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ABSTRACT
Breast cancer remains one of the most common and lethal forms
of cancer globally. It impacts millions of women each year across
various age groups, ethnicities, and socio-economic backgrounds.
Early detection is critical for improving survival rates, as it allows
for timely and less aggressive treatment options. While mammog-
raphy has played a significant role in early diagnosis, it is limited by
variability in interpretation and the potential for false positives and
negatives. Recent deep learning (DL) advancements offer promis-
ing solutions for more accurate breast cancer detection. This pa-
per presents a convolutional neural network (CNN) architecture de-
signed to classify breast ultrasound images, distinguishing between
malignant, benign, and normal tissues. The proposed CNN model
was trained and tested on the Breast Ultrasound Images dataset with
various image resolutions, including 32×32, 56×56, 128×128,
and 256×256 pixels. The results demonstrated that with an image
resolution of 256×256, the CNN model achieved the highest accu-
racy of 99.87% and 83.49% in training and testing, respectively.
The study emphasizes the potential of deep learning techniques
in improving breast cancer detection accuracy and efficiency, ul-
timately leading to improved patient outcomes.
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1. INTRODUCTION
Breast cancer is the foremost reason for cancer-related deaths
among women. Millions of women are diagnosed with breast can-
cer yearly. Survival rates for breast cancer differ, and it is based
on the quality of medical services in various regions of the world.
For example, in North America, the survival rate is more than 80%;
in Sweden and Japan, it is about 60%, which is lower in develop-
ing countries [27]. The low survival rate in developing countries is
due to the absence of early detection programs and insufficient di-
agnostic and healthcare services. Thus, it is critical to utilize high
technology such as Artificial Intelligence (AI), Machine Learning
(ML), and DL methods to diagnose breast cancer even with low-
quality images or images with less resolution.
According to the World Health Organization, breast cancer contin-
ues to be a significant health concern worldwide, impacting mil-
lions of women annually. In 2022, breast cancer caused 670,000

deaths globally 2022, and roughly half of all cases occur in women
with no specific risk factors other than sex and age. It manifests
as an abnormal growth of cells within breast tissue, which can be
classified into two primary categories: benign and malignant. Be-
nign tumors, while non-cancerous, can still pose health risks and
may require treatment to prevent complications. Malignant tumors,
on the other hand, are cancerous and can invade nearby tissues or
spread to different parts of the body, leading to more severe health
outcomes[17].
Furthermore, The projected value of the global breast cancer mar-
ket is estimated to reach around USD 49.2 billion by 2032, com-
pared to USD 19.8 billion in 2022. This is a compound annual
growth rate (CAGR) of 9.8% between 2022 and 2032, as illustrated
in Figure 1. Over time, there has been an improvement in breast
cancer survival rates. The breast cancer five-year survival rate in
the United States is around 90%. The American Cancer Society ad-
vises women at medium risk, beginning at 40, to undergo yearly
mammograms.

Fig. 1. Global Breast Cancer Market 2022-2032 [15]

In recent years, advancements in Deep Learning (DL) have revolu-
tionized many real-life applications [2, 21, 7, 5] and also in medical
image analysis, offering promising solutions for automated tumor
classification[14]. Convolutional Neural Networks (CNNs) repre-
sent a compelling DL architecture for image classification tasks
[13]. CNNs excel at automatically extracting relevant features from
images through a series of convolutional and pooling layers, ulti-
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mately enabling accurate image classification via fully connected
layers [9].
The success of CNNs in various medical imaging domains has
spurred interest in their application to breast cancer detection.
CNNs have shown potential in analyzing ultrasound images of
breast tissue, effectively distinguishing different types of abnormal-
ities. Ultrasound imaging is favored for its safety, non-invasiveness,
and cost-effectiveness; however, its manual interpretation poses
challenges due to noise and the subtlety of distinguishing features.
Integrating CNNs into breast cancer detection workflows can facil-
itate large-scale screening programs, especially in resource-limited
settings. Automated systems powered by CNNs can process vast
amounts of imaging data efficiently, reducing the burden on radiol-
ogists and enabling timely interventions. As such, the development
and refinement of CNN-based models for breast cancer detection
represent a crucial step forward in the fight against this pervasive
disease.
The structure of this research goes through the following sections.
Section 2 discussed the recent research in breast cancer classifi-
cation. Section 3 presents the typical architecture of Convolutional
Neural Networks. While Sections 4 and 5 discuss the utilized breast
cancer dataset for the proposed CNN architecture. To demonstrate
the accuracy of the proposed architecture, various experiments are
conducted and evaluated in Section 6. The main findings of this re-
search, along with some future directions, are discussed in Section
7.

2. RELATED WORKS
Many studies have underscored the potential of these advanced
methods to enhance both the accuracy and efficiency of diagnoses.
Such improvements have been achieved through a diverse array of
approaches. For instance, the authors in [24] constructed a Convo-
lutional Neural Network (CNN) model to categorize mammogra-
phy images into normal, benign, and malignant categories to iden-
tify breast cancer cases. The model, trained on preprocessed im-
ages, outperformed previous methods with accuracies of 0.8585
and 0.8271, respectively. Falconi et al. [8] reported the first results
for using transfer learning to classify breast anomalies as cancers.
ResNet50 and MobileNet emerged as the winners among the sev-
eral deep learning models they tested. A 78.4% and a 74.3% per-
cent accuracy rate, respectively, were the most significant results
achieved by the two models.
An innovative method was presented by Ashurov et al. [4] to im-
prove the CNN models’ interpretability and robustness in classi-
fying breast cancer histopathology images. This method integrates
transfer learning with attention processes. Their approach achieves
up to 99.6% test accuracy rates using pre-trained models such as
Xception, VGG16, ResNet50, MobileNet, and DenseNet121, en-
hanced with the convolutional block attention module (CBAM).
However, the authors in [10] employed a pre-trained EfficientNet-
b0 deep learning model for breast cancer classification with an av-
erage accuracy obtained 95.4% and 99.7% for two datasets.
In another study, Rahman et al. [18] present an innovative
multi-scale transfer learning model named “BreastMultiNet” for
breast image identification. This model combines VGG19 with
DenseNet201 to capture low-level properties and construct a multi-
scale feature learning process to evaluate these features at various
scales. Their architecture, containing 39,013,634 parameters, sig-
nificantly extends the capacities of DenseNet201 and VGG19 indi-
vidually. The framework integrates microscopic image sharpening,
blurring, texturing, and gradient alignment, achieving remarkable
performance improvements.

Additionally, Yao et al. [29] suggested a Deep Neural Network with
an Attention Mechanism for Breast Cancer Histology Image Clas-
sification that utilizes CNNs and Recurrent Neural Networks. Un-
like the conventional serial technique, which involves extracting vi-
sual features using a CNN and then feeding them into an RNN, their
solution employs a parallel structure consisting of both a CNN and
an RNN for feature extraction. To merge the information retrieved
by the model’s two distinct neural network architectures, they use
a unique perceptron attention mechanism borrowed from the nat-
ural language processing domain. The model employs switchable
normalization instead of general batch normalization in the convo-
lution layer and uses the latest regularization technology, targeted
dropout, in the last three fully connected layers. During the test-
ing phase, model fusion and test time augmentation technology are
applied on three different datasets of hematoxylin–eosin-stained
breast biopsy images. The results demonstrate that their model sig-
nificantly outperforms state-of-the-art methods.
In [12], the authors proposed an approach that integrates two pri-
mary components: transfer learning and convolutional neural net-
works (CNNs). The hyperparameters of the CNN model were
adjusted to improve the classification performance. The results
demonstrated that the strategies provided had a substantial positive
impact on accuracy across all datasets. Specifically, the combined
datasets saw an accuracy improvement of 92.27%, MIAS achieved
a 95.95% accuracy, DDSM achieved a 99.39% accuracy, and IN-
breast achieved a 96.53% accuracy.
Unlike previous studies that have employed intricate multi-stage
frameworks, This research takes a more streamlined approach by
leveraging a single-stage convolutional neural network (CNN) ar-
chitecture. This choice contrasts with the complex methodologies
often used in this field, aiming for simplicity and efficiency in ac-
curately classifying breast cancer.

3. CONVOLUTIONAL NEURAL NETWORKS
Convolutional Neural Networks are a class of deep learning mod-
els with exceptional performance in image recognition tasks. The
architecture of CNNs is characterized by distinct layers tailored
for handling multidimensional data, making them particularly well-
suited for image analysis [25]. According to [11], Figure 2 shows
typical CNN architecture.

Fig. 2. Typical CNN architecture [11]

The backbone of CNNs is formed by convolutional layers, which
apply filters across input images to extract localized features such
as edges and textures. These filters are systematically learned dur-
ing training, enabling the network to detect and emphasize relevant
patterns within the data automatically.
Concurrently, pooling layers facilitate spatial downsampling, re-
ducing the dimensionality of feature maps while preserving criti-
cal information. This is a pivotal step in managing computational
complexity and enhancing the model’s robustness.
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Central to CNNs’ efficacy is their hierarchical feature extraction
process. Beginning with raw pixel values, each successive layer re-
fines extracted features through non-linear activation functions like
Rectified Linear Units (ReLU). This promotes the network’s ability
to model complex relationships within data.
The culmination of this process occurs in fully connected layers,
where higher-level abstractions are leveraged for accurate classi-
fication or regression tasks. This architectural design supports in-
tricate data representations and facilitates the network’s general-
ization capacity across diverse datasets. One common feature of
feed-forward neural networks is their complete connectivity, with
all neurons in one layer linked to all neurons in the next. Due to
their ”full connectivity,” these networks are predisposed to overfit
data. Generally, regularization aims to avoid overfitting by reducing
connectivity, punishing parameters during training (e.g., by weight
decay), or both.
CNNs stand out from traditional ML algorithms because they can
automatically extract features on a massive scale, eliminating the
necessity for human feature engineers [30]. Because of the convo-
lutional layers, CNNs can detect and extract features and patterns
from data regardless of translation, size, orientation, or position
changes.
In addition to image classification tasks, CNNs have many other
potential applications, including time series analysis, speech recog-
nition, and natural language processing [26][23][6]. The architec-
tural design of Convolutional Neural Networks supports sophisti-
cated data representations and enables the network to generalize
effectively across diverse datasets. This generalization capability is
crucial in medical imaging applications, where accurate and consis-
tent diagnosis across different patient cases is essential [3, 28, 16].

4. BREAST CANCER DATASET
The utilized dataset in this study is publicly available from [1]. The
dataset is valuable for researchers developing and evaluating ma-
chine learning algorithms for breast cancer classification using ul-
trasound imaging. The dataset [19] encompasses breast ultrasound
scans from a diverse group of 600 female patients aged 25 to 75
years old. The dataset boasts a collection of 780 images, all stored
in the widely compatible PNG format. Each image has a uniform
size of 500×500 pixels, ensuring consistency for machine learning
algorithms that rely on image dimensions. Significantly, the dataset
goes beyond just the raw images. It incorporates crucial ground
truth labels for each image, classifying them as normal, benign,
or malignant, as shown in Figure 3. This labeled data allows re-
searchers to train and test their algorithms to achieve accurate dif-
ferentiation between healthy and cancerous tissue.
By providing a comprehensive collection of labeled ultrasound im-
ages, this dataset paves the way for advancements in the early de-
tection of breast cancer using automated image analysis techniques.

Fig. 3. Sample image of the database [1]

4.1 Preprocessing
In preparation for feeding into the convolutional neural network
(CNN) model, a vital preprocessing step: is image resizing em-
ployed. The original breast cancer images were scaled to various di-
mensions, encompassing 32×32, 56×56, 128×128, and 256×256
pixels while preserving their three color channels (RGB). This re-
sizing ensures compatibility with the CNN’s input layer dimensions
and fosters computational efficiency during training by reducing
the number of pixels the model needs to process.
Additionally, standardizing image sizes helps maintain a uniform
scale across all samples, reducing variability arising from differ-
ing resolutions. Smaller sizes like 30x30 pixels can significantly
reduce computational cost and training time. Still, there’s a risk of
losing crucial details within the image that might be vital for accu-
rate cancer detection. Conversely, larger sizes like 256x256 pixels
can preserve more detail but may increase training time and re-
source consumption. Through experimentation, we aim to identify
the ideal resize dimension that balances computational efficiency
and preserving information necessary for the CNN to effectively
distinguish between cancerous and normal tissues.

5. THE PROPOSED CNN
In the fight against breast cancer, early and accurate detection is
paramount. CNNs have emerged as powerful tools for analyzing
medical images, offering the potential to automate breast cancer
screening. However, a critical factor influencing CNN performance
is the size of the input image. This study explores the impact of
image size by proposing various CNN architectures specifically de-
signed to handle breast cancer images resized to different dimen-
sions, including 32×32, 56×56, 128×128, and 256×256 pixels, to
classify the breast ultrasound images into three categories: malig-
nant, benign, and normal tissues.
The aim is to identify the optimal balance between computational
efficiency, feature preservation, and accurate breast cancer classifi-
cation by investigating CNN structures tailored to each image size.
While the core principles of CNNs remain consistent across dif-
ferent image sizes, the specific model structure can be adapted for
each variation. The process starts with three convolutional layers
that extract hierarchical features from the input images using ReLU
activation functions.

Fig. 4. The impact of ReLU activation function [22]

ReLU can add non-linearity to the model, allowing it to effectively
learn intricate relationships between image characteristics and their
respective classes, as given in Figure 4.
Each convolutional layer is followed by a max-pooling operation,
which reduces the spatial dimensions of the feature maps while re-
taining essential features, as illustrated in Figure 5. These features
are instrumental in achieving precise differentiation among malig-
nant, benign, and normal tissue types.
Post convolution and pooling, a flattening layer transforms the 2D
feature maps into a 1D vector, preparing them for input into the
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Fig. 5. An illustrative example of Max Pooling [20]

subsequent dense (fully connected) layers. The final dense layer
includes Three neurons with softmax activation, generating proba-
bilities for the three classes. Figures 6 and 7 show the whole layers
of the proposed CNNs for various image resolutions.

Fig. 6. Proposed CNN for image resolution (32×32) and (56×56)

In figure 6(a), and (b)the three convolutional layers apply filters to
the input image to extract features and create feature maps. Fol-
lowing each convolution layer, a max pooling layer exists to down-
sample the feature maps by taking the maximum value within a
specified region. This reduces the dimensionality of the data. A

flattened layer is followed to reshape the feature maps into a one-
dimensional vector, preparing the data for the fully connected lay-
ers. the fully connected layers combine the extracted features into
a fixed-size vector and perform classification. The final dense layer
typically has the number of neurons equal to the number of classes
in the classification problem. The primary difference between Fig-
ure 6 (a) and (b) lies in the input image size. Figure 6 (a) for 32x32
images has a smaller input, leading to fewer neurons in the fully
connected layers. Meanwhile, the fully connected layers in Figure
6(b) for 56x56 images have a larger number of neurons, indicating
that they can capture more complex patterns from the larger input.

Fig. 7. Proposed CNN for image resolution (128×128) and (256×256)

The same architectures are illustrated in Figure 7 (a) where the in-
put image size is 128×128 and Figure 7 (b) 256×256 pixels as
input. The number of channels (3) likely indicates that the images
are in RGB format. The final layer produces a vector of size 3,
suggesting that the model is designed to classify images into three
categories.
Figure 8 shows the overall process of the proposed model that ac-
quires the ability to classify images, utilizing deep learning to im-
prove the accuracy and efficiency of breast cancer diagnosis.
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Fig. 8. Proposed CNN for Breast cancer Classification

6. EXPERIMENTAL RESULTS
The following section details the experimental results of applying
CNN models to the prepared dataset. We evaluated the performance
of each model using a suite of metrics, including accuracy, preci-
sion, recall, and F1-score. These metrics were calculated for both
the training data, used to establish the model, and the testing data,
which assessed the model’s ability to generalize to unseen data.
This analysis allows for a comprehensive comparison of the mod-
els’ effectiveness in diagnosing breast cancer. Understanding how
well our model performs hinges on a foundation of specific terms
such as TP (i.e., The model’s prediction perfectly aligns with the
real-world situation, both pointing towards a positive outcome),
TN (i.e., The predicted negative outcome is verified by the ac-
tual negative label.), FP (i.e., The model mistakenly identifies an
instance as positive, while the ground truth label confirms it as neg-
ative), and FN (i.e., The model mistakenly classifies an instance
as negative, while the ground truth label confirms it as positive).
These terms, which act as the building blocks of our evaluation,
will be the cornerstone of calculating the metrics that ultimately re-
veal the model’s strengths and weaknesses. A high number of TP s
and TNs indicates good overall accuracy, while a high number of
FP s and FNs suggests the model is making mistakes in its classi-
fications.

—Accuracy: This measure represents the percentage of predic-
tions the model gets correct concerning the total predictions (i.e.,
TotalPredications). It can be computed as follows.

Accuracy =
TP + TN

TotalPredications
(1)

Accuracy in breast cancer classification reflects the proportion
of instances where the model accurately classifies malignant and
benign tissue samples.

—Precision (Pre): This metric focuses on the positive predictions.
It quantifies the ratio of correctly identified positive instances to
the total number of positive predictions made by the model. It
can be computed as follows.

Precision =
TP

TP + FP
(2)

High precision is crucial in breast cancer diagnosis to minimize
false positives, which can lead to unnecessary biopsies.

—Recall (Rec): It quantifies the percentage of accurately identified
positive examples among all real positive examples. It can be
computed as follows.

Recall =
TP

TP + FN
(3)

High recall is essential to avoid missing true positives, which
could lead to delayed treatment.

—F1-Score: This metric is a consolidated indicator of the classi-
fier’s efficacy in classifying instances within a specific class. It is
calculated as the harmonic mean of accuracy and recall, balanc-
ing the model’s ability to correctly identify positive cases (recall)
and avoid false positives (accuracy), and computed according to
the following formula.

F1 = 2 · Pre ·Rec

Pre+Rec
(4)

The experimental setup is summarized in Table 1. The model was
trained using an Adam optimizer with a batch size of 8, and the
model was trained for 30 epochs. The dataset comprised 1030 im-
ages categorized into three distinct classes. Table 2 also provides a
detailed breakdown of the image distribution across each class.

Table 1. Tuning Set and Testing Set

Hyperparameter Value

Initial Learning Rate 1.0000× 10−4

Mini-batch Size 8
Shuffle Every Epoch
Optimizer Adam
Max Epochs 30
Execution Environment CPU

Table 2. Number of Images per Class

Class Number of Images

Malignant 360
Benign 537
Normal 133

Training Samples (80%)
Testing Samples (20%)

6.1 Performance Analysis
The evaluation results of training CNNs on image datasets with
varying resolutions are listed in Table 3 and in testing data.
From analyzing the results in Table 3, the overall accuracy in-
creases with image resolution, reaching a peak at 256×256 (0.998)
for training data and (0.834) for testing data. Here is a positive cor-
relation between the amount of image detail and model accuracy,
at least up to a certain point.
Like accuracy, precision and recall generally increase with reso-
lution, reaching a peak at 256×256 for training and testing data.
This indicates that the model better identifies the correct class (pos-
itive or negative) with more detailed images. With image resolu-
tion 256×256, the model’s accuracy is improved by 0.486% when
compared with resolutions (32×32 and 56×56) and improved by
0.122% compared with resolution 128×128 in the training. The
performance metrics (accuracy and recall) for 32×32 and 256×256
on the testing set are similar. This might indicate an optimal reso-
lution range for this specific model and dataset. However, the jump
in accuracy from 56×56 to 128×128 is more significant than the
increase from 128×128 to 256×256. This suggests that the model
benefits more from increased resolution up to a certain point.
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Table 3. Performance Metrics for Different Resolutions

Dataset Resolution Accuracy Precision Recall F1 Score

Training

32×32 0.993932039 0.993952897 0.993932039 0.993926701
56×56 0.993932039 0.993951490 0.993932039 0.993934030
128×128 0.997572816 0.997572816 0.997572816 0.997572816
256×256 0.9987864078 0.9987892235 0.9987864078 0.9987860572

Testing

32×32 0.834951456 0.840674499 0.834951456 0.834865186
56×56 0.766990291 0.786603573 0.766990291 0.767328614
128×128 0.815533981 0.813782581 0.815533981 0.813986476
256×256 0.834951456 0.834370435 0.834951456 0.834098435

6.2 Confusion Matrix
Furthermore, the confusion matrix can provide a class-by-class
breakdown of the classifier’s effectiveness. This breakdown in-
cludes the counts of true positives, false positives, true negatives,
and erroneously listed false positives. Figures 9, 10, 11, and 12
show the confusion matrices of CNN with various image resolu-
tions in training and testing data.
According to Figure 9, the model exhibits exceptionally high accu-
racy, with almost all instances correctly classified. This is evident
in the large diagonal values (true positives) and low off-diagonal
values (errors) regarding training. Specifically, the model correctly
classified 819 cases out of 824 (99.93%) in training and 172 out
of 206 (83.49%) in testing. From the testing confusion matrix, the
model correctly identifies a majority of malignant cases (56 out of
72), but there are 15 false positives (predicted as benign) and 1 false
negative (predicted as normal). The model performs well in classi-
fying benign cases for the Benign class, with 96 correct predic-
tions out of 107. However, there are 4 false negatives (predicted as
malignant) and 7 false positives (predicted as normal). The model
performs reasonably well classifying normal cases, with 20 correct
predictions out of 27. However, there are 6 false positives (pre-
dicted as benign) and 1 false negative (predicted as malignant).

Fig. 9. Confusion matrix for image resolution of (32×32)

For image resolution 56×56 in the training case, the CNN model
correctly identifies almost all malignant cases, indicating good sen-
sitivity for this class. Similar to malignant, the model performs ex-
ceptionally well in classifying benign cases except only for 3 cases.
The model accurately classified 105 cases out of 106 for the normal
class. In the case of testing, the CNN diagnosis model has achieved
a reasonable performance in classifying normal cases, with 18 cor-
rect predictions out of 27. However, there are 2 false positives (pre-
dicted as benign) and 7 false negatives (predicted as malignant). For
the other two classes (Malignant and Benign), the model accurately
identifies 65 out of 72 malignant cases but has 3 false positives, 4
false negatives, and 75 correct predictions for benign cases.

Fig. 10. Confusion matrix for image resolution of (56×56)

Figure 11 presents the confusion matrices for breast cancer diag-
nosis using 128×128 image resolution, separately for training and
testing datasets. In the training confusion matrix, the model cor-
rectly classified almost all instances (99.75%), with very few mis-
classifications (0.24%). However, in the testing data, the model
correctly identifies a majority of malignant cases (59 out of 72),
but there are 11 false positives (predicted as benign) and 2 false
negatives (predicted as normal). In contrast, the model achieves 92
correct predictions out of 107 correct predictions when classifying
Benign cases and 17 correct predictions out of 27 when classifying
normal cases.

Fig. 11. Confusion matrix for image resolution of (128×128)

Increasing image resolution to 256x256 could enhance the classifi-
cation accuracy, providing the model with more detailed informa-
tion for distinguishing between various classes, as shown in Figure
12. The CNN model correctly classified 823 out of 824 cases as true
positive and true negative in training data while misclassified 34
out of 206 cases as false positive and false negative in testing data.
Overall, good performance for Benign and Malignant classes: The
model performs well in classifying benign and malignant cases,
with high accuracy and few misclassifications. By which 64 ma-
lignant cases were correctly identified as malignant (16.50%), 90
benign cases were correctly identified as benign (43.68%), and 18
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normal cases were correctly identified as normal (8.73%) out of
206 test cases.

Fig. 12. Confusion matrix for image resolution of (256×256)

6.3 Convergence Curves
Moreover, accuracy and loss curves are essential tools for evaluat-
ing the performance of a DL model during training. The accuracy
curve illustrates how well the model predicts correct outcomes over
time, ideally increasing as training progresses. Conversely, the loss
curve depicts the model’s error rate (i.e., the discrepancy between
the model’s predicted outputs and the actual ground truth labels for
training data), decreasing as the model learns from the data. Figures
13, 14, 15, and 16 show the accuracy and loss curves for 32×32,
56×56, 128×128, and 256×256, respectively.

Fig. 13. Accuracy and Loss convergence curves for image resolution of
(32×32)

From Figure 13, the training accuracy curve shows a consistent up-
ward trend, indicating that the model effectively learns from the
training data. While the training accuracy continues to rise, the
validation accuracy plateaus around epoch 20. Regarding the loss
convergence, both training and validation loss curves show a down-
ward trend, indicating that the model minimizes its errors over time.

Fig. 14. Accuracy and Loss convergence curves for image resolution of
(56×56)

Fig. 15. Accuracy and Loss convergence curves for image resolution of
(128×128)

For image resolutions 56×56 and 128×128, both training and vali-
dation accuracy curves have achieved steady improvement. In con-
trast, the loss curves exhibit some oscillations, particularly in the
validation loss, due to the limitations of data classes.
The accuracy curve in Figure 16 shows a rapid initial improve-
ment, indicating effective learning from the training data. The train-
ing and validation loss curves consistently decline, suggesting that
the model progressively reduces error. Generally, lower loss values
indicate that the model’s predictions are close to the true values,
signifying better performance. A higher accuracy value means the
model has made more correct predictions, which is desirable.

Fig. 16. Accuracy and Loss convergence curves for image resolution of
(256×256)

7. CONCLUSION
In conclusion, breast cancer poses a significant global health chal-
lenge, affecting millions annually with varying severity and out-
comes. Early detection and diagnosis remain pivotal in enhanc-
ing survival rates and treatment efficacy, yet existing methods face
interpretational challenges and potential diagnostic inaccuracies.
Leveraging recent advancements in deep learning, this study in-
troduced a tailored convolutional neural network (CNN) architec-
ture for classifying breast ultrasound images into malignant, be-
nign, and normal tissues. The proposed CNN model demonstrated
notable accuracy, precision, recall, and F1-score metrics improve-
ments through rigorous experimentation on various image resolu-
tions. These findings underscore the potential of CNNs in revolu-
tionizing breast cancer detection by providing more accurate and
efficient diagnostic tools. By automating image analysis and reduc-
ing dependency on manual interpretation, CNN-based systems can
significantly alleviate the burden on medical professionals, paving
the way for enhanced patient care and outcomes in the fight against
breast cancer. For future work, one potential direction is to explore
the integration of other imaging modalities, such as mammography
and MRI as well as utilizing various DL models.
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