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ABSTRACT 

In Group technology, parts with similar geometry, function, 

material and process are grouped into part families and the 

corresponding machines are grouped into machine cells. In 

cluster analysis, one seeks to find the natural groupings in the 

data. One searches for patterns in the data set by grouping it 

into clusters. The goal is to find an optimal grouping for which 

the data within clusters are similar, but the clusters are 

dissimilar to each other. Many techniques exist to group the 

data into clusters. Recently, Support Vector Clustering (SVC) 

has been employed for cluster analysis. In SVC algorithm, data 

points are mapped from data space to a high dimensional 

feature space using a Gaussian kernel. The smallest sphere 

enclosing in feature space is mapped back to data space where 

it forms cluster boundary. Thus clusters are formed. The scale 

parameter of Gaussian kernel and soft margin constant are the 

two parameters which determine clustering form. A data set of 

Group technology is considered for investigating performance 

of the algorithm. Part families are formed by SVC algorithm 

for the data set within a reasonable time as demonstrated.  

Keywords 
Support Vector Clustering, Gaussian kernel, Group 

Technology  

1. INTRODUCTION 
Group Technology (GT) is become a mature technique for 

classifying parts into groups and machines into machine cells. 

The advantages of grouping of parts and machines are 

numerous and include increased productivity, reduced costs, 

reduced material handling, reduced setup times and more. 

There are three main methods for part classification. The 

methods can be broadly classified as visual methods, coding 

and classification methods and production flow analysis. 

Similarities in the shape and geometry of parts are the main 

criteria for classification in visual methods. The part families 

obtained through visual methods highly depend on the 

experience and preference of classifier. However, visual 

methods are applicable for the classification of limited number 

of parts. Classification and coding systems are also the 

traditional tools used to implement Group Technology; Parts 

are grouped on the basis of design features such as geometric 

shape, dimensions, material, accuracy, etc. A numeric, 

alphabetic or coded symbol is considered for each feature. 

Arrangement of these symbols represents a unique part. But the 

disadvantage of this method is that it is time consuming. Also 

parts of similar size, shape and function may not use the same 

set of machine tools and other resources. There is no universal 

standard on the features to be considered in classification.  

Recent research has therefore emphasized the use of production 

flow analysis methods. Array based clustering operates by 

manipulation and reordering of rows and columns of machine-

part incidence matrix in order to form a block-diagonal matrix. 

Bond Energy Algorithm, Rank Order Clustering, Direct 

Clustering Algorithm, MODROC, Cluster Identification 

Algorithm are some techniques proposed. Reference [1] 

compared the performance of these methods. Array based 

clustering techniques are efficient and simple but they are 

criticized for some limitations. They use a binary machine-part 

incidence matrix and do not consider other manufacturing data 

such as cost data, cell size, etc. these methods are not effective 

for ill-structured matrices where several exceptional elements 

exist. Hierarchical clustering techniques are one of the most 

frequently used methods for grouping. Part families are 

clustered and then method is reapplied once again to group the 

machines. These methods use similarity coefficient or distance 

clusters or distance measure to create a hierarchy of clusters. 

Given a similarity threshold level, different clusters can be 

identified. The similarity coefficient measure can incorporate 

different production-related data and therefore, too many 

similarity measures have been proposed in literature. Most of 

them used the generic Jacquard similarity coefficient. A Single 

Linkage Clustering approach is used to cluster machines. A 

similarity coefficient that incorporates machine-part incidence 

matrix, production volume of parts, sequence of operations and 

the processing times of each operation is used [2]. A 

comparison of the methods can be found in [3, 4, and 5]. 

Although, hierarchical clustering methods are easy to use and 

capable to incorporate different manufacturing data, these are 

criticized due to arbitrary selection of threshold level. Issues 

related to duplication of bottleneck machines cannot be easily 

handled by hierarchical clustering methods. Reference [6] 

proposed an ideal seed non-hierarchical clustering approach. 

The problem is initially formed as bipartite graph to obtain an 

upper limit on the maximum number of independent cells. A 

modified k-means method is adopted in which the last k data 

units are selected as the initial seed points. Reference [7] 

developed improved version called ZODIAC. The initial seed 

selection can be arbitrary, artificial, representative or natural. It 

is shown that natural seed forming provides better grouping 

than artificial and representative methods. The seed selection 

process is statistically analyzed to ensure that the selected seeds 

belong to different clusters. Reference [8] proposed improved 

method called GRAPHICS in which initial seeds are obtained 

through an assignment model maximizing the similarity 

between machines. Mathematical programming techniques are 

applied to get clustering. Mathematical programming provides 

a tool take into consideration different design and operational 

objectives and constraints in classifying parts and machines. 

Several mathematical programming techniques of linear as 

well as non linear nature such as assignment model, quadratic 

assignment model, mixed-integer programming, goal 

programming, multi-objective programming, etc. have been 

widely applied [9, 10, 11]. They are advantageous due to their 

potential to incorporate production-oriented data. But these 

methods are criticized for three limitations. First, these methods 

group parts and machines in a sequential manner rather than 

simultaneously due to the non-linearity of objective function. 
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Second, the number of cells is to be specified in advance. Third, 

the proposed mathematical models are computationally 

intractable for realistic applications. In the graph theoretic 

methods, the cell formation is represented by a graph such as 

network, bipartite graph, spanning tree, etc. Reference [12] 

reviewed the cell formation methods with respect to graph 

theoretic approaches and addressed that this approach is 

promising for a generalized grouping problem. The major 

weakness is that different manufacturing data cannot be 

incorporated in the graph. Various heuristics and Meta 

heuristics are applied. Researches employed general-purpose 

methodology like neural networks, genetic algorithms, 

simulated annealing and taboo search. Comprehensive review 

of the applications is available [13].  All these methods are 

developed for the grouping of parts and machines with a 

various objectives applicable to cellular manufacturing 

systems. A common weakness with all these methods is that, 

they implicitly assume that the part families are mutually 

exclusive and collectively exhaustive i.e. each part can only 

belong to one part family. In reality there may exist parts whose 

lineages are much less evident. Fuzzy clustering is one 

approach for more accurate presentation of uncertain or inexact 

information. Fuzzy clustering not only reveals the specific part 

family that a part belongs to, but also provides the degree or 

grade of membership of part associated with each part family. 

This information would give the users more flexibility in which 

part family a part should be actually produced so that the 

workload among machine cells can be balanced [14,15,19,22]. 

Fuzzy mathematics for clustering was attempted [21]. 

Clustering is the unsupervised classification of patterns into 

groups. But cluster analysis identifies similar and dissimilar 

features in data and segregate data into homogenous groups 

based on features. An underlying assumption is that 

homogeneous clusters exist in raw data. Clustering algorithms 

to group data points according to various criteria have been 

extensively studied [16]. Clustering may proceed according to 

some parametric model, as in the k-means algorithms or by 

grouping points according to some distance or similarity 

measure as in hierarchical clustering algorithms. 

Agglomerative algorithms, k-means algorithm, fuzzy 

algorithms, BIRCH and CLARANS are a few of the existing 

clustering algorithms. The k-means algorithm is popular 

because it is easy to implement. But the algorithm is sensitive 

to the choice of initial random seeds and the value of k. Many 

variants have been proposed for overcoming these problems. It 

is also found that the algorithm is not able to learn arbitrary 

clusters boundaries; for example, it fails to converge properly 

for data having concentric clusters. Kernel methods are the 

basis for Support Vector Clustering. In this paper, a non-

parametric clustering algorithm based on support vector 

machine approach [17, 18] is presented. Data points are 

mapped to a high dimensional feature space using Gaussian 

kernel, where support vectors are used to define a sphere 

enclosing them. The boundary of the sphere forms in data space 

a set of closed contours containing the data. As the width 

parameters of the Gaussian kernel are decreased, these contours 

fit the data more tightly and splitting of contours occurs. The 

algorithms works by separating clusters according to valleys in 

the underlying probability distribution, and thus clusters can 

take on arbitrary geometrical shapes. As in other SV algorithm, 

outliers can be dealt with by introducing a soft margin constant 

leading to smoother cluster boundaries. The structure of the 

data is explored by varying the two parameters. Dependence of 

Support Vector Clustering Method on these parameters is 

investigated. The application of it is observed to a data set of 

Group technology. In section II methodology adopted for SVC 

algorithms is provided. SVC was applied recently for other 

problems [20]. Recently, SVC algorithm applied for cellular 

manufacturing systems [23]   A problem from literature is 

solved by SVC algorithm in section III. Results are compared 

with other methods. Section IV discusses the usefulness of this 

SVC algorithm methodology and input parameters required 

with the conclusion at the end.  

2. METHODOLOGY 

2.1 Support Vector Clustering Model  
This section deals with the research work related to Support 

Vector Clustering. The first step in the SVC algorithm involves 

solving an optimization problem to get the smallest hyper 

sphere in feasible space, which encloses images of the data 

points.  This problem can be cast as a convex quadratic 

minimization problem. 
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where αi, the Lagrange multipliers, are the dual variables. The 

functional form of mapping ( )ix does not need to be known 

since implicitly defined by the choice of kernel function  
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The Karush-Kuhn-Tucker (KKT) conditions are necessary and 

sufficient for the optimality of the dual, since it is a convex 

optimization problem [19]. The data points with 0 <αi < C are 

non-bound support vectors, αi=C are bounded support vectors 

and αi= 0 are non-support vector points, which lie inside or on 

the hyper sphere. These three categories of the partitioned data 

are important. The non-bound support vectors lie on the hyper 

sphere and they are q in number. Bounded support vectors lie 

outside, or on the hyper sphere. For C > 1, there will be no 

Bounded support vectors. Both these are referred as support 

vectors denoted by p. In most of the cases p « m, where m are 

the total data points. Once the dual problem is solved, 

identification of clusters is done using a simple graphical 

connected-component method (GCM). Let f (x) denote the 

inference function which evaluates whether the image of a data 

point x lies inside, on, or outside the hyper sphere. Let LS [xi, 

xj] denote the line segment joining xi and xj in the data space. 

If the image of the LS [xi, xj] in the feature space does not exist 

in the hyper sphere then points xi and xj are said to be 

connected. Otherwise, they are said to be disconnected. This 

leads to a natural definition of the adjacency matrix A: Ai,j   is 

1 if the image of LS[xi, xj] lies entirely within the hyper sphere 

and 0 otherwise. The matrix A is built taking all points except 

the Bounded support vectors since there images lie outside the 

hyper sphere. Clusters are now defined as the connected 

components of the graph induced by A and labeled with 

number.   

2.2 Effect of parameter in Support Vector 

Clustering algorithm 
SVC algorithm was applied on the Iris data, which is a standard 

benchmark in the pattern recognition literature, and can be 

obtained from Blake and Merz (1998) at UCI repository of 

machine learning databases [24]. The data set contains 150 

instances, each composed of four features of an Iris flower. 

There are three types of flowers, Iris Setosa, Iris Versicolour 

and Iris Virginica. The four features, Sepal length, Sepal width, 

Petal length and Petal width are measured in centimeters.  The 

data is depicted in Figure1, Figure 2 and Figure 3 before 

clustering. The shape of the enclosing contours in input space 

is governed by two parameters, Gaussian kernel q and soft 

margin constant C. As q is increased, the enclosing contours 

form tighter fits to the data. For C = 1, all the data points are 

surrounded by the boundary of support vectors. For fixed q, as 

C is decreased the number of support vectors decreases since 

ignoring outliers gives a smoother shape. In iris data, the 

numbers of clusters are three and there is overlap between two 

of them. One of the clusters is linearly separable from the other 

two at q=0.5 with no bounded Support Vectors. The remaining 

two clusters have significant overlap, and are separated at q= 

4.2, 1/ (NC) = 0.55, with 4 misclassifications. As the numbers 

of principal components are increased from 3 to 4, the number 

of misclassifications increases from 4 to 14. The increase in 

number of support vectors and bounded support vectors 

required to obtain contour splitting. As the dimensionality of 

the data increases a larger number of support vectors are 

required to describe the contours, given in Table 2. The 

clustering obtained is shown in Figure 1 for first three principal 

components. http://archive.ics.uci.edu/ml/ 

 

 

 

Table 2: Performance of SVC on Iris data for principal 

components 

 

Principal 

Compone

nts 

q 1/(N

C) 

Suppo

rt 

Vector

s 

Bounded 

Support 

Vectors 

Misclassi

fied 

1-2 4.2 0.55 20 72 4 

1-3 7.0 0.70 23 94 4 

1-4 9.0 0.75 34 96 14 

Figure 1. Three principle components of Iris data set 

3. EXAMPLE FROM G. TECHNOLOGY 
To implement it in cellular manufacturing on a large scale data, 

an example is selected having the data for group technology 

(Xu & Wang, 1989). Fuzzy mathematics is applied to capture 

the uncertainty in the measurement of similarities between 

parts. Two different fuzzy pattern recognition approaches, 

namely fuzzy classification and fuzzy pattern recognition are 

used. It is shown that fuzzy classification method is very 

sensitive to the initial part families. Results obtained from 

fuzzy equivalence relation method depend upon the threshold 

value. In the example, 25 valve spools are used. These design 

specifications are provided by a company in the precision 

control industry. The first step is to select part features to be 

classified. Generally, no restrictions are put on feature 

selection. In this example, after careful review and discussion 

with engineers from the company, the following 15 (But the 

author has reported 14) features are restricted. They are all 

related to machining. (1) Overall length (L); (2) maximum 

diameter (Dmax); (3) (L/Dmax) ratio; (4) number of grooves; (5) 

minimum diameter (Dmin); (6) tightest dimensional tolerance;  

(7) best surface finish; (8) perpendicularity; (9) cylindricity; 

(10) parallelism; (11) round out; (12) position; (13) 

straightness; and (14) symmetry (15) flatness. The following 

are data & result of the fuzzy clustering. Similarity value λ and 

number of desired part families C are parameters.  The part 

features are as below. 
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5.514   1.1600  .5600    4.7534  2.0  .00080      8.000  .00010  

.00000  .000  .00005  .0100  .0000 .000  .000 

5.960     .9996  .3900    5.9624  3.0  .00010    32.000  .00050  

.00010  .000  .00000  .0000  .0000 .000  .000 

  5.960     .9996  .3900    5.9624  3.0  .00010    32.000  .00050   

.00010  .000  .00000  .0000  .0000 .000  .000 

  5.960     .9996  .3900    5.9624  3.0  .00010    32.000  .00050  

 .00010  .000  .00000  .0000  .0000 .000  .000 

  4.687     .7180  .3762    6.5279  6.0  .00050     3.000   .00000  

 .00005  .000  .00020  .0000  .0000 .000  .000 

  4.687     .7180  .3762      .6279  6.0  .00005     3.000   .00000  

 .00005  .000  .00020  .0000  .0000 .000  .000 

  4.090     .5040  .3290    8.1150  2.0  .00020   32.000   .00080   

.00003  .020  .00500  .0030  .0000 .000  .000 

  3.928     .7509  .2900    5.2310  4.0  .00010     8.000   .00020  

 .00000  .000  .00000  .0000  .0000 .000  .000 

  6.312   1.0600  .8750    5.9547    .0  .00005   63.000   .00100  

 .00000  .000  .00003  .0300  .0000 .000  .005 

  2.510     .3165  .1590   7.9305   4.0  .00000       .000   .00060   

.00000  .000  .00200  .0000  .0000 .010  .000 

  5.960     .9997  .3900   5.9618     .0  .00010   16.000   .00050  

 .00010  .000  .00000  .0000  .0000 .000  .000 

11.481     .8780  .5000 13.0763   5.0  .00100 125.000   .00000   

.00000  .000  .00010  .0000  .0000 .000  .000 

  4.687     .7180  .3762   6.5279   6.0  .00050     5.000   .00000   

.00000  .000  .00010  .0000  .0000 .000  .000 

11.281     .8750  .5000 12.8926   7.0  .00010     8.000   .00200   

.00000  .000  .00000  .0000  .0003 .002  .000 

  3.700     .3800  .2000    9.7368  2.0  .00010     5.000   .00000  

 .00000  .000  .00020  .0000  .0000 .000  .000 

  3.700     .5900  .2750    6.2712  2.0  .00005     5.000   .00050   

.00005  .000  .00020  .0000  .0000 .015  .000 

  2.174     .1800  .1090  12.0778    .0  .00010     5.000   .00000   

.00000  .000  .00050  .0020  .0000 .010  .000 

  3.700     .6252  .3000    5.9181  2.0  .00100     5.000   .00050   

.00005  .000  .00050  .0000  .0000 .000  .000 

  5.512     .7500  .3500    7.3493  2.0  .00015   16.000   .00010   

.00005  .000  .00000  .0000  .0000 .000  .000 

  3.600     .3849  .1880    9.3531  2.0  .00010     5.000   .00080   

.00000  .000  .00000  .0030  .0000 .000  .000 

  4.076     .5040  .4000    8.0873  2.0  .00010     5.000   .00080   

.00003  .020  .00020  .0000  .0000 .000  .000 

  5.512   1.1873  .5500    4.6425  2.0  .00010     8.000   .00010  

 .00000  .000  .00005  .0100  .0000 .000  .000 

  2.174     .3125  .1590    6.9568  4.0  .00005     5.000   .00000  

 .00000  .000  .00500  .0000  .0000 .010  .000 

  6.388     .9377  .4400    6.8124  2.0  .00020     5.000   .00000   

.00000  .000  .00050  .0020  .0000 .000  .000 

  4.687     .7180  .3550    6.5279  6.0  .00020   16.000   .00000  

 .00005  .000  .00010  .0000  .0000 .000  .000 

 

4. RESULTS AND ANALYSIS 

The clustering with similarity value λ=0.7 is obtained for six 

part families as shown below.  

 

 

 

P.F. No. 1.  

P.

F. 

No

. 2. 

 

P.F. 

No. 

3 

 

P. F. 

No. 4 

P. 

F. 

No. 

5 

 

P.F. 

No.

6 

1,2,3,4,5,6,8,11,13,
15,18,19,22,24,25 

7,
21 

9 10, 16, 
17,23 

12,
14 

20 

The clustering with seven part families is obtained as below.  

 

P.F. No. 

1.  

P.F. 

No. 

2. 

P.

F. 

No

.3 

 

P. F. 

No. 4 

P. 

F. 

No. 

5 

 

P.F. No.6 

 

P.F. 

No.7 

10,15,17,

20,21 

2,3,

4,7 

14 11,1

9,25 

12 1,5,6,8,13,16,1

8,22,23,24 

9 

 

SVC as a “divisive” clustering algorithm is used, starting from 

a small value of q and increasing it. The initial value of q is 

chosen to result in a single cluster. Choosing C=1, as at this 

value no outliers are formed. As q is increased, bifurcations of 

clusters are found. Start out with p= 1/ (NxC), or C=1, which 

do not allow for any outliers. As q is increased, single or few 

points’ breaks off, or cluster boundaries become very rough. 

Therefore, p should be increased in order to investigate when 

BSVs are allowed.  The clustering with using SVC algorithms 

is shown for six part families as below.  

 

P.F. No. 1.  

 

P.F. 

No. 2. 

P.F

. 

No

. 3 

 

P. F. 

No. 4 

P. 

F. 

No

. 5 

 

P.F. 

No.

6 

1,5,6,8,10,13,15,1

6, 

17,18,20,21,22,23,

24 

2,3,4,

7 

9 11,19,2

5 

12 14 

 

The clustering with 7 part families using SVC algorithms is 

shown below 

 

 

P.F. No. 1.  

 

P.F. 

No. 

2. 

 

P.F

. 

No.

3 

P. 

F. 

N

o. 

4 

 

P. F. 

No. 5 

 

P.F

. 

No.

6 

 

P.F

. 

No.

7 

1,5,8,10,13,15

, 16,17, 

18,20,21,22,2

3,24 

2,3,4

,7 

6 9 11,19,

25 

12 14 

 

Table 3: Performance of SVC on the data for C= 0.50 

 

Sr. No. 

 

Value of q 

Number of 

clusters 

 

Time (Sec.) 

1 0.001 2 0.672 

2 0.002 3 0.906 

3 0.005 4 1.672 

4 0.03 5 1.922 

5 0.05 6 2.344 

6 0.08 7 2.594 

7 0.10 8 2.640 

8 0.50 18 3.391 

 

Table 3 gives the values of parameter q, number of clusters 

formed and the time in seconds required for forming clusters 

by SVC algorithm. More time is required for as the number of 

clusters goes on increasing. The clusters are formed within a 

reasonable time period. The dataset typically contains the data 

which forms a numbers of clusters for smaller values of both 

the parameters. 
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5. CONCLUSIONS 

Support Vector Clustering (SVC) method is applied for cellular 

manufacturing for grouping of parts into part families. It is 

methodology for group technology. There is no need to convert 

the data into part machine incidence matrix. The values of 

parameter q, number of clusters are input parameters. In fair 

amount of time, it clusters in decent time. For even large size 

datasets, it clusters within reasonable time.    
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