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ABSTRACT
This study introduces an innovative image processing approach that
integrates U-Net with Generative Adversarial Networks (GANs)
for the efficient restoration and decoding of printed faint dot matrix
images, aiming to enhance the application of anti-counterfeiting
technologies. By merging the encoding and decoding capabilities
of U-Net with the adversarial generation mechanisms of GANs, this
method accurately extracts faint anti-counterfeiting features within
complex noisy and blurring backgrounds, significantly improving
image clarity and readability. Central to this approach are the in-
corporation of a Gradient-Sensitive Activation (GSA) function and
a roughening term in the loss function, which are specifically opti-
mized for high-gradient areas and detail capture. Moreover, the sys-
tem dynamically adjusts network weights based on decoding rate
feedback to optimize the image restoration process. Experimental
results demonstrate that this method has image clarity, readabil-
ity, and decoding accuracy for the faint dot matrix images. This
technology has broad application prospects in industries with high
security demands, such as e-commerce and product packaging.

General Terms
Image Processing, Deep Learning

Keywords
GANs; U-Net; Anti-counterfeiting Technology; Gradient-sensitive
Activation (GSA); Dot Matrix Image; High-gradient Image En-
hancement; Security Features in Printing

1. INTRODUCTION
In today’s era of rapid digitalization and information technology
advancement, image processing technology has become an indis-
pensable part of modern communication, anti-counterfeiting secu-
rity [1], and data management. Particularly in the field of anti-
counterfeiting technology [2, 3, 4], as counterfeit and inferior prod-
ucts proliferate, the effective identification and verification of au-
thenticity have emerged as urgent issues to address. Traditional
anti-counterfeiting technologies, such as watermarks [5] and holo-
grams [6, 7], provide a degree of security but often fall short in the
face of advanced replication techniques. Thus, developing a more

efficient and difficult-to-crack new anti-counterfeiting technology
is imperative.

In recent years, the advent of deep learning has propelled tech-
nologies like Generative Adversarial Networks (GANs) [8] and
Variational Autoencoders (VAEs) [9] into the limelight within the
realms of image generation, editing, and enhancement. These mod-
els excel by producing high-quality, detail-rich images, crucial for
the complex tasks of image restoration and enhancement. Particu-
larly in the anti-counterfeiting domain [1, 10, 11], these technolo-
gies offer a novel approach—enhancing image security features
through complex generative models, making forgery increasingly
challenging. In [10], authors combined the capacities of deep learn-
ing and the Generative Adversarial Network (GAN) [8] to deal with
anti-counterfeit handwritten signature. In [11], the proposed detec-
tion method based on deep learning can prevent personal mone-
tary damages caused by counterfeit bills. In [1], Teymournezhad et
al. developed a novel method to identify counterfeit banknotes us-
ing the security components based on both image processing and
GoogLeNet deep learning network.

This research builds upon previous work, focusing especially on
a technique known as the restoration and decoding of printed faint
dot matrix images. Leveraging deep learning’s U-Net [12] and Gen-
erative Adversarial Networks (GANs) [8], this technique not only
enhances the visual quality of images but more importantly, im-
proves the decoding accuracy of the invisible dot matrix within
them. A dot matrix image is a type of image that is created us-
ing a grid of dots, where each dot represents a pixel in the image.
The image is made up of a series of dots that are either turned on or
off to create the desired image. Dot matrix images are commonly
used in older printers and displays, where the image is created by
printing or displaying a series of dots in a grid pattern. The printed
image is composed of halftone dots and these dots have regular
arrangement [13]. The digital halftoning is a technique for con-
verting continuous-tone images into binary images [14, 15]. For
recovering hidden binary data, the author in [16] proposed a de-
coding method to estimate embedded data from clustered halftone
dots using learned dictionary. Printed quantum dots are usually sin-
gle halftone outlets that are very small indivisible printing imaging
units of recording information [17]. Printed quantum dots record
information and load it into complex image to realize printing infor-
mation anti-counterfeiting [18]. The quantum dots-based middle-
far-infrared detection and imaging method is proposed by Chen
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et al. [19]. The ethanol vapor sensor based on a microfiber with
a quantum-dot gel coating is also proposed and demonstrated in
[20]. Esfahani et al. [21] developed the superlens with high reso-
lution via quantum dot nano-particles. Based on error controlling,
Li et al. in [22] presented an approach to the vectorization of dot
matrix image. In [23], Xu et al. presented the indirected method
to construct clustered dot dithering matrix. Cheng Y. proposed a
scanning method for dotted data matrix in [24]. The dot matrix text
recognition can be used for industrial carton classification [25]. Im-
age recognition technique for dot-matrix character on piston sur-
face is developed on hopfield neural network method in [26]. The
recognition method of dot-matrix character-degraded has been pro-
posed using the affine registration [27]. Dot matrix images, a com-
mon anti-counterfeiting technique, typically embed information in
minute dot patterns that are difficult to discern or read by the naked
eye or machines without special processing. The customized 2D
barcode sensing for anti-counterfeiting can be applied in the Inter-
net of Things [28]. Wang et al. in [29] designed a texture-hidden
QR coding method to prevent the illegal copying of a QR code.
For dot matrix images, image degradation will not only affect the
deterioration of its visual effects but also seriously affect the de-
coding and reading of image information. The methods of restor-
ing image details are mainly divided into two categories: traditional
methods and deep learning methods. Traditional image restoration
uses filtering methods to repair the missing or blurred parts of the
image. The Wiener filtering is the important filtering method that
can be used to restore the dot matrix image effectively [30, 31, 32].
Deep learning methods use multi-layer networks [33, 34, 35] to
learn models from a large amount of input sample data for recover-
ing images. In this paper, we apply deep learning models to restore
damaged dot matrix images and accurately decode the embedded
information.

In this study, U-Net based architecture [12] is employed as the
generator and a convolutional PatchGAN classifier [36] is used
as the discriminator to form the U-Net based GAN model. In
the proposed model, the learned high-level features assist in bet-
ter restoring and interpreting the invisible dot matrices. Moreover,
an activation function called Gradient-Sensitive Activation (GSA)
is introduced to enhance the model’s sensitivity to high-gradient
changes in the image, thereby preserving more detail during image
restoration. To further improve model performance and adaptabil-
ity, a roughening term is incorporating in the loss function. This
term enables the model to focus more on specific areas of the im-
age (such as high-gradient or low-contrast areas), effectively en-
hancing the recognition and restoration capabilities for subtle anti-
counterfeiting features.

Additionally, this research adopts an adaptive network weight
updating mechanism, which optimizes image processing work-
flows and significantly enhances the stability and reliability of the
decoding process by dynamically monitoring the dot matrix’s de-
coding rate. Extensive experimental validations demonstrate that
the proposed model performs excellently in the restoration and de-
coding tasks of printed faint dot matrix images. Results indicate
that the proposed approach achieves better fidelity and decoding ac-
curacy and significantly faster processing speeds. Furthermore, the
potential applications of this technology are vast, not only in high-
security anti-counterfeiting areas such as currency and document
protection but also extending to e-commerce, packaging printing,
and product traceability.

This paper not only demonstrates the potential application of
deep learning in image anti-counterfeiting technology but also pro-
vides a new perspective and methodology for future research in
image processing technology. As these technologies continue to

evolve and improve, deep learning is expected to play an increas-
ingly significant role in protecting intellectual property, ensuring
data security, and combating illegal reproductions.

2. RELATED WORK
2.1 U-Net Architecture
The U-Net architecture is composed of a contracting path (encoder)
and an expansive path (decoder). The encoder consists of convolu-
tional layers that progressively downsample the input image, cap-
turing context and high-level features:

z = E(x) = σ (WE,n ∗ σ (· · ·σ (WE,2 ∗ σ (WE,1 ∗ x+ bE,1)

+bE,2) · · · ) + bE,n) (1)

where x is the input image, z is the latent representation, WE,i

and bE,i are the weights and biases of the encoder layers, σ is the
activation function (typically ReLU), and ∗ denotes the convolution
operation.

The decoder then up-samples this compressed representation to
reconstruct the image, often using transposed convolutions:

x̂ = D(z) = σ
(
WD,1 ∗T σ

(
WD,2 ∗T σ (· · ·

σ
(
WD,n ∗T z+ bD,n

)
· · ·

)
+ bD,2

)
+ bD,1

)
(2)

where WD,i and bD,i are the weights and biases of the decoder
layers, and ∗T denotes the transposed convolution.
U-Net is particularly effective in preserving gradient information
due to its skip connections, which directly transfer low-level fea-
tures from the encoder to the decoder, maintaining high-resolution
details. This feature is crucial for high-gradient areas where fine
details are essential.

2.2 GANs in Image Restoration
GANs consist of a generator G and a discriminator D that are
trained adversarially. The generator attempts to produce images
that are indistinguishable from real images, while the discriminator
aims to differentiate between real and generated images. The loss
functions for the GAN components are defined as:

min
G

max
D

Ex∼pdata(x) [logD(x)]

+ Ez∼pz(z) [log (1−D(G(z)))] (3)

where pdata(x) is the distribution of real images and pz(z) is the
distribution of the latent space.

GANs [8] are particularly effective in enhancing the realism of
high-gradient areas. The discriminator’s role in enforcing high-
frequency details ensures that the generator produces sharper and
more realistic edges, which is critical for the accurate restoration of
gradient-sensitive images.

GANs have been extensively studied since the publication in
2014. Their integrations with U-Net has greatly promoted the de-
velopment of style transfer and image-to-image translation. In re-
cent years, the U-Net based Generative Adversarial Network mod-
els [37, 38] are proposed for image generation tasks. In the U-Net
based Generative Adversarial Network models, GAN models usu-
ally depend on convolution operations for feature extraction. So U-
Net GANs [37, 38] can learn the differences in both global and
local features to generate images that are realistic both globally
and locally. In this paper, the proposed method is different from
these U-Net based Generative Adversarial Network models, U-Net
is used as the generator, and for the discriminator a convolutional
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PatchGAN classifier [36] is used to penalize the information hides
in the image patches.

3. METHODS
In this section, the detailed methodology is presented to develop
our innovative image processing approach, which integrates U-Net
with Generative Adversarial Networks (GANs) for the restoration
and decoding of printed faint dot matrix images. This approach
aims to enhance anti-counterfeiting technologies by improving im-
age clarity and readability through several key innovations, includ-
ing the incorporation of a gradient-sensitive activation (GSA) func-
tion, a roughening term in the loss function, a decoding module
with feedback mechanism, and a dynamic weight adjustment mech-
anism.

3.1 The Overall Architecture of the Proposed U-Net
GAN

The overall architecture of the U-Net based generative adversarial
network is divided into two parts that are the U-Net based genera-
tive adversarial network and the U-Net based generative adversarial
network. The part 1 corresponding to the U-Net based generative
adversarial network is shown in Figure 1.

Fig. 1: The U-Net based generative adversarial network.

It is the path that learns a mapping from the noisy and blurring
image I containing faint dot matrix information to the real dot ma-
trix image J . the U-Net [12] is ued as the generator, which is trained
to produce G(I) that cannot be distinguished from the real dot ma-
trix image J by the discriminator that is the PatchGAN classifier
[36]. The part 2 corresponding to the U-Net based generative ad-
versarial network is shown in Figure 2.

Fig. 2: The U-Net based generative adversarial network.

It is a path that maps from the real dot matrix image J to detect
the real output by the discriminator.

3.1.1 The U-Net Based Generator. For the previous encoder-
decoder network [39], the input is passed through a series of layers
that progressively downsample to a bottleneck layer, at which point
the process is reversed. Such a network requires that all informa-
tion pass through all the layers. Therefore, there is a great deal of
low-level information shared in the input and output, and is desir-
able to shuttle this information across the net directly. In order to
circumvent the bottleneck for information like this, U-net structure
[12] is employed to give the generator. The U-Net based generator
module network is diagrammed in Figure 3. The input of the U-Net
based generator module is a noisy and blurring image containing
”real” faint dot matrix information, and the output is the gener-
ated faint dot matrix image. The U-Net based generator consists
of the downsampling part, the innermost layer part and the upsam-
pling part. The downsampling part includes 5 convolution+ReLU
layers and 4 Maxpooling layers. The innermost layer part contains
the convolution+ReLU and the deconvolution+ReLU. The upsam-
pling part includes 3 deconvolution+ReLU layers, 2 unpooling lay-
ers and deconvolution+Tanh layer that is also the output layer. The
convolution kernel size is 4 × 4, the stride is 2, and the padding is
1.

3.1.2 The PatchGAN Discriminator. In order to model the high-
frequency faint invisible dot matrix image structure, the attention is
turned to the structure in the local image patches. Thus, the Patch-
GAN discriminator architecture module is given as shown in Figure
4 to penalize the structure at the scale of patches. This discrimi-
nator can classify when the m × m patch in the image is real or
fake. The ultimate output of the discriminator is obtained via run-
ning the discriminator convolutionally across the whole image and
averaging all responses. In proposed PatchGAN discriminator ar-
chitecture, the size of the patch is 256 × 256. The first layer is the
convolution+Leaky ReLu with 64 filters. The second layer, third
layer and fourth layer are the convolution+BatchNorm+Leaky
ReLu with 128, 256 and 512 filters, respectively. After the last
layer, a convolution is applied to map to a 1-dimensional output,
followed by a sigmoid function.

3.2 Loss Function
Similar to other GANs, the core of proposed U-Net GAN is also
derived from the zero-sum game in the game theory [40]. The gen-
erator loss is

LG = EI(log(1−D(G(I)))), (4)

And the objective corresponding to the discriminator is

−LD = EJ(D(J)) + EI(log(1−D(G(I)))), (5)

The objective of GAN is denoted as

LGAN = LG − LD. (6)

In order to encourage less blurring for the dot matrix image, L1

loss is used as

LL1
= EI,J(∥J −G(I)∥1). (7)

For the sake of convenience, let J̃ = G(I). a roughening term is
introduced in the loss function to further enhance the model’s fo-
cus on high-gradient and low-contrast areas. The roughening term
can help the model pay more attention to specific areas of the im-
age that are critical for anti-counterfeiting features. The roughening
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Fig. 3: The U-Net based generator module network.

Fig. 4: The discriminator architecture module.

loss function is achieved by focusing on the second-order spatial
derivatives (Laplacian) of the images:

Lrough =
∑
x,y

(
∇2J(x, y)−∇2J̃(x, y)

)2

, (8)

where ∇2 denotes the Laplacian operator, which is defined as:

∇2J(x, y) =
∂2J

∂x2
+

∂2J

∂y2
. (9)

The roughening term encourages the preservation and enhance-
ment of fine details by penalizing discrepancies in the higher-order
derivatives between the true and fake images.
To enhance the model’s sensitivity to high-gradient changes, the
Gradient-Sensitive Activation (GSA) function is introduced in this
study. The GSA function is designed to emphasize areas with sig-
nificant gradient changes, preserving more details during the image
restoration process. The GSA function can be defined as follows:

GSA(x) =

{
x2 if x < 0√
x if x ≥ 0.

(10)

This function allows the model to respond more effectively to high-
gradient areas, ensuring that fine details in the dot matrix patterns
are accurately captured and restored.
The GSA function based loss term LGSA focuses on high-gradient
areas to improve the detection of fine structures. The loss term LGSA
is defined as:

LGSA =
∑
x,y

(
GSA(∇J(x, y))−GSA(∇J̃(x, y))

)2

, (11)

where ∇J and ∇J̃ represents the gradient of the image J and J̃ =
G(I), respectively. The gradient of the image ∇J is computed as:

∇J(x, y) =

(
∂J

∂x
,
∂J

∂y

)
. (12)

This term emphasizes regions with significant gradient changes, en-
suring that the restored image accurately captures fine structures
and details.
Therefore, our final objective is

G∗ = argmin
G

max
D

LGAN + λL1
LL1

+ λroughLrough + λGSALGSA,

(13)

where λL1
, λrough, and λGSA are the super-parameters controlling

the trade-off among all the loss terms. The generator G and dis-
criminator D enhance each other in the confrontation and arrive at
an equilibrium state eventually.

3.3 Dynamic Weight Adjustment Mechanism
To optimize the image restoration process, a dynamic weight ad-
justment mechanism is implemented based on decoding rate feed-
back. This mechanism adjusts the network weights dynamically,
ensuring that the model adapts to the varying complexities of the
input images. The dynamic weight adjustment formula is given by:

wnew = wold + η · ∂L
∂w

·Drate, (14)

where η is the learning rate, and Drate represents the decoding rate,
reflecting feedback on the model’s current decoding performance.
This adaptive approach ensures that the model continuously im-
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proves its restoration and decoding capabilities, leading to higher
accuracy and reliability.

4. EXPERIMENTS
To validate the effectiveness of our proposed approach, extensive
experiments are conducted using a dataset of printed faint dot ma-
trix images. The detailed courses include the following steps:

4.1 Experimental Settings
The hardware configure of the experimental platform is E5-2683
V3 processor and Nvidia Titan Xp graphics card. The operating
system for platform run is Ubuntu 20.04 operating system, and the
framework for deep learning is Pytorch 1.8.1. The loss functions for
both U-Net based generator and PatchGAN discriminator are opti-
mized by the Adam optimizer [41], with a learning rate of 0.0002,
and momentum parameters β1 = 0.5, β2 = 0.999. In the experi-
ment, the super-parameters in the objective are set to λL1

= 100,
λrough = λGSA = 150. The generator network and discriminator
network is trained alternatively with the batch size equal to 1, and
the number of iterative training epochs is 100.

4.2 Dataset
Because there is currently no data set related to printed faint dot
matrix images, a dataset of dot matrix images is created with dif-
ferent car logos, which are composed of ”real” faint dot matrix for
anti-counterfeiting and different trademark images with some noisy
and blurring information. The dataset contains 3,000 images with a
resolution of 256× 256 pixels. It is divided into three parts that are
2000 samples used as the training set, 350 samples used as the vali-
dation set, and 650 samples used as the test set. Each sample has the
real faint dot matrix image corresponding to the real image J in the
section 3. For example, Figure 5 shows one of the pairs composed
of real faint dot matrix images and dot matrix images with different
noisy and blurring car logo backgrounds. The real faint dot matrix
image is shown in Figure 5 (a), and the noisy and blurring image
containing the corresponding real faint dot matrix information is
shown in Figure (b). This dataset can not only satisfy the research
in this paper, but also provide the convenience of other research on
the feature extraction of printed quantum dots, and reduce the time
spent on image preprocessing and formatting in the future.

4.3 Evaluation Metrics
For the quantitative evaluation metrics such as Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM) given in
[42] are used to evaluate the performance of our approach. In ad-
ditional, the evaluation metrics for dot matrix images are designed
to quantify the similarity between two dot matrix images. These
images typically contain numerous discrete points, and their distri-
bution and density are crucial for image quality and feature recog-
nition. Similarity calculation compares the pixel values at the same
positions in dot matrix images. First, define the total number of
pixels:

total pixels = m× n, (15)

where m and n are the number of rows and columns of the dot
matrix image, respectively. Then, calculate the number of matching

(a)

(b)

Fig. 5: (a)Real Faint Dot Matrix Image, (b)Noisy and Blurring Image Con-
taining the Corresponding Real Faint Dot Matrix Information

pixels by

matching pixels =
m−1∑
i=0

n−1∑
j=0

(matrix1[i][j] == matrix2[i][j]).

(16)

Finally, the Similarity Percentage (SP) is given as the following

SP =

(
matching bits

total bits

)
× 100%. (17)

4.4 Experimental Results
In order to verify the effectiveness of proposed method for image
clarity, readability, and decoding accuracy for the faint dot matrix
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images, the model training effect is checked on the validation set
and the learning ability is tested on the test set. Firstly, randomly
choose 8 noisy and blurring images containing ”real” faint dot ma-
trix information from the test set. Then use our trained model to test
these images to recover the faint dot matrix images. The first four
noisy and blurring images containing ”real” faint dot matrix infor-
mation and the corresponding recovery results are shown in Figure
6. The last four noisy and blurring images containing ”real” faint
dot matrix information and the corresponding recovery results are
shown in Figure 7.

By observing these experimental results, we can see that the
quality of recovery faint dot matrix images is very good. Table 1
shows PSNR, SSIM and the Similarity Percentage (SP) values for
the 8 recovery faint dot matrix images.

The experimental results demonstrate that our method signifi-
cantly has the dot matrix image clarity, readability, and decoding
accuracy. In summary, our innovative approach integrating U-Net
with GANs, enhanced by the GSA function, Roughening term, de-
coding module with feedback mechanism, and dynamic weight ad-
justment mechanism, provides a robust solution for the restoration
and decoding of printed faint dot matrix images. This methodology
not only improves anti-counterfeiting technologies but also sets a
new standard for high-gradient image enhancement and security
feature detection.

5. DISCUSSION
In order to enhance the efficiency of the restoration for the faint
dot matrix images, and reduce the time spent on our deep learning
model in the future research, we give the preprocessing method for
RGB dot matrix images dataset used above in the section 4.2. This
preprocessing pipeline includes the following stages:

5.1 Preprocessing of Dot Matrix Images
The initial step involves preprocessing the dot matrix images to
standardize the input data and enhance the efficiency of subsequent
processing steps. This preprocessing pipeline includes the follow-
ing stages:

5.1.1 Grayscaling. The input images are converted to grayscale
to reduce computational complexity and focus on the essential fea-
tures for restoration. The grayscale conversion formula is:

Igray = 0.299 · IR + 0.587 · IG + 0.114 · IB , (18)

where IR, IG, and IB are the red, green, and blue channels of the
image, respectively.

5.1.2 Binarization. A thresholding technique is applied to bina-
rize the grayscale images, converting them into binary images that
highlight the dot matrix patterns against the background. The Otsu
method is used for thresholding, with the formula:

σ2
B = ω1(µ1 − µT )

2 + ω2(µ2 − µT )
2, (19)

where ω1 and ω2 are the weights of the two classes, µ1 and µ2

are the means of the two classes, and µT is the global mean. The
threshold that maximizes the inter-class variance σ2

B is selected.

5.1.3 Noise Filtering. Various noise reduction techniques, such
as Gaussian blurring and median filtering, are applied to remove
background noise and enhance the visibility of the dot matrix pat-
terns. The formula for Gaussian blurring is:

Iblur(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
∗ I(x, y), (20)

where σ is the standard deviation of the Gaussian function, and ∗
denotes the convolution operation.
These preprocessing steps ensure that the input data fed into the
deep learning models is clean and standardized, facilitating more
accurate restoration and decoding of the faint dot matrix images.

6. CONCLUSION
In this paper, we propose an innovative image processing ap-
proach that integrates U-Net with Generative Adversarial Networks
(GANs) for recovering the faint dot matrix images, aiming to en-
hance the application of anti-counterfeiting technologies. We em-
ploy U-Net based architecture as the generator and use a convo-
lutional PatchGAN classifier as the discriminator to form our U-
Net based GAN model. This method accurately extracts faint anti-
counterfeiting features within complex noisy and blurring back-
grounds, significantly improving image clarity and readability. We
introduce an activation function called Gradient-Sensitive Acti-
vation (GSA), which enhances the model’s sensitivity to high-
gradient changes in the image, thereby preserving more detail in-
formation during faint dot matrix image restoration. In order to fur-
ther improve model performance and adaptability, we incorporate
a roughening term in the loss function make the model to focus
more on the high-gradient or low-contrast areas to effectively en-
hance the recognition and restoration capabilities for subtle anti-
counterfeiting features. Moreover, the system dynamically adjusts
network weights based on decoding rate feedback to optimize the
image restoration process. Experimental results demonstrate that
this method has image clarity, readability, and decoding accuracy
for the recovery faint dot matrix images.

Additionally, In order to enhance the efficiency of the recover-
ing for the faint dot matrix images, and reduce the time spent on
our deep learning model in the future research, we give the prepro-
cessing method for RGB dot matrix images dataset according to
the grayscaling stage, binarization stage and noise filtering stage.
And to further strengthen the this study, a more extensive evalua-
tion considering various datasets or scenarios will be collected to
enhance the research in the future.

This paper not only demonstrates the potential application of
deep learning in image anti-counterfeiting technology but also pro-
vides a new perspective and methodology for the future research
in image processing technology. Our method is expected to play
an increasingly significant role in protecting intellectual property,
ensuring data security, and combating illegal reproductions.
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(g) (h)

Fig. 6: (a),(c),(e) and (g) are noisy and blurring images, and (b),(d),(f) and (h) are corresponding recovery results.
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Fig. 7: (a),(c),(e) and (g) are noisy and blurring images, and (b),(d),(f) and (h) are corresponding recovery results.
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