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ABSTRACT 

Tea is a globally important crop that is prone to numerous 

diseases that can significantly affect its quality and production. 

This study proposes a novel work of improving the health of 

tea plants through Machine Learning (ML) for tea sickness 

detection from the EfficientNet-B0 convolutional neural 

network (CNN). By training the model on a comprehensive 

dataset of tea leaf images, significant improvements in disease 

detection accuracy were achieved. The architecture of the 

EfficientNet-B0 was well optimized explicitly for the use of 

this study and its test accuracy is 94.64%. This performance 

highlights the ability of the model as a classifier of the healthy 

and diseased tea leaves. EfficientNet-B0 is a promising 

solution to better manage and detect diseases in the initial 

stages, which confirmed the effectiveness when applied in this 

context. This stays in contrast to the traditional disease 

diagnosing approach in agriculture. This approach is an 

improvement by combining Deep Learning (DL) with real-life 

applications in farming.    
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1. INTRODUCTION 
Tea (Camellia sinensis) is one of the most widely consumed 

beverages, which holds significant cultural and economic 

relevance around the world and in key producing countries 

including China, India, Sri Lanka, and Kenya [1]. The stead to 

demand high quality tea requires close observation in the 

general health and yield of tea plantations to produce high 

quality tea as well as in enormous quantities. However, tea 

plants undergo many constraints from biotic stresses like pests 

and diseases and abiotic stresses by environmental factors. All 

these can have severe effects on plant health, thereby causing 

huge loss to farmers economically [2][3]. 

Symptoms identification and management of diseases in tea 

farming have mostly been under observation and experience of 

agronomists. Although these approaches form part of the 

current practices, they are cumbersome in terms of time and 

work input and may not be sensitive enough for early disease 

diagnosis [4]. Such limitations may lead to delayed 

interventions and optimal crop quality and yield as a result. 

ML and computer vision technologies offer a promising 

solution to these challenges due to several reasons. These 

technologies can further improve the efficiency of tea plant 

health monitoring because they are automated, accurate, and 

dynamic. Integration of the ML models with techniques that 

analyze images means that diseases may be detected in their 

incipient stage hence can be managed thus minimizing such 

effects on the economy [5][6]. This advancement marks a 

major step forward towards better practices in agriculture. 

Artificial intelligence (AI) is a broad umbrella that 

encompasses ML, which is a method employed to make 

predictions from patterns upon analyzing data. In the recent 

past, the application of ML has helped in the agricultural sector 

to revolutionize precision farming and crop management [7]. 

This one uses enormous quantities of data to improve many 

aspects of agricultural production to reduce time and increase 

yields. Some common use cases of ML in agriculture include 

detection of crop diseases, prediction of yields, soil analysis, 

and pest management [8]. The use of complex algorithms 

allows an ML model to discover unexpected patterns in data 

and make recommendations for more effective decision-

making in the process of managing resources. 

When combined with computer vision, ML has had a 

significant impact on plant disease identification. Some of the 

previously used techniques of identifying plant diseases require 

direct or physical observation and previous knowledge, which 

is boring and at times produces wrong results. ML algorithms 

in conjunction with computer vision can be used to auto 

classify plant images, including leaves and stems, to diagnose 

diseases with a high degree of accuracy [9]. This enables rapid 

identification of the ailments compared to the traditional 

methods while also increasing the accuracy of diagnosis, which 

is central to efficient treatment. 

Another potential that can be derived from employing ML for 

plant disease diagnostics is the capacity of the algorithm to 

perform image analysis of plant images. The collected images 

may be complex, but these can be analyzed using sophisticated 

ML algorithms that can identify early signs of diseases that are 

often not easily identified by the human eye [10]. This 

capability results in shorter times between the onset of the 

pathologies and the degree of interference. As a result, it 

enhances the general management packages and reduces crop 

damage, making it a more useful tool for today’s farming 

[11][12]. 

Further, the development and application of ML in the 

agricultural sector has helped realize improvements in disease 

control by enhancing effectiveness and efficiency of 

intervention measures. Thus, by automating the disease 

detection process and offering accurate prediction of diseases, 
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ML aids in quicker diagnosis and preventive intervention [13]. 

It not only contributes to the protection of crops but also to 

sustainable agriculture as it limits the use of chemicals and 

enhances resource management [14]. Currently, the use of ML 

technologies is still a growing area, and thus, their application 

in the field of agriculture is also likely to expand in the future 

and stimulate further development and enhancement of 

agricultural activities. 

The improvement of the CNNs has been employed by Tan and 

Le in 2019 with useful effects such as high accuracy rates with 

fewer parameters and computational needs referred to as 

Efficient Net [15]. The concept of Efficient Net is the 

compound scaling that scales network depth width, and 

resolution in such a way that the network is efficient and fast as 

can be [16]. This approach allows Efficient Net to obtain high 

accuracy at the same time and use fewer computations, which 

is very beneficial for those applications that need high 

accuracy, on the one hand, and low computational resources, 

on the other. 

EfficientNet-B0 is a base model of Efficient Net, which aims 

to achieve the best performance on many benchmarks of image 

classification including standard ImageNet [17]. This design 

focuses on this compromise between accuracy and compute 

and is used where there is a low differential like in plant disease 

classification. This makes EfficientNet-B0 able to recognize 

any signs of concern in plant health at higher efficient rates 

using a light model for real time application [18]. 

As for the application of EfficientNetB0 in the context of tea 

sickness detection, the following benefits can be identified. 

First, it helps process large datasets of tea leaf images fast, thus 

not consuming a lot of computational power. Second, the high 

accuracy of the CNN predicts a better ability to detect and 

differentiate between different diseases in tea plants, thereby 

lessening the need for manual inspection and chemical 

applications. 

Recent studies have demonstrated that DL models are efficient 

in plant disease classification. For instance, ResNet and 

DenseNet based models have been successfully trained for 

other crops as they yielded high accuracy for disease detection 

[19][20]. But the efficiency and performance of EfficientNetB0 

suggests its suitability to tea sickness detection especially when 

speedy analysis is critical. 

Thus, the purpose of this study is to establish an ML model with 

the aid of a more enhanced model, EfficientNet-B0, for the 

accurate identification of diseases affecting tea plants. Training 

involves generating a technique capable of discriminating 

specific tea plant diseases such as Anthracnose, Algal leaf, Bird 

eye spot, Brown blight, Gray light, Red leaf spot, White spot 

from the healthy ones. The objectives are to achieve greater 

accuracy and speed in the diagnostic process compared to 

conventional approaches, fine-tune the model based on a large 

set of tea plant images associated with these diseases, and 

enable the use of an efficient application for monitoring tea 

plant status in real-time. This approach would benefit tea 

farmers as they would have a valuable tool to detect the 

diseases early enough to avoid huge losses that are likely to be 

a result of diseases affecting tea plants. 

The remainder of this paper is organized as follows: Section 2 

provides a brief related work highlighting previous work and 

notable developments in tea sickness recognition and machine 

learning. Section 3 illustrates the mathematical formulas and 

theories used in the process of model development. In section 

4, information on data preprocessing, model architecture, and 

the training of the EfficientNetB0 model is provided. In section 

5, they presented the result and performance analysis of the 

proposed model in detail. Finally, Section 6 provides the 

conclusion of the paper with a summary of the contributions 

and suggestions for future research directions.  

2. LITERATURE REVIEW 
The presence of diseases can either help or hinder the efficiency 

of tea production as well as affect the quality of tea. 

Conventional disease identification involves visual 

examination, which is time-consuming and can lead to 

inaccurate results. But the latest technologies in AI have 

produced other techniques to automate and improve the 

identification of diseases in the tea plant. 

Heng, Yu, and Zhang [21] develop an AI-based solution using 

deep neural networks with hybrid pooling for automatic tea leaf 

disease identification. Their method performs preprocessing by 

pruning images and using the efficient. CNN with 

hyperparameter tune able pooling layers for feature extraction 

and Random Forest (WRF) model which is fine-tuned with 

Cuckoo Search Optimization (CSO) for classification. This 

approach yielded the overall average accuracy of 92.47%, 

which tended to outcompete the discrete methods significantly. 

In another study, Srivastav, Gulcria and Sharma [22] used 

CNNs for classification of tea leaf disease. After fine-tuning 

over different epochs, they obtained the training accuracy of 

99% and the testing accuracy of 89%. The findings of this study 

underscore the efficiency of CNNs in quickly and accurately 

diagnosing numerous types of leaf diseases. 

Recent developments in tea disease detection also show that 

manual observation is replaced with AI systems to increase 

efficacy and accuracy. Li, Zhang, and Li [23] proposed the 

integration of a novel model called VCRUNet that includes a 

Channel Reconstruction Unit (CRU) and VanillaNet 

architecture. This method proves to be a more accurate and 

efficient solution in tea disease management with 92.48% 

accuracy and a detection speed of 4.5 seconds per 100 images 

thus marking an improvement from the previous studies. 

Similarly, in related domain, Kulkarni, and Shastri [24] focused 

on the identification of rice leaf diseases using the CNN model. 

Its approach which was tested under different 

background/illumination conditions yielded 95% accuracy. 

This shows the benefit of ML in improving disease diagnosis 

and hence could be applied in improving agriculture. 

Apple leaf diseases have a significant impact on the generation 

and production of apple fruit in a sustainable manner. Zhang et 

al. [25] presented an improved Bole Convolution Module 

(BCM) and Bidirectional Transposed Feature Pyramid 

Network (BCTNet) for identifying multiple sizes of apple leaf 

spots in unadjusted scenes with an accuracy of 85.23% and a 

detection rate of 33 FPS. Gong and Zhang [26] enhanced Faster 

R-CNN with Res2Net and feature pyramid networks, yielding 

63.1% average precision. Each augment health risk 

identification, presenting solutions to tackle difficulties with 

standard approaches. 

In Ethiopia, one of the leading exporters of coffee, Yoseph [27] 

concentrated on the identification of coffee leaf disease. 

Employing 4000 images from the Jimma and Bonga 

agricultural Research Centers, the researchers developed a 

CNN-based model with an accuracy rate of 95.3%. They argue 

that this is the rationale for this research to demonstrate how 

digital image processing and DL can be used to diagnose some 

of the coffee leaf diseases and how CNNs can be used to solve 

some of the challenges in agriculture. 
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Lekha et al. [28] proposed a disease identification model for 

tomato leaves using CNN, SVM, and KNN algorithms. Their 

work contrasts such algorithms for recognizing tomato leaf 

diseases, exploring difficulties in disease identification in 

India’s sizable tomato production industry. 

Kansal, Jaiswal, and Sachdeva [29] proposed an empirical 

study to compare the performance of the CNN model with the 

conventional ML algorithms for detecting the tomato leaf 

disease. CNN was accurate at 96% and could be applied in 

identifying all the 10 diseases using a dataset of 30,000 images, 

outcompeting classic classifiers such as AdaBoost, KNN, and 

Random Forest. 

Plant diseases have been identified as potential threats to food 

security since they harm the quality and quantity of crops. 

Previous studies have developed crop-specific DL models 

using CNN for better performance and time efficiency. Verma, 

Kumar, and Singh [30] presented a unified lightweight CNN 

model to detect diseases in corn, rice, and wheat, with an 

accuracy of 84.4% and parameters of 387,340 only. This model 

surpassed benchmark CNNs, and its accuracy was high for 

identifying diseases in each crop. Ramadan et al. [31] reviewed 

how additional techniques could be used to help overcome the 

lack of the wheat leaf disease datasets. The authors leveraged 

CycleGAN and ADASYN to enhance classifier performance, 

attaining 100% accuracy with MobileNetV2 on the augmented 

sets. Their research also establishes the significance of data 

augmentation in advancing the performance of disease 

classification for successful automation in agriculture. 

Khalid and Karan [32] discussed the effectiveness of DL 

models, CNN, and MobileNet particularly for plant disease 

identification with accuracies of 89% and 96%, respectively. 

Their work, which entails the use of DL through GradCAM for 

Explainable Artificial Intelligence (XAI), demonstrates that 

DL can contribute to improving plant disease identification 

techniques and subsequently agriculture protection. 

The reviewed studies further emphasize the revolutionary role 

of DL in improving plant disease diagnosis for different crops. 

Several studies have shown the advantages of CNN and other 

DL techniques compared to traditional ones in terms of 

accuracy, speed, and the ability to scale the solutions to 

different contexts. These models have enormous potential in 

the matter of identifying plant diseases as evident through teas 

and coffees, tomatoes, rice, and wheat. These approaches are 

enriched by new techniques such as data augmentation and 

Explainable AI, providing real-world solutions to address the 

urgent concerns of crop disease management. Overall, the 

conclusions point to the importance of AI-based approaches for 

enhancing knowledge in agriculture, enhancing the quality of 

yields, and securing food sufficiency in the world. Future 

investigations should further advance these models, increase 

computational performance, and think other crops to expand on 

these breakthroughs. 

3. MATHEMATICAL EQUATIONS 
The mathematical formulas in our tea sickness detection system 

with EfficientNet-B0 cover key aspects of model training, 

evaluation, and optimization. These are the Cross-Entropy Loss 

for classification, the SoftMax function for the probability 

distribution and hidden layers for feature extraction through 

convolution, and optimization algorithms as Adam. From the 

mathematical standpoint, these equations create the basis of the 

model that can detect sickness in tea plants accurately. 

The Cross-Entropy Loss function is used to calculate the 

dissimilarity between the actual label and the probability 

distribution anticipated by the model. In Equation (1): 

𝐿(𝑦, �̂�) = − ∑ 𝑦𝑖 log(𝑦�̂�)
𝐶
𝑖=1                                      (1) 

Here, 𝐿(𝑦, 𝑦𝑖) represents the loss value, 𝑦𝑖 is the true label, and 

𝑦�̂� is the predicted probability for class 𝑖. The variable 𝐶 denotes 

the total number of classes in the classification task [33]. 

The Convolution Operation is fundamental in extracting 

features from an input image by applying a filter or kernel over 

the image. In Equation (2): 

(𝐼, 𝐾)(𝑥, 𝑦) = ∑ ∑ I(x + i, y + j) ∗ 𝐾(i, j)n−1
j=0

m−1
i=0    (2) 

This equation defines the convolution that is performed on an 

input image 𝐼 with a kernel 𝐾, where 𝑚 and 𝑛 are the 

dimensions of the kernel. Here,  𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) is the pixel 

value from the input image, and 𝐾(𝑖, 𝑗) represents the 

corresponding value from the kernel. Finally, you obtain a 

feature map that emphasizes potentially useful features of an 

input image. The convolution operation plays a significant role 

in identifying features such as the edge, texture, and other 

intricate functions within image data [34]. 

The SoftMax activation function converts the output logits 

of a neural network into a probability distribution, as shown in 

Equation (3): 

𝑦�̂� =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐶

𝑗=1

                                                              (3) 

In this equation, 𝑦�̂� is the predicted probability for class 𝑖 and 𝑧�̂� 

is the logit for class 𝑖. The sum in the denominator runs over all 

classes 𝐶 [35]. 

The Gradient Descent algorithm adjusts the parameters of 

the model by adjusting the loss function. The update rule is 

given by Equation (4): 

𝜃 ← 𝜃 − 𝜂∇𝜃𝐽(𝜃)                                                    (4) 

Here, 𝜃 are the model parameters, 𝜂 is the learning rate, and 

∇𝜃𝐽(𝜃) is the gradient of the cost function 𝐽(𝜃) with respect to 

the parameters [35]. 

Adam Optimization is used to achieve more efficient 

convergence during training by adaptively adjusting the 

learning rate based on first and second moment estimates of the 

gradients. The equations (9) governing Adam optimization are: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝜃𝐽(𝜃)                            (5) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)(∇𝜃𝐽(𝜃))2                         (6) 

𝑚�̂� =
𝑚𝑡

1−𝛽1
𝑡                                                                (7) 

𝑣�̂� =
𝑣𝑡

1−𝛽2
𝑡                                                                 (8) 

𝜃 ← 𝜃 −  𝜂
𝑚�̂�

√𝑣�̂�−∈
                                                     (9) 

Here equations (5)(6)(7)(8)(9), 𝑚𝑡 and 𝑣𝑡 are the first and 

second moment estimate of the gradients at time step 𝑡 

regulates the mean and variance of the gradients, respectively. 

The hyperparameters 𝛽1 and 𝛽2 control the decay rates for these 

estimates 𝛽1 impacting 𝑚𝑡 and 𝛽2 affecting 𝑣𝑡. The bias-

corrected estimates 𝑚�̂�and 𝑣�̂�, represent the raw estimate with 

added initial bias towards zero in 𝑚𝑡 and 𝑣𝑡. The learning rate 

𝜂 calculated from moment estimates and ∈ is a small constant 

to avoid division by zero [36]. 
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The Learning Rate Schedule dynamically adjusts the 

learning rate training process to enhance convergence. The 

equation (10) for the learning rate schedule is: 

𝜂𝑡 = 𝜂0 ∗ 𝑑𝑒𝑐𝑎𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑡                                     (10) 

Here,  𝜂𝑡 represents the learning rate at epoch 𝑡, 𝜂0 is the initial 

learning rate, and the decay_factor is a constant that controls 

the rate of decay. However, this decay decreases the learning 

rate over time, allowing the model to fine-tune its parameters 

as training progresses [37]. 

Batch normalization is used to normalize the inputs of each 

layer, improving the training process. It is represented by 

Equation (11): 

�̂� =
𝑥−𝜇

√𝜎2+𝜖
                                                               (11) 

Here, �̂� is the normalized input, 𝑥 is the input to be normalized, 

𝜇 is the mean of the batch, 𝜎2 is the variance of the batch, and 

∈ is a small constant to avoid division by zero [38]. 

Dropout is a regularization technique that reduces 

overfitting by randomly setting a fraction of input units to zero 

during training. In Equation (12): 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑥) = {

𝑥

𝑝
         𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑝)

0  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝)
    (12)             

Here, 𝑥 represents the input, 𝑝 is the dropout rate, and the 

remaining units are scaled by 
1

𝑃
 to maintain the expected value 

of the activations [39]. 

The ReLU (Rectified Linear Unit) activation function 

introduces non-linearity into the model, defined by Equation 

(13): 

𝑓(𝑥) = max (0, 𝑥)                                                 (13) 

Here, 𝑥 is the input value to be passed to the activation function 

[40]. 

The accuracy metric evaluates the overall performance of 

the model by calculating the ratio of correct predictions. In 

Equation (14): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
             (14)                                      

Here, the numerator represents the number of correctly 

predicted labels, and the denominator is the total number of 

predictions made by the model [33]. 

Precision measures the relevance of positive predictions 

made by the model, as shown in Equation (15): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                (15)                                      

In this equation, 𝑇𝑃 denotes true positives, 𝐹𝑃 denotes false 

positives [41]. 

Recall evaluates the completeness of the model's positive 

predictions and is calculated using Equation (16): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                               (16)                                      

Here, 𝐹𝑁 denotes false negative [41]. 

The F1-score provides a balance between precision and 

recall, especially useful in cases of imbalanced datasets. It is 

given by Equation (17): 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                     (17)                                      

The confusion matrix is a table used to evaluate the 

performance of a classification model by showing the true vs. 

predicted classifications, as depicted in Equation (18): 

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 = [𝑇𝑃
𝐹𝑁

 𝐹𝑃
𝑇𝑁

]                              (18) 

Here, 𝑇𝑁 denotes true negatives [42]. 

4. METHODOLOGY 
This study proposes a method for identifying diseases in a tea 

plant by using the EfficientNet-B0 model which is a CNN. This 

means that the methodology to be employed in this study has 

several crucial steps – data preparation, data augmentation, 

model creation, model training, and model evaluation – with 

each step established to help in improving the accuracy of the 

model in diagnosing the various tea leaf conditions. The entire 

detection process is described in Figure. 1 where all the steps 

are presented in terms of data preprocessing and augmentation, 

network training and evaluation, as well as the potential 

deployment of the model. 

4.1 Data Preparation 
The data set applied in this study is Tea Sickness Data, obtained 

from Kaggle. It is made up of images sorted into eight 

categories: Anthracnose, Algal Leaf, Bird Eye Spot, Brown 

Blight, Gray Light, Healthy, Red Leaf Spot, and White Spot. 

This dataset comprises images of both healthy leaves and 

leaves affected by major tea diseases, thus making it 

worthwhile for training. 

• Image Filtering: Every image was preprocessed by its 

format and converted only to JPEG or PNG for 

compatibility with the model. 

• Resampling: The images were rescaled to adjust to a 

standard size that fits the requirement of EfficientNet-B0 

model input dimension, which is 224 by 224 pixels. 

• Data Splitting: To prevent outflow between the two sets 

much effort was placed into splitting this dataset into a 

training and validation set. The training set is made up of 

80%, while the validation set is made up of 20%.  

4.2 Data Augmentation 
To further improve the models also in terms of generalization 

and reducing data dependency, data augmentation strategies 

were applied. These techniques artificially increase the size of 

the set by producing variations of the learning images, so the 

model learns on a different set of inputs. The augmentation 

methods used comprise of: 
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• Random Rotations: Rotational invariance was applied by 

permitting the rotation of images randomly in each range. 

• Width and Height Shifts: Images were shifted 

horizontally and vertically to mimic small changes in 

orientation. 

• Shearing: Shear transformations were used to distort the 

images along a particular axis of an image. 

• Zooming: Different effects of scale distortion were 

achieved through zooming in and zooming out of the 

images. 

• Horizontal Flipping: Images were flipped horizontally to 

prepare mirror images for training. 

These augmentations make sure the model is more capable of 

dealing with new data as it broadens the training dataset. 

4.3 Model Creation 
Hence, the EfficientNet-B0 model was chosen for this study 

because of its good trade-off between accuracy and efficiency. 

In transfer learning approach, the high-level feature extraction 

layers of EfficientNet-B0 were discarded along with addition 

of some new layers developed for this task. This included: 

• Global Average Pooling Layer: This layer subsamples 

the spatial dimensions of the feature maps and produces 

just one value per feature map which assists in avoiding 

overfitting. 

• Dense Output Layer with SoftMax Activation: This 

layer is used to output probability for each of the eight 

disease classes and this enables multi classification. 

4.4 Model Training 
During the compilation phase, the model was configured with 

the following parameters: 

• Loss Function: Categorical Cross-Entropy was chosen to 

measure the performance of the model during training. 

• Optimizer: The Adam optimizer was utilized for efficient 

weight updates. 

• Performance Metric: Accuracy was selected as the 

primary performance metric. 

To fine-tune the model, certain layers of the base EfficientNet-

B0 were "unfrozen," allowing them to learn features specific to 

the tea sickness dataset. The training utilized Early Stopping to 

halt training when the validation loss ceased to decrease, 

preventing overfitting. Additionally, Learning Rate 

Scheduling was implemented using 

the ReduceLROnPlateau technique, dynamically adjusting the 

learning rate based on validation performance. 

Model checkpoints were created during training to preserve 

copies of the model with the best validation performance. The 

model was trained for a total of 20 epochs, with real-time 

metrics visualized using TensorBoard to monitor training 

progress. 

4.5 Model Evaluation 
Upon completion of training, the model's performance was 

evaluated on the validation set to gauge its effectiveness. The 

following metrics were computed: 

• Accuracy: The proportion of correctly predicted instances 

over the total instances. 

• Precision: The ratio of true positive predictions to the total 

predicted positives, indicating the accuracy of the positive 

predictions. 

• Recall: The ratio of true positives to the total actual 

positives, evaluates the potential of the model in 

identifying Positive cases. 

Figure 1: Block Diagram of Tea Sickness Detection Using EfficientNet-B0 
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• F1-Score: A balance between accuracy and recall is 

provided by the harmonic means of the two metrics. 

To compare correct and incorrect predictions the confusion 

matrix was created to get better understanding of the model and 

its mistakes during classification according to different classes. 

4.6 Model Testing 
To check the reliability and generalization ability of the model, 

testing was performed on the test set already preprocessed. The 

trained EfficientNet-B0 model was used to make predictions on 

this dataset that is used in this research. The same performance 

measures such as accuracy, precision, recall, F1-score and 

confusion matrix were applied to assess a model’s capacity and 

effectiveness in identifying and categorizing tea sicknesses 

correctly. The final testing of the model endorsed its run on 

fresh data and thereby finalized the model as an effective means 

to identify diseases in tea plants. 

5. RESULT & DISCUSSION 
The various performance parameters indicate beyond any 

reasonable doubt the capabilities of the model in identifying tea 

sicknesses thus making the model reliable and efficient in real 

life. Our approach, which is DL training of the EfficientNet-B0 

model, is accurate not only in the training set but even more 

accurate in unseen validation set. In this segment, the specific 

findings and interpretation of results are presented, including 

highlighting key performance indicators and their utility for 

practical contexts. 

These results were obtained in the training phase with a training 

loss of 0.0244 and an accuracy of 0.9993, which means that the 

model is now capable of identifying patterns in the data with an 

extremely high accuracy. In the validation phase, the loss which 

is slightly higher than that from the training phase is 0.1471 

was still able to calibrate it to an impressive accuracy of 0.9524. 

This discrepancy between training and validation metrics is 

typical for a well-regularized model that does not overfit. 

Figure. 2 shows the training and validation loss and accuracy 

in each epoch to show how the model progresses through 

epochs, and how it gradually overcomes the loss to achieve 

better accuracy and is stable at the end of epoch. 

The confusion matrix and the classification report offer a 

detailed analysis of how the model performs with respect to 

each class. Analyzing the classification report in Table 1 shows 

that the model has been able to provide a precision, recall, and 

F1-score for each category of tea sickness. The mean accuracy 

of the results was found to be 0.95, the model performs very 

well in differentiating ‘healthy’ from ‘red leaf spot’ where 

precision and recall are both at 1 for these classes. However, 

there is variability in performance across other classes such as 

'bird eye spot' and 'brown blight,' where the model's ability to 

classify is less consistent. 

Table 1: Classification Report for the model, including 

precision, recall, and F1-score for each class 

Class Precision Recall 
F1-

score 
Support 

Anthracnose 0.90 0.95 0.93 40 

Algal Leaf 0.99 0.99 0.95 160 

Bird Eye 

Spot 
0.83 0.75 0.79 20 

Brown 

Blight 
0.83 0.87 0.85 23 

Gray Light 0.90 0.90 0.90 20 

Healthy 1.00 1.00 1.00 15 

Red Leaf 

Spot 
1.00 1.00 1.00 29 

White Spot 0.89 0.83 0.86 29 
 

Accuracy   0.95 336 

Macro Avg 0.92 0.91 0.91 336 

Weighted 0.95 0.95 0.95 336 
 

Figure. 3 shows the confusion matrix that illustrates the overall 

classification ability of the given model for each class of tea 

sickness. It highlights the number of true positive, false 

negative, true negatives and false positives identified by the 

model, which gives an overall picture of its efficiency and 

misclassification. This matrix is essential for pinpointing 

specific classes that would benefit from the improvement of the 

model. In the end, using the confusion matrix, it is easier to 

identify the classes that are often inaccurate and enhance the 

model’s accuracy for such classes. 

Figure 2: Training and Validation Loss and Accuracy curves 
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The learning rate schedule, which was initialized at 1.0000×10-

4, however after that it started to decline at the rate 8.0000×10-

7 over 20 epochs was crucial for optimizing the model's 

training efficiency. Starting with a higher learning rate allowed 

the model to search through the parameter space more 

aggressively in the first few epochs. During the training 

process, learning rate reduction can be utilized for the detailed 

adjustments and to achieve the better solution. The adjustments 

Figure 3: Confusion Matrix illustrating the model's performance across different classes. 

Figure 4: Learning Rate Schedule 
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Figure 5: Actual Class Distribution 

are depicted in Figure. 4 where the different modulations of the 

learning rate helped to achieve a more efficient and stable 

learning process. 

 Both Class Distribution and Prediction Distribution can 

provide a clear idea of whether the model is accurate on all 

classes of the dataset or not. The class distribution plot also 

shows the actual percentage of different classes of tea sickness 

in the data set and the balanced classes. This distribution 

determines the level of times that each of these categories 

happens and provides the platform upon which the efficiency 

of the model will be measured across these various classes. This 

distribution knowledge is helpful if we are investigating 

whether the model has been trained using a random sample 

from the data 

 

 

Figure 6: Prediction Class Distribution 

By contrast, the prediction distribution plot illustrates the 

relationship between the model’s prediction and the true class 

probabilities. It is a relative comparison which is very useful in 

determining the effectiveness of the model in the diagnosis of 

different tea sicknesses and in the discovery of potential blind 

spots or the bias of the model. For example, it is detected that 

certain classes are predicted in a particular way devoid of the 

right proportions, then it means that the model may be poor in 

handling such classes. Figure. 5 represents the class distribution 

while Figure. 6 shows the predicted class. This will be helpful 
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to measure the effectiveness and unbiased nature of the model 

to predict and classify each tea sickness based on the plot 

shared here and identify the limitations. 

The smoothed loss curves provide further improvement of 

training and validation loss patterns using certain smoothing 

techniques and moving averages. These curves assist in 

establishing the steadiness and reliability of the process of 

learning in the model. Smoothed curves enable a clearer vision 

as to how the model progresses over time, and whether the 

learning process is converging optimally or not, by removing 

excessive noise or oscillating in the loss values. This refined 

view also helps in following up the development of models and 

ensures that the learning process is on the correct track. 

 

Figure 7: Smoothed Loss Curves for training and validation 

 

Figure 8: Smoothed Accuracy Curves for training and validation 

Figure. 7 illustrates key aspects of these loss curves: the 

smoothed training loss, smoothed validation loss, training loss 

moving average, and validation loss moving average. The final 

plots of training and validation loss smoothed give the overall 

trend of the losses as a function of epochs which describes the 

model training sessions. The moving averages aid the 

understanding of the general trend of the losses and if the model 

is constantly getting better or if there are signs of overfitting, 

which occurs when the training loss decreases but the 

validation loss begins to increase. These are especially 

important in evaluating the efficiency of the training process 

and identifying its shortcomings. 

The smoothed accuracy curves provide a clear and refined view 

of the model's performance by applying smoothing techniques 

and moving averages to the training and validation accuracy 
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data. These curves also assist in smoothing out noise and 

oscillations that would otherwise obscure an accurate measure 

of how well the model is learning to classify the data at a given 

epoch. This way, the idea of smoothed training and validation 

accuracy as well as the averages of the moving means will help 

to make the inspection of the model’s capability to enhance 

gradually the quality of the predictions more manageable. This 

is useful in preventing the model from training at an unhealthy 

pace and or rapidly resulting in overfitting which is bad for 

performance on unseen data. These are the smoothed accuracy 

curves depicted in Figure. 8 where one can observe the overall 

improvement and stability of the model. 

The proposed approach can be used to achieve satisfactory 

results for all specific categories of tea sickness through the 

assessment of class wise precision, recall, and F1 score. This 

segregation is important when attempting to determine whether 

the model is performing well for different classes of tea 

sickness and where it is struggling. Precision class and recall 

class are shown in Figure. 9, in addition to F1-score to 

determine areas of improvement for each class of the model. 

From the perspective of the detailed analyzing offered in this 

section, the validity can be proved that the model applied in this 

study can primarily identify the tea sicknesses. Accuracy, 

training and validation metrics, and confusion matrices as well 

as class-specific performance all demonstrating the model 

effectiveness. The advantages of smoothed curves and 

distribution plots are also useful and help to support an 

argument that stated the model will perform well on unseen 

data. These results provide strong evidence that DL can be used 

for configurable agricultural diagnostics and demonstrate the 

potential of the model for practical use. Therefore, from the 

outcomes of this study, one can infer that there is lots of 

improvement and innovation possible in the future. 

6. CONCLUSION 
To enhance the development of a better tea sickness detection 

system, EfficientNet-B0 was used in this study. Due to this, the 

accuracy at training phase reached 99.93% whereas, at the 

validation phase it was 95.24% when using this advanced 

convolutional neural network. As additional regularization 

techniques to avoid overfitting of the model, learning rate 

reduction, early stopping and model checkpointing were 

employed alongside TensorBoard for monitoring of training 

progress. The final evaluation of the test is presented, and it 

provides 94.64% accuracy and 0.1471 of the test loss, indicates 

the stability of the model, as well as the possibility of its 

utilization in practical applications. The implication from this 

study has certified the model in disease diagnosis which 

increases the output and quality of the production due to early 

detection. Future work could improve the model’s performance 

by using more data and active real-time monitoring and 

therefore promising future developments in agricultural disease 

detection. 

7. ACKNOWLEDGMENTS 
We gratefully acknowledge the experts whose insights and 

contributions were vital to the success of this research. 

8. REFERENCES 
[1] Kamburawala, T. U., & Abeyrathne, D. H. (2024). 

Competitiveness of Sri Lankan Tea in the International 

Market: A Trade Flow Analysis. KDU Journal of 

Multidisciplinary Studies, 6(1). 

[2] Wang, Y., Xu, R., Bai, D., & Lin, H. (2023). Integrated 

learning-based pest and disease detection method for tea 

leaves. Forests, 14(5), 1012. 

[3] Bag, S., Mondal, A., & Banik, A. (2022). Exploring tea 

(Camellia sinensis) microbiome: Insights into the 

functional characteristics and their impact on tea growth 

promotion. Microbiological Research, 254, 126890. 

Figure 9: Class wise Precision, Recall, and F1 Score 



International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.45, October 2024 

42 

[4] Kotwal, J., Kashyap, R., & Pathan, S. (2023). Agricultural 

plant diseases identification: From traditional approach to 

deep learning. Materials Today: Proceedings, 80, 344-

356. 

[5] Condran, S., Bewong, M., Islam, M. Z., Maphosa, L., & 

Zheng, L. (2022). Machine learning in precision 

agriculture: a survey on trends, applications and 

evaluations over two decades. IEEE Access, 10, 73786-

73803. 

[6] Dang, M., Wang, H., Li, Y., Nguyen, T. H., Tightiz, L., 

Xuan-Mung, N., & Nguyen, T. N. (2024). Computer 

Vision for Plant Disease Recognition: A Comprehensive 

Review. The Botanical Review, 1-61. 

[7] Attri, I., Awasthi, L. K., & Sharma, T. P. (2024). Machine 

learning in agriculture: a review of crop management 

applications. Multimedia Tools and Applications, 83(5), 

12875-12915. 

[8] Murugan, J., Kaliyanandi, M., & Carmel Sobia, M. 

(2024). Revolutionizing Precision Agriculture Using 

Artificial Intelligence and Machine Learning. Data 

Science for Agricultural Innovation and Productivity, 110. 

[9] Shoaib, M., Shah, B., Ei-Sappagh, S., Ali, A., Ullah, A., 

Alenezi, F., ... & Ali, F. (2023). An advanced deep 

learning models-based plant disease detection: A review 

of recent research. Frontiers in Plant Science, 14, 

1158933. 

[10] Gupta, D. S. K., & Malik, S. (2022). Application of 

predictive analytics in agriculture. TTIDMKD, 2(4), 1-5. 

[11] Nancy, P., Pallathadka, H., Naved, M., Kaliyaperumal, K., 

Arumugam, K., & Garchar, V. (2022, March). Deep 

Learning and Machine Learning Based Efficient 

Framework for Image Based Plant Disease Classification 

and Detection. In 2022 International Conference on 

Advanced Computing Technologies and Applications 

(ICACTA) (pp. 1-6). IEEE. 

[12] Harakannanavar, S. S., Rudagi, J. M., Puranikmath, V. I., 

Siddiqua, A., & Pramodhini, R. (2022). Plant leaf disease 

detection using computer vision and machine learning 

algorithms. Global Transitions Proceedings, 3(1), 305-

310. 

[13] Khan, A. I., Quadri, S. M. K., Banday, S., & Shah, J. L. 

(2022). Deep diagnosis: A real-time apple leaf disease 

detection system based on deep learning. computers and 

Electronics in Agriculture, 198, 107093. 

[14] Thakur, P. S., Khanna, P., Sheorey, T., & Ojha, A. (2022). 

Trends in vision-based machine learning techniques for 

plant disease identification: A systematic review. Expert 

Systems with Applications, 208, 118117. 

[15] Tan, M. (2019). Efficientnet: Rethinking model scaling 

for convolutional neural networks. arXiv preprint 

arXiv:1905.11946. 

[16] Dollár, P., Singh, M., & Girshick, R. (2021). Fast and 

accurate model scaling. In Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition 

(pp. 924-932). 

[17] Papoutsis, I., Bountos, N. I., Zavras, A., Michail, D., & 

Tryfonopoulos, C. (2023). Benchmarking and scaling of 

deep learning models for land cover image classification. 

ISPRS Journal of Photogrammetry and Remote Sensing, 

195, 250-268. 

[18] Atila, Ü., Uçar, M., Akyol, K., & Uçar, E. (2021). Plant 

leaf disease classification using EfficientNet deep learning 

model. Ecological Informatics, 61, 101182. 

[19] Pandian, J. A., Kumar, V. D., Geman, O., Hnatiuc, M., 

Arif, M., & Kanchanadevi, K. (2022). Plant disease 

detection using deep convolutional neural network. 

Applied Sciences, 12(14), 6982. 

[20] Balaji, B., Murthy, T. S., & Kuchipudi, R. (2023). A 

comparative study on plant disease detection and 

classification using deep learning approaches. Int. J. 

Image Graph. Signal Process.(IJIGSP), 15(3), 48-59. 

[21] Heng, Q., Yu, S., & Zhang, Y. (2024). A new AI-based 

approach for automatic identification of tea leaf disease 

using deep neural network based on hybrid pooling. 

Heliyon, 10(5). 

[22] Srivastav, S., Gulcria, K., & Sharma, S. (2024, May). 

Revolutionizing Tea Leaf Disease Detection for 

Sustainable Cultivation using Convolutional Neural 

Network. In 2024 5th International Conference for 

Emerging Technology (INCET) (pp. 1-5). IEEE. 

[23] Li, S., Zhang, Z., & Li, S. (2024). Identification of Tea 

Disease under complex backgrounds based on 

Minimalism neural network architecture and Channel 

Reconstruction Unit. IEEE Access. 

[24] Kulkarni, Priyanka, and Swaroopa Shastri. "Rice leaf 

diseases detection using machine learning." Journal of 

Scientific Research and Technology (2024): 17-22. 

[25] Zhang, Y., Zhou, G., Chen, A., He, M., Li, J., & Hu, Y. 

(2023). A precise apple leaf diseases detection using 

BCTNet under unconstrained environments. Computers 

and Electronics in Agriculture, 212, 108132. 

[26] Gong, X., & Zhang, S. (2023). A high-precision detection 

method of apple leaf diseases using improved faster R-

CNN. Agriculture, 13(2), 240. 

[27] Yoseph, B. (2024). ETHIOPIAN COFFEE LEAF 

DISEASE DETECTION USING DEEP LEARNING 

(Doctoral dissertation, St. Mary's University). 

[28] Lekha, J., Saraswathi, S., Suryaprabha, D., & Thomas, N. 

(2024, March). Tomato Leaf Disease Detection using 

Machine Learning Model. In Proceedings of the 1st 

International Conference on Artificial Intelligence, 

Communication, IoT, Data Engineering and Security, 

IACIDS 2023, 23-25 November 2023, Lavasa, Pune, 

India. 

[29] Wajid, A. H., Saher, N., Nawaz, S. A., Arshad, M., & 

Nasir, M. (2024). Tomato Leaf Disease Detection and 

Classification Using Convolutional Neural Network and 

Machine Learning. Journal of Computing & Biomedical 

Informatics. 

[30] Verma, S., Kumar, P., & Singh, J. P. (2024). A unified 

lightweight CNN-based model for disease detection and 

identification in corn, rice, and wheat. IETE Journal of 

Research, 70(3), 2481-2492. 

[31] Ramadan, S. T. Y., Sakib, T., Al Farid, F., Islam, M. S., 

Abdullah, J., Bhuiyan, M. R., ... & Karim, H. A. (2024). 

Improving Wheat Leaf Disease Classification: Evaluating 



International Journal of Computer Applications (0975 – 8887) 

Volume 186 – No.45, October 2024 

43 

Augmentation Strategies and CNN-Based Models With 

Limited Dataset. IEEE Access. 

[32] Khalid, M. M., & Karan, O. (2024). Deep learning for 

plant disease detection. International Journal of 

Mathematics, Statistics, and Computer Science, 2, 75-84. 

[33] Goodfellow, I. (2016). Deep learning (Vol. 196). MIT 

press. 

[34] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). 

Gradient-based learning applied to document recognition. 

Proceedings of the IEEE, 86(11), 2278-2324. 

[35] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). 

Learning representations by back-propagating errors. 

nature, 323(6088), 533-536. 

[36] Kingma, D. P. (2014). Adam: A method for stochastic 

optimization. arXiv preprint arXiv:1412.6980. 

[37] Smith, L. N. (2017, March). Cyclical learning rates for 

training neural networks. In 2017 IEEE winter conference 

on applications of computer vision (WACV) (pp. 464-

472). IEEE. 

[38] Ioffe, S. (2015). Batch normalization: Accelerating deep 

network training by reducing internal covariate shift. 

arXiv preprint arXiv:1502.03167. 

[39] Nitish, S. (2014). Dropout: a simple way to prevent neural 

networks from overfitting. J. Mach. Learn. Res., 15, 1. 

[40] Nair, V., & Hinton, G. E. (2010). Rectified linear units 

improve restricted boltzmann machines. In Proceedings of 

the 27th international conference on machine learning 

(ICML-10) (pp. 807-814). 

[41] Manning, C. (1999). Foundations of statistical natural 

language processing. The MIT Press. 

[42] Powers, D. M. (2020). Evaluation: from precision, recall 

and F-measure to ROC, informedness, markedness and 

correlation. arXiv preprint arXiv:2010.16061.

 

IJCATM : www.ijcaonline.org 


