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ABSTRACT 

This paper aims to provide a comprehensive study on different 

speech dereverberation techniques using deep learning and 

compares them to find the best possible solution for the said 

problem.  

The persistence of sound after a sound is created is known as 

reverberation, or reverb in acoustics. A reflection is the result 

of a sound or signal hitting many surfaces in close proximity. 

These surfaces might be furniture, people, or even the 

surrounding air. The reflections build up and eventually 

disintegrate. The best example of this is when the sound source 

cuts out but the reflections keep going, amplitude lowering 

until it reaches zero. 

Deep learning is basically a three-layer neural network. By 

simulating human brain function, although not exactly 

mimicking it, these neural networks enable the human brain to 

"learn" from vast quantities of data. Additional hidden layers 

can aid in optimizing and refining for accuracy, even if a neural 

network with only one layer can still produce rough 

predictions. 

Deep learning techniques, including UNet, GANs, and LSTM, 

are implemented in this paper to study speech dereverberation. 

Speech reverberation refers to the degradation of the entire 

signal caused by reflections of the target signal, which 

diminishes the quality of speech. The objective is to enhance 

the voice signal by eliminating this reverberation. 
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dereverberation 
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1. INTRODUCTION 
Reverberations are defined as reflections that arrive in less than 

50 milliseconds. During this process, the target signal is 

propagating multipath from its source to the microphone. The 

bulk of the received sound is composed of direct sound, 

reflections that follow directly after the direct sound and 

reflections that follow the early reverberation. 

There is no direct sound present if there is no line of sight 

between the source and the observer. Direct sound is the sound 

that is heard without reflection. The sound that arrives a bit later 

as a result of reflections off one or more surfaces is known as 

early reverberation. The direct sound is separated from the 

reflected sounds by both time and direction. Early 

reverberation will change when the source and the microphone 

move around the room, but it shouldn't be heard separately 

from the direct sound as long as the delay between the reflected 

sound and the direct sound is less than about 80–100ms. Early 

reverberation is said to improve speech understanding since it 

is designed to accentuate the direct sound. Additionally, early 

reverberation results in coloration, a spectral distortion. 

Reflections that arrive later and with greater delays than the 

direct sound cause late reverberation. 

Reverberation is not limited to indoor spaces as it exists in 

forests and other outdoor environments where reflection exists. 

Reverberation is dependent on the frequency, meaning that 

when designing architectural spaces, which require certain 

reverberation lengths in order to function optimally for their 

intended use, extra attention is given to the length of the decay. 

compared to a clear echo, which may be heard at least 50 to 90 

ms following the preceding sound. The reflections' amplitude 

progressively decreases to undetectable levels over time. Not 

only does reverberation occur indoors, but it can also be found 

outside in places like woodlands and other places where 

reflection occurs. 

 

Figure 1: Reverberation of sound 

In a hall or other performance area with sound-reflective 

surfaces, reverberation naturally happens when someone 

speaks or plays an instrument acoustically. Reverb effects are 

used to artificially apply reverberation. These consist of: 

1.1 Hall Reverb 
Hall reverberations imitate the reverberation of a concert hall. 

Owing to their enormous size, their decays might last for many 

seconds or more. These reverbs are ideal for giving strings 

more body and space. 

1.2 Chamber Reverb 
Similar to hall reverberations, chamber reverberations provide 

a rich, moody tone. However, they also provide you with an 

additional dosage of clarity, protecting you from the washed-

out sound that many hall reverbs have. 

1.3 Room Reverb 
Room reverberations closely resemble the natural ambiance 

typically encountered in real-world environments. 

2. MOTIVATION 
Reverberation can most of the time gives recorded sound a 
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more realistic sense of space but simultaneously making speech 

less understandable, especially when noise is also present. 

Hearing impaired people, especially hearing aid users, 

regularly report having trouble understanding speech in 

echoing, noisy environments. Another prominent cause of 

errors in automatic speech recognition (ASR) systems is 

reverberation.  

Dereverberation is the process of lowering a sound or signal's 

reverberation level. These days many softwares such as Adobe, 

iZotope provides the functionality of dereverberation. 

3. LITERATURE REVIEW 

3.1 Background and Related Works 
Many single-channel dereverberation methods have been 

proposed throughout the years. Lebart, for example, describe a 

spectral subtraction strategy to reduce late reverberation by 

using an exponential decay model of reverberation. Wu and 

Wang offer a two-stage method that cancels early reflections 

using an inverse filter and removes late reverberation using a 

spectral subtractor. Long-term linear prediction-based 

dereverberation approaches have been shown to be very 

successful at reducing late reverberation. Based on a number of 

historical frames, these strategies first create frequency 

dependent linear prediction filters using the weighted 

prediction error (WPE) minimization. 

In order to conduct dereverberation, several supervised speech 

augmentation algorithms have recently been introduced, and 

they have much surpassed the traditional methods. In order to 

create a spectral mapping function from the log magnitude 

spectrum of reverberant voice to that of anechoic speech, Han 

et al. recommend using a deep neural network (DNN). Wu et 

al. stress the importance of reverberation time dependent 

parameters for training a DNN-based dereverberation system. 

Next, they provide an improved reverberation-time-aware 

reverberation removal technique over Han et al. In Weninger et 

al.'s robust voice recognition system (LSTM), dereverberation 

is accomplished by a deep bi-directional recurrent neural 

network (RNN) with long short-term memory. Williamson and 

Wang suggest estimating a complex ideal ratio mask while 

accounting for phase. 

The supervised algorithms described above exhibit a 

significant flaw in that they are non-causal, as their processing 

involves the use of future data. This paper proposes an 

approach for causal supervised dereverberation. 

 

Figure 2: Spectroscopy of a clean and reverbed sound 

wave 

3.2 Problem Statement 
Given a reverberant speech signal, this study proposes, 

evaluates, and compares various methodologies to determine 

the most effective algorithm for dereverberation in robust ASR 

systems.  

More technically,  

Let s(t) and h(t) denote speech and room impulse response. The 

reverberant speech y(t) is modeled by  

𝒚(𝒕) =  𝒔(𝒕) ∗  𝒉(𝒕)  

Where ∗ denotes a convolution operation. Reverberant speech 

is divided into two components, namely early and late 

reverberation, based on the arrival time of the signal. 

So, the reverberant speech can be represented by  

𝒚(𝒕) =  𝒔(𝒕) ∗  𝒉{𝒅𝒆}(𝒕) +  𝒔(𝒕) ∗  𝒉{𝒍} =  𝒚{𝒅𝒆}(𝒕) + 𝒚{𝒍}(𝒕) 

The objective of this study is to remove the late reverberation 

component yl(t) from the corresponding reverberant speech 

y(t). 

3.3 Objective 
To obtain new viewpoints on the problem as well as an 

extensive understanding of the most advanced ASR systems. 

This study evaluates speech enhancement and identification 

methods in reverberant environments, old and new. In addition, 

it provides academics in appropriate fields with the chance to 

conduct comprehensive system evaluations utilizing shared 

data sets. 

4. PROPOSED METHODOLOGY 

4.1 Data 
The ACE challenge dataset, MERD database, and MARDY 

database are the three separate datasets that have been 

combined to create the proposed dataset. By convolving clean 

speech with a room impulse response from the three datasets 

mentioned above, it was rendered reverberant. Each of the 28 

native English speakers in the train set delivers about 400 

phrases. There are just two native English speakers in the 

sample set, each with approximately 400 sentences. The initial 

audio files have a 48kHz sample rate. 

4.2 Evaluated Algorithms 

4.2.1 Weighted Prediction Error (WPE) 
This approach separates the speech signal into brief periods of 

time and solves them in the time domain using the weighted 

error in prediction (WPE) technique. 

Since the frequency of the voice input varies over time, the 

Fourier transform cannot be applied directly. Therefore, the 

Short-Time Fourier Transform (STFT) is used to apply the Fast 

Fourier Transform (FFT) to the signal after splitting it into 

frames. Subsequently, Weighted Prediction Error (WPE) can 

be applied to each frame, utilizing an approach known as 

Delayed Linear Prediction (DLP) to estimate the amount of 

prior signal in the current frame. This estimate for a specific 

time period can then be subtracted, and the process repeated 

accordingly. 

With DLP, the reverberation can be divided into two parts, viz, 

early and late reverb. It can be shown that DLP can suppress 

the late reverb effectively without significantly distorting the 

short time correlations of the speech, with the assumption that 

speech is stationary. With the use of time-varying speech 

characteristics with multichannel linear prediction, the reverbs 

have been reduced to a significant extent. 

4.2.2 Fully Convolutional Networks 
Convolutional neural networks (CNNs) are another type of 

network that enhances the present time frame by using a 

sliding-window technique. In CNN, an FC layer that disregards 

any time-frequency structure that may exist occurs after every 
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pixel in the target picture is determined using just a small 

amount of context pixel form the initial picture. 

One commonly employed technique for translating images to 

images is an encoder-decoder network. Each layer in this kind 

of network reduces its input to the one above it until a 

bottleneck occurs. The input proceeds through the exact same 

procedure again in the next layer, with each layer upsampling 

the input till the input takes on its original form. As a result, an 

image with a high resolution used as the network input is 

compressed into a relatively tiny image. On the other hand, the 

growing route has a reverse impact; namely, it raises the 

resolution of the image until it decreases to its original size. 

Unfortunately, during the down sampling process, this system 

frequently loses important low level data.  

The "UNet" design, featuring symmetric compression and 

expansion paths in a U-shape, leverages the need for identical 

structures in both input and output images to optimize the 

encoder-decoder architecture. This setup enables the transfer of 

shared data without downsampling, thus avoiding bottlenecks. 

UNet accomplishes this by linking mirrored levels in the 

encoding and decoding stacks, allowing data to flow 

seamlessly without encountering bottlenecks. 

The time-frequency (T-F) representation, or spectroscopy, in 

this sound enhancement technique can be treated as a picture. 

As such, the process of enhancement transforms into an image-

to-image transition. There are two main benefits to approaching 

the reverberant speech as a picture. Initially common patterns 

(such as pitch continuity, harmonics structure, and formants) 

may be seen in speech spectrograms. These structures can be 

used by an image analysis approach to apply pertinent 

improving techniques. Second, this representation enables the 

use of highly effective computer vision techniques, such as a 

fully convolutional network (FCN).The suggested UNet design 

with 256x256 STFT images for both inputs and outputs is seen 

in the above image. 

4.2.3 Generative Adversarial Networks (GANs) 
GANs, or Generative Adversarial Networks, are a kind of 

generative models which makes use of convolution artificial 

neural networks along with other machine learning methods. 

In generative modeling, regularities or structures in the input 

data are consequently found and understood so that the model 

is able to generate or results novel instances that could be 

accurately taken from the initial set of data. This is an 

unsupervised learning task in machine learning. 

By reframing the task as a supervised learning problem with 

two sub-models—a discriminator model, which seeks to 

classify examples as either real (from the domain) or fake 

(generated), and a generator model, trained to create new 

examples—generative models can be effectively developed 

using GANs. These models train together in an adversarial 

zero-sum game until the discriminator is deceived 

approximately half the time, indicating that the generator is 

producing realistic instances. 

It was discovered that the pix2pix conditional GAN (cGAN), 

which offers a method to carry out picture translations (such as 

converting B&W to color images using GAN, was very 

enticing. This technique can be used for a reverberation 

challenge; instead, use it for a noisy voice improvement test. A 

generator (G) that improves the spectrogram (U-Net Image-2-

Image Architecture) and a discriminator (D) that was trained to 

differentiate between the output of G and a clean spectrogram 

made up the cGAN. Two images are given to the discriminator. 

The first is the result of G, or a clear image, and the second is a 

conditional noisy spectrogram. 

𝐿{𝐺𝐴𝑁}(𝐺,𝐷) =  ∑( 𝑙𝑜𝑔 𝐷(𝑍𝑡 , 𝑋𝑡) +  𝑙𝑜𝑔 (1 −  𝐷(𝑍𝑡, 𝐺(𝑍𝑡)))

𝑡

 

The objective of G during training was to become better so that 

D would be unable to tell the difference between the output of 

G and the clean spectrogram. The objective is such that Zt, Xt 

and Xt = G(Zt) are the t-th example of the reverberant, clean 

and enhanced log-spectrum images respectively. As a 

regularization term that makes sure the enhanced speech is 

close to the clean speech, the MSE loss was added to the GAN 

loss in order to improve the outcomes. The final GAN score 

was therefore given as 

𝐿(𝐺, 𝐷) =  𝐿{𝐺𝐴𝑁}(𝐺,𝐷) +  𝜆𝐿{𝑀𝑆𝐸}(𝐺) 

where λ is the weight of the direct MSE loss. The U-Net 

weights were used to initialize the GAN network, which was 

subsequently trained for a few additional epochs. According to 

empirical research, the value λ = 2000 produces good 

outcomes. 

4.2.4 Long-Short Term Memory (LSTM) 
One type of recurrent artificial neural network is the LSTM. 

The results of the previous stage of an RNN are fed into the 

current phase. It tackled the problem of RNN long-term 

dependence, where the RNN may generate more accurate 

forecasts based on current information but is unable to forecast 

words held in memory over time. RNN fails to operate 

efficiently as the separation length rises. By default, LSTM has 

a long storage length for the information. 

It is applied to time-series analysis, prediction, and 

categorization.  The essential component to LSTMs is the 

straight line that traverses the top of the graphic and symbolizes 

the cell state. In certain respects, the cell state is similar to a 

conveyor belt. It moves effortlessly through every link with 

only a few modest straight interactions. It is fairly   simple for 

information to flow along it unmodified. By the precise control 

of gates, the LSTM may add or remove data, changing the cell's 

state. Gates enable information to flow across only willingly. 

They are formed up of a layer of sigmoid neural pathways and 

a point-by-point multiplying algorithm. 

4.2.5 Late Suppression U-Net 
This model differs from previous attempts in that it uses a Late 

Resonance Suppression (LS) U-net solution. This model far 

surpasses the conventional U-net by popular clarity, quality, 

and reverb measurement accuracy (e.g., speech-to-

reverberation modulated energy proportion, or SRMR). In 

addition, it achieves dereverberation signs similar to the latest 

iteration of the U-net design developed with GANs. 

The primary distinction between both models is the skip 

connection between the input and the output, which has been 

removed from the initial dereverberation U-net. This skipped 

conjunction lets us to focus on late reverberation reduction  

 
Figure 3: Long-Short term Memory 
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Figure 4: Architecture of LSTM 

rather than straightforward dereverberation, since the U-net 

architecture finds out a mapping to dereverberate to late 

reverberation inhibition instead of a mapping from 

reverberated to dereverberation spectroscopy. 

4.2.6 Late Suppression LSTM 
 Dereverberation involves the use of long-term past 

information. Recurrent Neural Networks (RNNs) are designed 

to simulate sequential data with enduring dependencies, thanks 

to their internal memory. However, optimizing a basic RNN 

can be challenging due to issues related to gradient vanishing 

and explosion. Long Short-Term Memory (LSTM) RNNs, 

which utilize memory cells and gating mechanisms to control 

information flow, have demonstrated an impressive capacity to 

represent long-term dependencies within sequential data. 

Consequently, LSTM RNNs are employed to forecast late 

reverberation, capturing the rich history of previously recorded 

reverberant speech. 

The input, forget, cell, and outputs gates are denoted by the 

parameters it, ft, gt, and ot in the following formulas, which 

define the LSTM block used in this study; The hidden state 

can be represented by ht at the time step t, the cell's memory 

state by ct, the input from the first level or the secret state of 

the layer before it by xt, the biases and weights used in the 

transformations that are linear are represented by W0 s and b 

0 s, accordingly, and the element-wise multiplication is 

indicated by ◦. 

it =  sigmoid(W{ii}xt
+ W{hi}h{t−1}

+ bi) 

ft =  sigmoid(W{if}xt
+  W{hf}h{t−1}

+ bf) 

gt = tanh(W{ig}xt
+  W{hg}h{t−1}

+ bg) 

ot =  sigmoid(W{io}xt
+ W{ho}h{t−1}

+ bo) 

ct =  ft ∘ c{t−1} + it ∘ gt 

ht =  ot ∘ tanh(ct) 

The system schematic for the proposed method is illustrated 

above. To facilitate understanding of the system's three 

temporal stages, they are outlined as follows: the LSTM RNN, 

which consists of two hidden layers, receives direct input from 

the input features at each time step; a linear layer is constructed 

on top of the LSTM neural network to align the hidden states 

of the last layer with the late reverberation; rectified linear units 

(ReLU) are applied after the linear projection layer to ensure an 

accurate estimation of the late reverberation; subsequently, the 

magnitude spectrum of the reverberant speech is subtracted 

from the late reverberation prediction to produce the actual 

sound along with early reflections as the system's output. 

Notably, the components of the magnitude spectra are 

compressed using a cubic root function. In other words, a 

compact space defined by a cubic root is utilized for spectral 

reduction. Although late reverberation is not explicitly 

employed as the training target, this approach encourages the 

LSTM RNN to learn to predict it. When treated as a black box, 

the proposed method achieves frame-level mapping from the 

magnitude spectrum of the reverberant speech to the spectrum 

of the actual sound plus early reflections, resembling an 

ordered spectral mapping. 

5. RESULTS AND CONCLUSION 

5.1 Evaluation metrics 
The performance of the models was evaluated using the 

following metrics: 

PESQ: Perceptual Evaluation of Speech Quality  

LLR: Log-Likelihood Ratio 

CD: Cepstral Distance  

fwSNRseg: Frequency Weighted Segmental SNR  

SRMR: Speech to Reverberation Modulation Energy Ratio 

 The first four metrics are invasive measures that use an 

assessment of an input signal's distortion and reverb level to a 

clean signal to determine "similarity" scores. Conversely, the 

SRMR metric is a metric that was developed by the use of an 

envelope filter bank that was motivated by the functioning the 

cochlea to evaluate the important band temporal envelopes of 

the speech signals. For an accurate assessment of the 

methodologies in consideration, it is crucial to use this last non-

intrusive indicator since clear signals that may be used as 

standards in usage may not always be available. 

5.2 Experimental Settings 
The FFT was applied in each example to generate spectra with 

a window width of 2048 samples and an overlap of 512 

samples. A Mel filter bank was utilized to reduce the bin size, 

resulting in either 128 or 256 bins in the testing setup. The time 

signal was successfully recovered in both cases; however, it 

was challenging to achieve this with fewer bins (e.g., 64 bins). 

Consequently, 128 bins were selected, and the number of 

frames for each spectrogram was set to 340, which represented 

the average frame count across all training spectra, using 

OpenCV's Lanczos approximation. An initial batch size of 

sixteen was employed, and the Adam optimizer was utilized for 

the learning process. Specifically, the U-Net GAN was trained 

with a λ value of 1e-2, which was chosen to ensure consistent 

size order across the Mean Squared Error (MSE) and the Least 

Squares Generative Adversarial Network (LGAN). 

5.3 Simulation Results 
 

 PESQ LLR CD fwSN

Rseg 

SR

M 

reverberant 

speech 
1.90 1.31 7.11 6.34 3.08 

FD-NDLP 

(WPE) 
2.09 1.39 7.45 7.45 4.25 

UNet 2.59 0.61 4.44 9.35 5.93 

UNet-GAN 2.62 0.60 4.37 9.15 7.18 
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Context-

LSTM 
1.68 1.36 6.73 5.20 1.93 

Late 

Suppression 

LSTM 

2.38 0.81 4.97 8.06 4.53 

LS-LSTM + 

GAN 
2.42 0.53 4.32 9.36 6.57 

 

5.4 Results on Real Dataset 

 

Figure 6: Reverberant speech 

 

Figure 7: LSTM+GAN 

 

Figure 8: Sample output of the dereverberation 

5.5 Conclusion 
In this work, a novel algorithm, Late Suppression LSTM + 

GAN, is introduced to address challenges in enhancing speech 

quality within robust Automatic Speech Recognition (ASR) 

systems.  The proposed model demonstrates significant 

improvements over existing approaches across multiple 

performance metrics, highlighting its effectiveness in 

producing clearer, high-quality speech outputs. Rigorous 

experimentation has shown that the Late Suppression 

mechanism effectively mitigates noise in the final stages of 

processing, while the integration with GANs facilitates realistic 

and natural speech generation. 

The performance gains of the proposed model indicate its 

potential to advance the state-of-the-art in robust Automatic 

Speech Recognition (ASR) systems, paving the way for 

improved accuracy in real-world, noisy environments. Future 

work could focus on optimizing this model for computational 

efficiency, thereby enabling broader applications in resource-

constrained devices. 

6. FUTURE WORK 
Future work will focus on optimizing the proposed model by 

increasing the number of training epochs and incorporating 

additional frequency bins. Further research will explore the use 

of vision transformers, a recent advancement in machine 

learning, to assess their performance in comparison to the 

current model. 
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