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ABSTRACT
Some of few health insurance companies now offer lower premi-
ums to people who walk 10,000 steps every day. The main problem
in this plan is figuring out who qualifies. We suggest using data
from smartphone sensors while people walk. This data can track
steps and confirm who’s walking. This could help prevent misuse
of the program. In response to the aforementioned conundrum, we
have procured and meticulously analysed the gait patterns of 87
volunteers. Our investigation has determined that the Scale Man-
hattan an efficacious anomaly detector, suitable for individual veri-
fication in active mode, achieving an equal error rate from 10.20%
to 13.76%. Our proposed detection system has undergone valida-
tion procedures employing datasets gathered across multiple ses-
sions and repetitions. Based on a judiciously conducted realistic
appraisal of the proposed model for each subject, we assert that
this method of individual authentication holds merit for the afore-
mentioned campaign, engendering tangible benefits for prospective
beneficiaries. Beyond the immediate insurance incentives, this ap-
proach possesses the potential to motivate individuals not only to
procure insurance coverage but also to foster their physical and psy-
chological well-being. Our innovative methodology provides a sub-
stantive solution for health insurance companies contemplating the
implementation of analogous promotional endeavours.
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1. INTRODUCTION
Aditya Birla Health Insurance offers a reimbursement of up to
100% of the premium provided that the policyholder accumulates
a sufficient number of ‘Activ Dayz’. An ‘Activ Day’ is defined as
achieving a daily target of 10,000 steps or engaging in any fitness
activity stipulated by the insurer [1]. This policy introduces a crit-
ical challenge in verifying the eligibility of insurance holders who
meet the specified requirements. To address this challenge, insur-
ance holders can utilize a smartphone equipped with sensors and
an application capable of tracking and quantifying physical activity.
However, the potential for multiple users, such as family members,
to share the device while maintaining the step count raises concerns
about the authenticity of the recorded activity. Thus, ensuring con-
tinuous authentication of the user is imperative, highlighting the
challenge of active user authentication via smartphones.
Active authentication involves the continuous measurement and
analysis of biometric attributes and contextual data to verify the
user automatically. It enables implicit recognition and ongoing re-
authentication throughout the session with minimal user interven-
tion [25]. This method, also referred to as continuous or transparent
authentication, can be implemented both on-device and off-device.
Key characteristics of active authentication include continuity and
transparency. The process comprises two main phases: enrollment
and identity verification, each involving steps such as data acqui-
sition, feature extraction, data preprocessing, template formation,
classification, decision-making, and re-authentication.
Traditional fixed-activity re-authentication methods often compro-
mise usability. Studies have identified several desirable characteris-
tics for effective authentication mechanisms: (a) implicit operation,
(b) independence from user knowledge, (c) resistance to observa-
tion, and (d) fine-grained protection [16]. Additionally, goals for
system design should include (a) implicit operation, (b) continuous
engagement, (c) usability, and (d) cost-effectiveness [54]. More-
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over, smartphone authentication should achieve (a) continuous op-
eration, (b) unobtrusiveness, and (c) lightweight performance [43].
Designing a model that meets these criteria while ensuring robust
security is crucial.
Modern smartphones are equipped with various sensors, including
gyroscopes, accelerometers, and rotational sensors. Utilizing these
sensory data streams presents an opportunity for continuous and
implicit user validation. However, acquiring sensory data at high
sampling rates significantly drains battery power, impacting device
longevity [32]. For instance, measuring gyroscope and accelerom-
eter data at 16 Hz incurs an energy overhead of 7.9% [70], and re-
authentication can consume an additional 2.4% of battery life [41].
Therefore, prolonged sensory data acquisition results in substan-
tial energy costs [75], with increased sampling rates exacerbating
battery consumption and CPU usage [12]. To address these chal-
lenges, mobile applications must incorporate mechanisms to pause
and resume sensor operation, optimizing battery usage while main-
taining effective user authentication. Data augmentation methods,
such as generating synthetic data from short-term real data, offer a
potential solution [2].
Previous research has primarily focused on datasets collected dur-
ing interactions like scrolling, typing, and swiping. However, there
is a lack of open, standard datasets collected in realistic scenar-
ios, such as when the phone is in the user’s pocket. Most exist-
ing datasets are derived from specific, often homogeneous groups,
limiting the generalizability of findings. For a robust authentica-
tion model, it is essential to develop datasets from diverse popu-
lations encompassing various age groups, genders, and other de-
mographic factors. Moreover, acquiring a comprehensive dataset
with advanced sensory features, including gyroscope, rotation, and
acceleration, while walking, is necessary to design and evaluate ef-
fective authentication models.
The problem of user authentication in this context involves
anomaly detection. Typical walking patterns, captured as sensory
data, must be stored for reference, with new patterns compared
against these stored templates during authentication attempts. If the
current pattern matches the stored template, the user is recognized
as genuine, allowing the continuation of step counting.
Developing a model with only user samples and using it to detect
imposters through similarity measures or one-class classifiers is a
feasible approach, given the impracticality of obtaining all poten-
tial imposter patterns. This approach, known as anomaly or novelty
detection, is less explored in continuous domains with smartphone
sensory data. Implementing anomaly detection techniques for ad-
vanced sensory features remains a research gap.
The selection of anomaly detectors is crucial, as performance varies
significantly across datasets. For example, one-class SVM applied
to touch-interaction datasets yielded a 4.68% false acceptance rate
(FAR) and a 1.17% false rejection rate (FRR) [69], while the same
detector on PIN typing datasets showed a higher equal error rate
(EER) of 7.89% [37]. Other studies reported variable FAR and FRR
rates for different input types [6, 78]. These variations underscore
the need for further research on the effectiveness of anomaly detec-
tion methods in diverse scenarios.
The key contribution of this study is to design an implicit and active
smartphone user authentication system using sensory data captured
during walking and to compare various anomaly detectors. This
study focuses on evaluating technologies by comparing the perfor-
mance of different detectors.

2. LITERATURE REVIEW
Research in the realm of active user authentication utilizing smart-
phone sensors has explored a plethora of features encompassing
image, touch sensors, location, accelerometer, gyroscope, WiFi,
app usage, as well as texture and shape features, yielding diverse
performance outcomes [3, 4, 15, 48, 76]. The rich multisensory
data emanating from sensors integrated into smartphones furnishes
a fertile ground for continuous authentication, with datasets such
as HMOG and Touchalytics capturing nuanced patterns associated
with holding, tapping, swiping, and scrolling activities [9, 21, 64].
Despite challenges related to intra-class variation and data quality,
the covert data capture capabilities of keystroke dynamics (KD)
during routine user interactions render it a promising attribute for
active authentication. To surmount accuracy limitations, the re-
search community has proposed multi-modal approaches integrat-
ing contextual factors and harnessing an array of pattern recogni-
tion methodologies, encompassing traditional statistics, deep learn-
ing, and binary classifiers [19, 26, 46, 74].
Recent efforts have delved into the realm of binary classifiers for
mobile terminal identity authentication, with classification meth-
ods being applied across various studies [10, 29, 46, 66, 67, 72].
An emerging trend revolves around the utilization of anomaly de-
tectors as one-class classifiers for implicit and active authentication
of smartphone users, with studies underscoring the necessity for
a robust comparison framework that encompasses diverse datasets
and characteristics [3, 8, 14, 15, 17, 44, 47, 68, 77]. The intricacies
inherent in these methodologies, coupled with the variances ob-
served in datasets, underscore the evolving landscape of active user
authentication on smartphones, thereby necessitating continued re-
search efforts aimed at refining and optimizing these approaches.
A study [34] developed CMU dataset and found Scaled Manhattan
is the suitable detectors among fourteen detector. They used huge
training set to develop user’s template. It takes large data acqui-
sition time. Therefore, a study [58] used common nine anomaly
detectors on CMU dataset and found Scaled Manhattan is suitable
detector which is achieved 9.6% of EER similar to previous study.
However, they used synthetic data and same detector to reduce the
training time and observed the same results. In their observation
Outlier-count achieved the lowest EER in case of considering syn-
thetic data and reduced the EER to 8.3%. Another study [49] ap-
plied the same dataset and achieved 5.1% of EER using feature-
engineering approach. They compared their approach with other
fourteen detectors in same setting. Another study [36] proposed a
deep learning based detector and found impressive results using
the same dataset and compare their approach with other seventeen
detectors. Similar study [45] achieved impressive results with the
CMU dataset and compared with sixteen detectors. Another recent
study [22] used the same dataset but found 4.9% of EER using neu-
ral network method. The above studies used only one dataset for
their model evaluation and found the EER 4% to 10% while using
CMU dataset.
Another dataset GREYC2009 has been used by a study [23] and
found 15.28% of EER bit larger than previous. They used sup-
port vector-based detector. A study [65] used two datasets for their
model evaluation and found around 9% of EER. Another study
[56] used two datasets and found impressive results. Whereas, a
study [53] used three datasets and found more accurate results us-
ing similarity-based detector.
A summary of recent approaches is shown in Table 1 conducted by
researchers in the development of authentication models.
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3. PROPOSED AUTHENTICATION FRAMEWORK
User authentication systems generally comprise two core phases:
registration and authentication. However, our proposed model in-
troduces a novel framework segmented into three distinct phases,
as depicted in Figure 1. These phases include: the registration or
training phase, the testing phase, and the reauthentication phase.
This tripartite structure facilitates the implementation of active user
authentication.

Fig. 1: Representation of the proposed framework for active user authenti-
cation.

3.1 Registration / Training Phase
In the registration or training phase, human gait patterns are cap-
tured through advanced smartphone sensors and subsequently pre-
processed to construct a user-specific gait template and to train an
anomaly detection model. Sensory measurements, which serve as
raw features for gait pattern representation, are sampled at a rate
of 2 Hz to optimize energy efficiency. The processed gait data are
then condensed into a compact format for use in authentication and
retraining. Multiple repetitions over time are aggregated to ensure
the model’s long-term reliability.
The specific steps involved in this phase are as follows:

(1) Data Acquisition: Human gait patterns are acquired from
smartphone sensors, including accelerometers, gyroscopes,
and timing devices, through a user-friendly interface during
walking.

(2) Feature Representation: Continuous sensory data are parti-
tioned into small intervals for alignment and ordering. Gait
patterns are segmented into fixed-size samples using a sliding
window technique with a time-domain-specific window length
of 5 seconds. This yields discrete sensor values represented as
averages, organized into a tabular structure where rows corre-
spond to individual samples and columns represent data points
within each sample. This structured approach facilitates con-
sistent similarity assessment and aggregates multiple feature
tables into a comprehensive input table for model development
or template creation.

(3) Data Augmentation: Uniform random noise is introduced to
each base sample to create synthetic variations, thereby en-
hancing its suitability for template formation. Noise values,
uniformly distributed within the range of -0.5 to 0.5, are added

to each element of the base gait sample. This controlled per-
turbation, executed using the ‘runif’ function in the R statisti-
cal environment, enriches the dataset and potentially improves
model performance and robustness.

(4) Template Formation and Adaptation: Constructing an
AI/ML model for gait-based authentication that integrates both
user and impostor data presents significant challenges due to
the impracticality of capturing all potential impostor patterns.
Instead, the system constructs a template exclusively from the
user’s gait patterns and employs a similarity metric to iden-
tify impostors. The column median method is used to gener-
ate a dynamic gait template, where the median values from
augmented gait samples form a representative instance of the
user’s gait pattern, as shown in Figure 3. This approach en-
hances model adaptability by addressing temporal variations
and data uncertainties more effectively than traditional meth-
ods such as the column mean or Gaussian mixture model. The
gait template evolves with each successful authentication, in-
tegrating new data to refine future templates and improving
accuracy over time.

Fig. 2: Human gait template formation using the column median approach.

3.2 Authentication / Testing Phase
During the authentication or testing phase, a gait sample, termed
as a test or claim sample, is captured within a brief time frame us-
ing the same methodology and sampling rate as in the registration
phase. Anomalous scores are computed using anomaly detection
algorithms to assess the similarity between the stored template and
the claim sample. A threshold value of 0.5 is employed to classify
the sample as either Access/Genuine or Denied/Imposter. Person-
alized thresholds can be set for each user to adjust the system’s
level of strictness. This threshold influences the False Acceptance
Rate (FAR) and False Rejection Rate (FRR), which can be tailored
according to application requirements and gait pattern consistency.
The specific steps involved in this phase are:

(1) Similarity Score Preparation: Various anomaly detection al-
gorithms are systematically evaluated to determine the most
suitable method for the domain. This involves a comprehen-
sive exploration of methodologies considering data distribu-
tion, feature space complexity, and computational efficiency.
The chosen anomaly detector generates a similarity score by
comparing the test gait sample with the generated template as
shown in fig 3.

(2) Soft Biometric Traits Incorporation: Soft biometric at-
tributes such as gender, age group, and educational qualifica-
tion are incorporated to enhance the efficacy of the selected
anomaly detection algorithm, as indicated by previous studies
[71, 5, 11].

(3) Decision Making: Based on the anomaly score generated by
the selected anomaly detector, a decision is made. If the score
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Fig. 3: Similarity score generation

is below the default threshold of 0.5, the claim sample is au-
thenticated as genuine; if it exceeds this threshold, the sample
is identified as an impostor. Authentic users’ step counts are
recorded, whereas impostors’ attempts are not recorded.

3.3 Re-authentication / Periodic Verification
To implement active user authentication, the periodic verification
phase is introduced. This process ensures user legitimacy by peri-
odically restarting the authentication phase at intervals determined
by the required security level. The duration of the authentication
phase depends on the specific security requirements of the device
or application. Effective management of this phase is crucial for
balancing system usability with security.

4. DATASET PREPARATION
The gait dataset has been meticulously curated to ensure high fi-
delity, applicability, and relevance for studying gait dynamics in the
context of active user authentication. This was achieved through the
use of advanced, validated data acquisition systems and a compre-
hensive array of attributes.

4.1 Data Acquisition Application
The data acquisition application, designed for touchscreen
smartphones, is accessible at https://keystrokeanalysis.
shinyapps.io/project/ under the ’Data Acquisition’ tab. De-
veloped using HTML and JavaScript, this application leverages the
Sensors API for seamless integration and efficient capture of a di-
verse range of sensor-based gait patterns. The interface of the ap-
plication is shown in Figure 4.

Fig. 4: Data acquisition application for collecting human gait patterns.

4.2 Data Acquisition Device
Human gait patterns were captured using the web-based applica-
tion on an Android 9.0 (Pie) smartphone, specifically the Samsung
A50 model. This setup enhances ecological validity by accurately
reflecting real-world usage conditions.

4.3 Features considered :
The sensory features considered for capturing human gait patterns
accurately and efficiently include ⟨gx, gy, gz⟩ representing the gy-
roscope readings and ⟨ax, ay, az⟩ representing the accelerometer
values, and so on as depicted in Figure 5. These advanced sensory
features are monitored and recorded at a reduced sampling rate of
2Hz. This lower sampling rate is implemented to minimize battery
power consumption while effectively capturing and analysing hu-
man gait patterns.

Fig. 5: Contrasting the sensory data from three randomly selected users
involves examining Acceleration along the x, y, and z axes, Gyroscope data
across alpha, beta, and gamma axes, Acceleration including gravity along
the x, y, and z axes, and, Rotation along the x, y, and z axes.

4.4 Participants
The dataset comprises 87 participants, selected to provide a di-
verse representation across key demographic variables including
age, gender, occupation, and educational background. The partici-
pant composition includes 48 males, 37 females, and 1 individual
identifying with another gender, as illustrated in Figure 6. This di-
verse demographic coverage enhances the generalizability of the
study’s findings.
Participants were fully briefed on the data collection process, which
included detailed information on data handling procedures, risks,
confidentiality measures, and rights concerning their data and pri-
vacy.

4.5 Demographic Information
Data collection spanned 45 days and occurred at multiple locations,
including the Visva-Bharati University campus, hostel facilities,
and participants’ residences in Bolpur and Bishnupur, West Ben-
gal, India.

5
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Fig. 6: Class distribution of volunteers.

4.6 Data Collection
Participants were instructed to carry the smartphone equipped with
the web-based application in their pant pockets, as depicted in Fig-
ure 7. They were asked to walk on a flat surface in their normal
manner for a duration of 1 minute and 30 seconds. Data was col-
lected from each participant across two sessions, with each ses-
sion consisting of two repetitions spaced 10 minutes apart. Sessions
were separated by a 12-hour interval.
As participants moved, the smartphones in their pockets underwent
positional shifts, leading to variations in sensor readings, including
accelerometer, gyroscope, rotational, and gravity-augmented accel-
eration data. Consequently, the web-based application captured and
recorded the sensory data reflecting these positional changes of the
smartphone.

Fig. 7: Collection of human gait patterns through smartphone sensors.

5. MODEL IMPLEMENTATION AND
EVALUATION

5.1 Performance Evaluation Metrics
The following metrics are employed to assess the performance of
the anomaly detection algorithms:

(1) Equal Error Rate (EER): The EER represents the point at
which the false acceptance rate (FAR) equals the false rejec-
tion rate (FRR), serving as an indicator of the balance between
these two types of errors in the detection algorithm.

(2) Standard Deviation (SD): This metric quantifies the disper-
sion or variability of the error rates around their mean, provid-
ing insight into the consistency of the algorithm’s performance.

(3) 95% Confidence Interval (CI): The CI delineates the range
within which the true mean of the error rate is expected to lie
with 95% certainty, offering a statistical measure of the preci-
sion of the EER estimate.

(4) p-Value from a One-Sample t-Test: The p-value assesses the
probability that the observed results are due to chance, thereby
indicating the statistical significance of the algorithm’s perfor-
mance.

5.2 Model Implementation

(1) Algorithm Selection: For implementing human gait-based
user authentication, selecting an optimal anomaly detection al-
gorithm is crucial. This process involved an extensive eval-
uation of various anomaly detection techniques across di-
verse algorithmic families. These families include the Lp

Minkowski distance family, the L1 distance family, the In-
tersection distance family, the Squared-chord distance fam-
ily, the Squared L2 distance family, Shannon’s entropy-based
methods, as well as Support Vector-based, Probability Density-
based, Statistics-based, Time Series Distance-based, and Log-
ical Value Distance-based detectors. A total of 50 distinct
anomaly detection algorithms from these families were tested.
This rigorous selection process ensures that only the most ef-
fective and reliable algorithms are considered, establishing a
benchmark for advanced performance in this field. The per-
formances of a subset of these algorithms are summarized in
Table 2.

(2) Tools and Techniques: The statistical programming language
R (version 4.0.2) was utilized for implementing the proposed
configurations and analyzing the results. All methodologies are
accessible via the project page at https://rstudio.cloud/
project/4056744, presented as interactive applications. This
setup enables parameter variations and supports future deploy-
ment possibilities.

(3) Model Evaluation: Gait samples were collected from each
participant across two sessions, with two repetitions per ses-
sion, resulting in eight discrete samples per participant during
the data augmentation phase. Four samples were allocated for
template generation, while the remaining four were reserved
for testing. Each participant’s template was evaluated against
an additional gait pattern to determine the FRR, followed by
the assessment of FAR using gait patterns from eighty-six other
participants. False acceptance and rejection rates were com-
puted by comparing anomaly scores to personalized threshold
values, based on gait consistency. This comprehensive evalu-
ation methodology ensures thorough performance analysis of
the model across diverse passwords and sessions, enhancing its
capability to accurately distinguish legitimate user authentica-
tion attempts from potential unauthorized access.

6. RESULTS AND DISCUSSION
Table 2 presents the outcomes of Tukey’s Honestly Significant Dif-
ference (TukeyHSD) analysis, which provides a detailed compara-
tive evaluation of the selected anomaly detection algorithms. The
table highlights the Estimated Equal Error Rates (AEERs) for each
detector, along with their corresponding 95% Confidence Interval
ranges (lower and upper EERs), standard deviations, and p-values
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derived from a one-sample t-test. This summary facilitates a com-
prehensive assessment of each algorithm’s performance and the sta-
tistical significance of the observed differences.

6.1 Interpretation of the Results:
The symbols ‘+’ and ‘-’ in Table 2 represent deviations of each
anomaly detector’s performance relative to the proposed detector,
indicating whether the parameter values are higher or lower, re-
spectively. For instance, the One-Class Support Vector Machine
(OCSVM) algorithm has an estimated Equal Error Rate (EER) of
14.32%, with a range from 16.01% to 17.86%, and a standard de-
viation of 0.1666. The Outlier Count algorithm presents an esti-
mated EER of 14.53%, spanning from 11.03% to 18.02%, with a
standard deviation of 0.0732. The Autoencoder algorithm shows an
estimated EER of 14.79%, ranging between 10.95% and 18.62%,
and has a standard deviation of 0.1801. These results are significant
as the performances of these algorithms are closely comparable to
that of the proposed detector, suggesting their potential utility as
alternatives under certain conditions.
Conversely, algorithms such as Wave Hedges Distance and Can-
berra Distance exhibit more substantial deviations. The Wave
Hedges Distance algorithm has an estimated EER of 19.69%, with
a range from 16.09% to 23.29%, and a standard deviation of
0.1690. Similarly, the Canberra Distance algorithm shows an es-
timated EER of 19.76%, ranging from 16.25% to 23.42%, with a
standard deviation of 0.1683. These detectors demonstrate greater
performance variability compared to the Scaled Manhattan algo-
rithm.

6.2 The Proposed Anomaly Detector
The Scaled Manhattan anomaly detector exhibited superior perfor-
mance, achieving the lowest AEER of 13.76% among all evaluated
algorithms. This performance underscores its effectiveness in min-
imizing errors when distinguishing between normal and anoma-
lous gait patterns. The 95% CI for the EER of the Scaled Man-
hattan detector ranges from 10.21% to 17.31%, indicating stable
performance across various test samples. The standard deviation
of 16.68% suggests a moderate degree of variability in the AEER
across samples, demonstrating consistent results among individu-
als. These findings validate the Scaled Manhattan algorithm as a
robust and effective solution for gait-based user authentication.

6.3 Scaled-Manhattan Algorithm
The Scaled Manhattan algorithm quantifies similarity between two
vectors by computing the normalized absolute differences between
their corresponding elements and summing them. Mathematically,
this is expressed as:

Dscaled-Manhattan(x, y) =
1

n

n∑
i=1

|xi − yi|
rangei

(1)

where xi and yi denote the values of the i-th feature in vectors x
and y, respectively, and rangei represents the range of the i-th fea-
ture across all data points. The scaled Manhattan distance is par-
ticularly effective in high-dimensional spaces and demonstrates re-
silience to outliers and variations in feature scaling. This method
was selected due to its balance of computational efficiency and ro-
bustness in high-dimensional data contexts, making it suitable for
complex biometric data analysis.

7. PERFORMANCE EVALUATION USING ROC
CURVES

Receiver Operating Characteristic (ROC) curves are essential for
evaluating the performance of anomaly detection algorithms. These
curves are constructed by plotting the False Acceptance Rate (FAR)
against the False Rejection Rate (FRR) across various threshold
settings. Figures 8, 9, and 10 display ROC plots for three selected
algorithms, showcasing their performance differences on the gait
dataset.

Fig. 8: ROC curve with 95% Confidence Interval (CI) for the Scaled Man-
hattan algorithm.

Fig. 9: ROC curve with 95% Confidence Interval (CI) for the Autoencoder
algorithm.

Fig. 10: ROC curve with 95% Confidence Interval (CI) for the Additive
Symmetry algorithm.
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Figure 8 illustrates the ROC curve for the Scaled Manhattan algo-
rithm, with the curve delineated by the 95% CI bounds. The curve’s
proximity to the top-left corner indicates a high true positive rate
and a low false positive rate across different threshold settings. This
positioning, coupled with the CI bounds, demonstrates that Scaled
Manhattan achieves an optimal trade-off between FAR and FRR
for the gait dataset, establishing it as the most effective algorithm
in our comparison.
Figure 9 presents the ROC curve for the Autoencoder algorithm
with its 95% CI bounds. Although the curve indicates reasonable
performance, it does not reach the effectiveness of the Scaled Man-
hattan algorithm. The Autoencoder curve, while relatively favor-
able, shows a lower Area Under the Curve (AUC) compared to
Scaled Manhattan, suggesting that it does not achieve the same
level of accuracy and reliability in distinguishing authentic from
anomalous gait patterns.
Figure 10 depicts the ROC curve for the Additive Symmetry al-
gorithm with 95% CI ranges. This curve is situated further from
the top-left corner, indicating inferior performance in terms of both
FAR and FRR. The lower AUC for Additive Symmetry highlights
its reduced efficacy in differentiating between authentic and im-
poster gait samples compared to Scaled Manhattan and Autoen-
coder, positioning it as the least effective among the tested algo-
rithms.

8. BOX PLOT ANALYSIS OF ANOMALY
DETECTION ALGORITHMS

Figure 11 provides a comparative analysis of the performance of
ten selected anomaly detection algorithms through a box plot. Each
point in the box plot represents the Equal Error Rate (EER) ob-
tained from authenticating a single individual using the respective
algorithm. Consequently, each box contains 87 data points reflect-
ing the EER values for the 87 participants in the study. The boxes
display the interquartile range (IQR), capturing the central 50% of
the data where most EER values are concentrated, with the inter-
nal horizontal line representing the median EER. Additionally, the
red dot within each box signifies the mean EER, providing a clear
depiction of average performance across subjects. This visualiza-
tion facilitates a comprehensive evaluation of the effectiveness and
consistency of each anomaly detection method in the context of
gait-based user authentication.

Fig. 11: Performance of selected anomaly detectors and associated risk.

Algorithms such as Scaled Manhattan, OCSVM, and Outlier Count
exhibit not only lower mean EER values but also a significant con-
centration of data points near the zero EER line. This indicates high
effectiveness in accurately authenticating individuals based on gait
patterns, achieving minimal error rates in numerous cases.
In contrast, algorithms like Average Distance, Jaccard Distance,
and Wave Hedges Distance show fewer data points clustered at zero
EER. This suggests these methods are less effective in attaining low
error rates for a substantial number of individuals. The lower den-
sity of data points at zero EER implies that these algorithms may
not be as consistently reliable for gait-based authentication.
Furthermore, Figure 11 reveals that certain algorithms, particularly
Average Distance and Gower Distance, have several data points
significantly distant from the mean EER. This variability in per-
formance may be attributed to the algorithm’s sensitivity to gait
pattern variations or less effective handling of outliers. Conversely,
Scaled Manhattan, OCSVM, and Outlier Count display a more uni-
form distribution around the mean EER, reflecting more consistent
performance with reduced extreme variability.
In summary, Scaled Manhattan, OCSVM, and Outlier Count are
superior in both average performance and consistency. These algo-
rithms demonstrate a high concentration of low EER values, mak-
ing them robust choices for gait-based user authentication. The con-
sistency and effectiveness of these methods highlight their suitabil-
ity for reliable authentication applications, while algorithms with
higher variability and fewer zero EER data points are less reliable
for consistent performance, suggesting they may not be as effective
for accurate gait-based authentication in diverse real-world scenar-
ios.

9. STATISTICAL SIGNIFICANCE VALIDATION
WITH ONE-SAMPLE T-TEST

The p-values listed in Table 2 are derived from a one-sample t-
test. For the Scaled Manhattan detector, the p-value of 2.123e-11
indicates a statistically significant deviation from the assumed pop-
ulation mean of zero, as it is substantially below the significance
threshold of 0.05. The t-statistic of 7.7008 indicates a significant
deviation from the hypothesized mean, supporting the rejection of
the null hypothesis. The 95% Confidence Interval (CI) for the true
mean ranges from 0.1020512 to 0.1731496, reinforcing the conclu-
sion that the population mean is significantly different from zero.
Therefore, we accept the alternative hypothesis that the true mean
of the algorithm’s EER is significantly different from zero.
For other algorithms such as OCSVM and Outlier Count, the p-
values of 1.0000 suggest their performance is statistically similar to
that of the Scaled Manhattan detector. In cases of high feature di-
mensions or large numbers of gait samples, these algorithms could
serve as viable alternatives. Conversely, algorithms such as Wave
Hedges Distance and Jaccard Distance, with p-values of 0.0084 and
0.0036 respectively, do not meet the significance threshold. These
lower p-values indicate significant performance differences from
the Scaled Manhattan algorithm, suggesting they are less suitable
as replacements in this context. Similarly, the Chi Squared Distance
algorithm, with a p-value of 0.0001, cannot substitute the Scaled
Manhattan detector due to its statistically significant deviation from
the expected performance.

10. SOFT BIOMETRIC TRAIT INCORPORATION
Incorporating multiple soft biometric traits sequentially into the
proposed anomaly detector results in a progressive improvement in
EER, as illustrated in Figure 12. This cumulative effect underscores
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the benefit of integrating diverse biometric features to enhance the
accuracy and effectiveness of the proposed detector.

Fig. 12: Improvement in EER of the proposed detector due to the inclusion
of soft biometric traits.

11. COMPARISON WITH EXISTING SYSTEMS
In comparing our results with state-of-the-art methodologies, the
Scaled Manhattan anomaly detector achieved a mean EER of
13.76%, which does not surpass the most optimal performances re-
ported in recent literature. For example, contemporary approaches
such as GA-KNN and Autoencoder have demonstrated lower EER
values of 2.3% and 4%, respectively. These methods utilize ad-
vanced techniques and feature combinations that contribute to their
superior accuracy. Nevertheless, our system’s performance remains
commendable in terms of real-world applicability and practical-
ity. The Scaled Manhattan detector’s performance, with a range
of 10.20% to 13.76% for individual gait verification, underscores
its reliability and effectiveness. Our study, integrating sensory fea-
tures from smartphones and employing a sophisticated web-based
application, highlights a practical and scalable approach that meets
contemporary needs for accessible and continuous user authentica-
tion. The inclusion of soft biometric traits into our model not only
improves precision but also represents a novel application of smart-
phone sensors in health-focused authentication systems. Although
not achieving the lowest EER reported, this integration advances
gait-based authentication towards more feasible and user-friendly
solutions, aligning with both security and wellness objectives.

12. CONCLUSION
Smartphone sensors offer invaluable tools for active user authen-
tication, presenting a promising avenue for innovative gait-based
authentication. Our study demonstrates the efficacy of the Scaled
Manhattan algorithm as a top-tier anomaly detection method suit-
able for real-time applications. By employing Scaled Manhattan as
a classifier alongside sensory features collected at a low sampling
rate, we address the challenge of verifying insurance holders’ eligi-
bility for the 10,000 daily steps requirement, thereby mitigating the
risk of fraudulent claims. Future research directions include opti-
mizing battery consumption, enhancing anomaly detection perfor-
mance under varied conditions, and improving verification across
diverse environments. These efforts hold potential to further ad-
vance the efficacy and practical deployment of gait-based authenti-
cation systems in securing health and wellness initiatives.
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