optimize the quantum-inspired 

random number generation model and explore its applicability 

in real-world cryptographic systems. Additionally, 

investigating the scalability and efficiency of the proposed 

approach in large-scale applications would be a valuable 

avenue for future research. 
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