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ABSTRACT 

The Internet of Things (IoT) is a widely recognized technology 

that profoundly influences various sectors, including 

connectivity, work, healthcare, and the economy. IoT holds the 

potential to enhance daily life across different environments, 

from smart cities to educational settings, by automating 

processes, boosting efficiency, and reducing stress. However, 

the rise of cyberattacks and threats poses significant challenges 

to the security of intelligent IoT applications. Traditional 

methods for securing IoT are becoming increasingly ineffective 

due to emerging threats and vulnerabilities. To maintain robust 

security protocols, future IoT systems will require the 

integration of AI-powered machine learning and deep learning 

techniques. Leveraging the capabilities of artificial 

intelligence, particularly through machine learning and deep 

learning, is essential for equipping next-generation IoT systems 

with dynamic and adaptive security mechanisms. This paper 

explores IoT security intelligence from various perspectives, 

proposing an innovative approach that utilizes machine 

learning and deep learning to extract insights from raw data, 

thereby protecting IoT devices against a wide range of 

cyberattacks. It also discusses how these technologies can be 

employed to detect attack patterns in unstructured data and 

enhance the security of IoT devices.   
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1. INTRODUCTION 
The Internet of Things (IoT) paradigm has gained popularity in 

recent years. At a conceptual level, IoT refers to the inter 

connectivity among our everyday devices, along with device 

autonomy, sensing capability, and contextual awareness. IoT 

devices include personal computers, laptops, tablets, smart 

phones, PDAs, and other hand-held embedded devices. 

Devices now communicate smartly to each other or to us. 

Connected devices equipped with sensors and/or actuators 

perceive their surroundings, understand what is going on and 

perform accordingly [1] [2]. This is achieved by processing the 

sensed data at a node, device hub, or in a cloud. Devices are 

also enabled to take decisions autonomously or may propagate 

information to users, so that users can make the best decisions 

[2]. 

The interconnected device networks can lead to a large number 

of intelligent and autonomous applications and services that 

can bring significant personal, professional, and economic 

benefits [3. 4], resulting in the emergence of more data-centric 

businesses. IoT devices have to make their data accessible to 

interested parties, which can be web services, smart phone, 

cloud resource, etc.   

2. LITERATURE REVIEW 
The Internet of Things (IoT) is a key player in technological 

progress. The term "IoT" refers to the "Internet of Things," 

where "Things" are electronic devices connected to the internet. 

The Fourth Industrial Revolution, or Industry 4.0, is 

characterized by the increased automation of traditional 

industrial and manufacturing processes, with IoT being one of 

the advanced technologies driving this movement [11]. 

IoT refers to a network of objects that can connect to the 

internet and wireless networks to exchange data automatically. 

Various organizations and research groups define the IoT and 

smart environments from different perspectives. According to 

the authors, the IoT is composed of RFID-based digital 

information flows and physical components [12]. 

In the healthcare sector, the IoT is rapidly being adopted, 

offering the potential to enhance patient engagement, health 

outcomes, and access to care. However, the proliferation of IoT 

devices also introduces significant security, privacy, and safety 

risks for both patients and healthcare providers. Despite this, 

there is still limited research focused on mitigating the risks 

posed by IoT in healthcare. Recent studies have explored 

integrating secure application solutions with IoT devices in 

healthcare settings. Due to the sensitive nature of healthcare 

data, developing a specialized IoT application for healthcare is 

critical [13]. Current IoT opportunities in the healthcare 

industry are promising, particularly because of their sensing 

and measurement capabilities, including the low-energy variant 

of narrowband IoT (N.B. IoT). Due to its low energy 

consumption, N.B. IoT is favored in the healthcare sector. 

There are various concepts for utilizing N.B. IoT in healthcare, 

and it has gained popularity for its compatibility with cellular 

systems such as LTE. Consequently, N.B. IoT has become a 

viable option for healthcare-related applications in recent years. 

However, the primary challenges for N.B. IoT involve security 

measures and other system-related issues. If these challenges 

are adequately addressed, N.B. IoT could become one of the 

most feasible and widely adopted solutions for low-power, 

wide-area healthcare installations [14]. 

One of the many challenges faced by the Internet of Things, 

which connects a wide array of objects to networks to enable 

complex and intelligent applications, is ensuring user privacy 

and protecting against various attacks, such as spoofing, denial 

of service (DoS), jamming, and eavesdropping. The author 

explores the vulnerabilities within IoT systems and potential 

methods for securing IoT networks using machine learning 

techniques, including supervised learning, unsupervised 

learning, and reinforcement learning (RL). The analysis of data 

privacy emphasizes ML-based approaches for authenticating 

IoT devices, controlling access, securely offloading data, and 

detecting malware. The future adoption of IoT will have a 

substantial impact on society, business, and the economy. Since 
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most nodes in an IoT network have limited resources, they are 

often targeted by hackers. Various solutions have been 

proposed to address IoT network security and privacy 

concerns, most of which rely on standard cryptographic 

protocols. However, these existing solutions are insufficient for 

addressing the unique security challenges posed by IoT 

networks. By incorporating machine learning (ML) and deep 

learning into IoT devices and networks, many threats to IoT 

security can be mitigated. 

The current IoT opportunities in the healthcare sector are 

promising, especially due to its sensing and measuring 

capabilities, including the low-energy form of narrowband IoT. 

This technology is popular in the healthcare field because of its 

low energy usage. Several concepts exist for using narrowband 

IoT in the healthcare industry. Narrowband IoT has become 

widely used and is compatible with cellular networks like LTE. 

As a result, narrowband IoT has recently emerged as a viable 

choice for healthcare-related applications [15]. The IoT risk 

management model in healthcare is presented in Figure 1. 

 

 

Figure 1: The IoT risk management model in healthcare 

[16]. 

. 

 

Figure 2: Potential economic impact of dominant IoT 

applications by 2025 [22] 

3. SECURITY ISSUES IN THE SENSING 

LAYER 
A typical IoT architecture is composed of three main layers: the 

application layer, the network layer, and the perception layer 

[23]. However, as the importance of data processing and 

intelligent decision-making continues to grow, the support or 

middleware layer between the network and application layers 

has become increasingly crucial. IoT systems can include 

multiple layers, such as a network layer and a support layer. In 

many studies on IoT systems, cloud computing has been 

utilized as the underlying support layer. 

The perception layer, also known as the sensing layer, 

comprises various sensors and devices. This layer is 

characterized by limited storage, processing, memory, and 

communication capabilities. The primary security measures in 

this layer include node authentication, weak encryption, and 

access control [24]. Unfortunately, privacy attacks and crimes 

targeting the perception layer are prevalent in real-world 

scenarios. One common attack method involves taking control 

of a node. Other techniques include the use of malicious code, 

data injection, replay attacks, and side-channel attacks. For 

instance, if an attacker gains control of a node, it may cease to 

transmit valid network data and could even disable the IoT 

security software. If the IoT application receives corrupted data 

or is compromised by malicious code injection, it may not 

function as intended. Eavesdropping, also known as sniffing or 

snooping, is a technique where an attacker intercepts and 

examines data exchanged between two devices [25]. In an IoT 

network, a replay attack involves repeatedly falsifying, 

altering, or reusing the identities of related objects. Given 

sufficient time and access to encryption keys, an attacker can 

also perform a timing attack. These are just a few examples of 

the numerous ways vital information can be compromised 

beyond direct node attacks [26]. 

Table 1: IoT Key Issues 

Ref. IoT key issues Advantages 

[34] Quality of service 

(QoS) 

Involves managing data 

traffic load and protocols 

across all layers in IoT 

architecture, including 

routine checks for QoS 

(Quality of Service) and QoE 

(Quality of Experience). 

[35] Authentication 

and identification 

Focuses on addressing issues 

related to IoT integrations 

with internet protocols 

(IPv6), as well as 

authentication and 

identification issues. 

[36] Environment, 

power, and energy 

Discusses the incorporation 

of green technology in IoT, 

the design of low-power-

consumption devices and 

chips, and aspects of 

pollution control and 

management. 

[37] Reliability Covers connectivity, 

mobility, and routing issues, 

along with the reliability of 

infrastructure and IoT 

applications. 

[38] Scalability Discusses the challenges of 

scaling IoT solutions across 

large platforms and 

geographical locations, 

including potential discovery 

services. 

 

4. SECURITY ISSUES IN THE 

MIDDLEWARE OR SUPPORT LAYER 
Distributed computing solutions have been used to replace 

centralized cloud environments in a variety of cases, with good 

results in terms of performance and response time. All sent data 

should now be checked for accuracy, concision, and secrecy. 

When someone inside a network purposefully alters or steals 

data or information, this is known as a malicious inside attack 
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[29]. By inserting malicious SQL queries into the code, SQL 

injection attacks are used to steal data from user services in the 

real world. When damage to one virtual machine spreads to 

another, this is a virtualization attack. With the help of cloud 

malware injection, a hacker can take over a cloud service, 

install malicious code, or even create a fake virtual machine. 

There could be significant consequences if attacks are so 

powerful that cloud infrastructure is incredibly frustrated [30]. 

5. APPLICATION LAYER  
Defining and maintaining IoT applications, including their 

interactions with specific clients, fall under the scope of the 

application layer. One way to use IoT services is through a user 

interface. A computer, a smartphone, or any other Internet-

enabled smart device could serve as an interface. The data that 

the middleware layer process is used by the application layer 

[31]. This holds for a wide range of application categories, 

including applications for smart homes, smart cities, industry, 

construction, and health. The security needs of an application 

may change depending on how it functions. When sending 

information on climate change forecasts as opposed to when 

conducting online banking, it is acceptable to expect a better 

level of security. The application layer must address various 

security challenges, such as attacks on access control, 

malicious code, programming, data leaks, service interruptions, 

application vulnerabilities, and software flaws [32]. Attacks 

that interrupt service, commonly referred to as “Distributed 

Denial of Service (DoS)” attacks, stop users from using IoT 

apps by sending a flood of requests to servers or networks. 

Threat actors could use sniffer software to monitor data being 

transmitted by IoT apps. Attacks that gain unauthorized access 

can seriously harm a system quickly by preventing users from 

using IoT-related services and wiping data [33-36]. 

6. IoT SECURITY SOLUTIONS BASED 

ON ML  
ML is transforming IoT security by enabling real-time 

monitoring of network traffic to detect anomalies that may 

indicate security breaches. ML and DL models are also used for 

UAV detection [37, 38]. These models continuously analyze 

data patterns from connected devices, identifying deviations 

from typical behavior that could signal a cyber threat. This 

section reviews current trends in IoT security, presenting 

specific examples and case studies that illustrate how ML 

methodologies are applied in practical scenarios. 

6.1 Anomaly Detection Systems 
ML models are employed in IoT networks for anomaly 

detection, where they monitor network traffic in real-time to 

spot unusual patterns indicative of security breaches. These 

models are unique in their ability to learn and adapt, using 

historical data to recognize new and emerging threats [39, 40]. 

This adaptability ensures that security measures evolve in 

tandem with the changing nature of cyber attacks, enhancing 

the capability to preemptively identify potential threats and 

customize security protocols to the specific characteristics of 

each IoT network. This approach provides a more robust and 

responsive defense mechanism against a broad spectrum of 

cyber threats [41]. 

6.2 Predictive Maintenance in Industrial 

IoT 
In modern industrial environments, the use of ML algorithms 

for the predictive maintenance of IoT devices has become 

increasingly important. This proactive maintenance strategy 

leverages the vast amounts of sensor data collected by IoT 

devices to predict and prevent equipment failures before they 

happen. IoT devices in industrial settings are equipped with 

various sensors that constantly monitor and gather data on the 

performance and condition of machinery, including parameters 

like temperature, vibration, and pressure. ML algorithms 

analyze this extensive data to detect patterns and anomalies that 

could indicate potential failures or malfunctions [42]. 

6.3 Smart Home Security Systems 
In the rapidly advancing consumer market, ML has become a 

crucial technology for enhancing the security of smart home 

devices. The integration of ML into home security systems is 

revolutionizing the management of security in residential 

spaces. One of the primary applications of ML in this area is 

through advanced facial recognition technologies. Unlike 

traditional security systems that rely on static passcodes or 

keys, ML-powered systems can dynamically recognize the 

faces of residents and frequent visitors, offering a more 

personalized and secure experience. These systems 

continuously learn and improve their accuracy over time by 

analyzing the various faces they encounter. Additionally, smart 

security systems can learn and understand regular household 

patterns and routines, enabling them to detect anomalies or 

unusual activities, such as movement in an empty house or a 

door being opened at an odd hour. This feature is particularly 

useful for monitoring elderly family members or securing the 

home while away [43]. 

6.4 Automotive Security 
Connected vehicles represent a major advancement in the 

automotive industry, integrating communication technologies 

into vehicles. These technologies enable cars to communicate 

with each other (V2V - vehicle-to-vehicle), with infrastructure 

(V2I - vehicle-to-infrastructure), and with other devices (V2X 

- vehicle-to-everything), improving overall transportation 

efficiency, safety, and convenience. Beyond security, ML 

algorithms can predict potential vehicle faults before they occur 

by analyzing historical data and identifying patterns that 

typically precede equipment failures. This predictive 

maintenance approach reduces the risk of malfunctions that 

could be exploited by cyber threats. However, while ML 

significantly enhances automotive security, it also presents 

challenges, such as ensuring the privacy of collected data, 

protecting against manipulation of ML models, and 

maintaining regular updates to keep pace with evolving cyber 

threats [44]. 

6.5 Healthcare  
IoT devices, such as wearable health monitors, connected 

medical equipment, and patient tracking systems, are 

increasingly integral in the healthcare sector. These devices 

collect, transmit, and process vast amounts of sensitive patient 

data, making robust security measures essential. ML 

algorithms can enhance the security of data transmission 

between IoT devices and central servers by ensuring encryption 

standards and identifying potential intercepts or data leaks in 

real time. Additionally, ML can automate responses to security 

threats, such as temporarily restricting access or alerting 

security personnel upon detecting suspicious activity, thereby 

reducing the need for manual monitoring. 

6.6 Supply Chain Monitoring 
In supply chain management, ML models monitor the integrity 

of goods, particularly in sensitive industries, by detecting 

tampering or deviations in environmental conditions. This 

enhances supply chain security and reliability. ML models 

analyze data from various sources, including sensors and IoT 

devices attached to products or packaging, to ensure that goods 
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remain in their intended state throughout the supply chain. This 

could involve monitoring for signs of tampering, damage, or 

unauthorized access to the products [45, 46]. 

7. IoT SECURITY SOLUTIONS BASED 

ON DL  
Deep learning often employs multi-layer perceptrons (MLPs) 

and feed-forward artificial networks (FFANs). The traditional 

MLP architecture consists of three layers: the input layer, one 

or more hidden layers, and the output layer. In an AI network, 

each node in a layer is connected to a specific value in the 

preceding layer, ultimately linking back to the input layer. 

During model training, MLP utilizes backpropagation to adjust 

the internal weight values [47]. This MLP network is applied 

to analyze the NSL-KDD dataset for malware detection, 

explain IoT parameters, identify malicious traffic originating 

from IoT devices, and develop a model for intrusion detection 

[48]. 

Recurrent neural networks (RNNs) are another model type that 

uses neural feed-forward networks but includes an internal state 

or memory to manage sequential data effectively. This 

characteristic makes RNNs particularly useful for IoT security, 

natural language processing, and speech recognition [49]. IoT 

devices generate a significant amount of sequential data, such 

as time-varying information and network traffic flows. The 

recurrent connections in neural networks allow them to detect 

potential security vulnerabilities when a threat's 

communication patterns evolve over time. The RNN's ability to 

predict time series, supported by its long short-term memory 

(LSTM), enables it to recall previous inputs. For instance, 

LSTM-based recurrent networks can be used to identify and 

classify malicious applications and detect intrusions, along 

with other security-related tasks [50]. 

Various deep learning models and hybrid network models can 

be employed to detect and prevent malware, spoofing, and 

computer virus attacks across a wide range of IoT devices [51]. 

One such model is a deep belief network (DBN)-based security 

model, which can be used to safeguard IoT devices [52]. 

Researchers have explored multiple deep learning approaches, 

categorizing them as discriminative when human intervention 

is required and generative when none is needed. Hybrid 

systems may also be utilized when the data quality necessitates 

it [53-62]. 

8. CONCLUSION 
This paper gives a review of the literature on IoT security 

awareness, focusing on the IoT model, IoT-based intelligent 

environments, and the security challenges addressed by 

machine learning solutions. We conducted an evaluation of the 

knowledge base surrounding IoT security intelligence, 

examining the IoT paradigm, smart environments built on IoT, 

associated security issues, and the machine learning solutions 

that can mitigate these problems. Securing IoT devices and 

systems requires a comprehensive analysis of IoT system 

architectures and the various cyberattacks that can compromise 

them layer by layer. In this study, we explored how different 

machine learning and deep learning technologies can be 

leveraged to enhance IoT security. For IoT security to be truly 

effective, it must be underpinned by machine learning or deep 

learning models that are driven by relevant data attributes. 
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