
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.44, October 2024

36

Enhancing Cloud Security: A Novel Intrusion Detection
System Using Deep Learning Algorithms

Vijay Kumar Gandam
Department of Computer science and Technology,

Research Scholar
Chaitanya Deemed to be University

Hyderabad, India

E. Aravind, PhD

Department of Computer science and Technology,
Research Supervisor

Chaitanya Deemed to be University
Hyderabad, India

ABSTRACT

The intrinsic qualities of Cloud Computing (CC), including

scalability and adaptability, have led to its adoption by several

sectors. Nevertheless, cloud providers continue to face substantial

challenges related to security, even though these benefits are

undeniable. Unauthorized entrée, data breaches, and insider

threats are some of the new dangers that CC introduces. Attackers

find cloud systems appealing due to their common infrastructure.

Tackling these security concerns requires the inclusion of strong

security systems. Intrusion Detection Systems (IDS) are one such

method that is essential for protecting cloud environments and

networks. IDS keep tabs on every system and network activity. A

lot of people have been looking at ways to improve IDS

performance using ML and DL techniques as of late. Machine

learning and deep learning algorithms have proven themselves

capable of sifting through mountains of data and producing

reliable forecasts. Using these methods, IDS can adjust to new

threats, find past attacks, and cut down on false positives. This

paper presents a new intrusion detection system (IDS) model that

incorporates DL methods such as the Morlet Wavelet Kernel

Function. An MLSTM classifier is suggested for the purpose of

identifying breaches in the IoT-Cloud setting. Jarratt-Butterfly

optimization algorithm (JBOA) selects the relevant features to

increase classification accuracy. The suggested model is tested

using known methodologies in terms of various parameters using

the comprehensive intrusion dataset BoT-IoT. Through the use of

simulations, the results prove that the suggested research classical

outperforms the state-of-the-art models.

Keywords
Intrusion Detection System; Morlet Wavelet Kernel Function

Long Short-Term Memory; Jarratt-Butterfly optimization

algorithm; Intrusion Detection System; Cloud Computing; Deep

Learning.

1. INTRODUCTION
Because it's a cheap approach to set up and run their own system
resources, Cloud computing is now used by many enterprises and
startups [1]. Cloud computing has a number of challenges,
including location awareness, low latency, geo-location, and
mobility support. Cloud model for delivering computing services
and applications over the Internet; it allows for increased mobility,
flexibility, location service awareness, and low latency [2-3].
Cloud computing encounters numerous safety and security
concerns as a result of its implementation in various locations with
inadequate security measures. For instance, smart devices can be
subject to numerous cyber-attacks that compromise their data
privacy, including man-in-the-middle and port scan attacks [4].
The proliferation of internet-enabled gadgets is a direct result of
the pervasiveness of the internet in contemporary life. One
example is the increasing prevalence of internet of things (IoT)
gadgets in people's everyday lives. However, a number of
researchers are discussing potential solutions to these growing

difficulties [5-6]. Finding, verifying, and stopping unofficial
access to a computer network or internetwork is the job of intrusion
detection, a technique utilized in cloud and IoT security measures.

Due to the tremendous improvements in data skill, there are major
disputes over network confidentiality that need to be handled. IDS
are so crucial for protecting networks [7]. Intrusion detection
systems are grouped into various distinct methods. Active and
inactive are the two primary groups. Newly emerging threats are
insurmountable for traditional active IDS systems [8]. Due to the
large sum of components and characteristics of this sort of
network, one of the primary challenges in detecting intrusions is
finding and distinguishing between normal and abnormal
connections. Locating and determining the method of intrusions is
a common use case for IDS [9]. In order to accomplish intrusion
detection in real-time, the researchers looked into various element
selection methodologies in depth [10]. A compelling argument for
educating the efficiency and precision of classification algorithms
is to decrease the sum of features by selecting only the most crucial
ones.

It is common practice to employ machine learning algorithms for
attack detection; these algorithms also guide network managers
toward the best course of action when responding to attacks [11].
Nevertheless, the majority of these conventional ML approaches
require a comprehensive feature extraction and selection
procedure, and they belong to the shallow learning class [12]. Due
to the large sum of components and characteristics of this sort of
network, one of the primary challenges in detecting intrusions is
finding and distinguishing between normal and abnormal
connections. When an intrusion occurs, IDS are often employed to
find out where and how it happened [13]. The classifier is the heart
of an IDS; it uses a detection algorithm to tell the difference
between normal and intrusion-related activity. In networks of
cloud, where there are many devices, it can be very difficult to
implement a classifier with an accurate discovery technique [14].

In recent times, scholarly investigations have demonstrated that
intelligent learning techniques like ML, learning may accomplish
network security tasks and have multiple practical applications
[15]. To sum up, current procedures still have some flaws that need
fixing, even if numerous NN-based intrusion detection methods
have been suggested recently and boast about achieving a high
performance rate [16]:

• While past studies dealt with DDoS attacks in the cloud,

our suggested model is capable of handling any kind of

attack.

• The Host-based IDS is the target of the majority of the

published approaches. We prefer Network-based IDS

over Host-based IDS due of their faster reaction time. In

addition, network-based IDS can monitor a whole

network segment, OS notwithstanding, without

requiring any changes to the current infrastructure.

• Traditional feature selection approaches, such as

wrapper methods, are used by most of the presented

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.44, October 2024

37

methods. A classifier that isn't as sensitive causes

inaccurate detection since traditional feature selection

methods miss a number of sensitive features. Instead, we

employ filter methods that are simpler, take up less

room, and are far quicker.

The main contribution of the research work includes:

❖ With the use of a DL-based ID framework, specifically

MLSTM, to detect intrusions in the IoT during cloud-

based IoT data broadcast.

❖ To propose an efficient and optimal mechanism for

parameter assortment with the help of JBOA to lessen

the presentation of the classification.

❖ The experimental analysis shows that the proposed

model is tested with publicly available dataset.

The related works is untaken in Section 2, the projected perfect is

explained in Section 3. The validation of projected model with

existing procedures by using dataset is given in Section 4. Finally,

the conclusion is obtainable in Section 5.

2. RELATED WORKS
In terms of convergence, security between different IoT

devices, and communication speed, this study presents the
(BABCN) procedure for intrusion detection, which was proposed
by Laassar, I., et al., [17] and uses binary networks. The BABCN
method's foundational depth-first search structure equations
enhance the artificial bee. The results obtained NSL-KDD dataset
show that the projected method improves classification and has a
decent capacity to intrusions.

By analyzing the sequence of system calls, Chaudhari, A., et al.

[18] present a new intrusion detection framework that can identify

both known and undiscovered threats. Using a combination of

LSTM and anomaly detection methods based on system call

frequency, the framework examines the system call arrangements

of virtual machines. We test the suggested architecture on the

ADFA-LD dataset, which stands for the Australian Defence Force

Academy-Linux Dataset. We acquired the maximum accuracy of

97.2% and the lowest false positive rate of 2.4% using our

projected outline when compared to the existing frameworks

A IDS based on a genetic algorithm and multilayer perceptron

(MLP) networks is suggested by Ziheng, G. E., and Jiang, G. [19].

To maximize the linkage-related weights and biases, the MLP

employs the genetic algorithm. Because of this, it can reliably

distinguish between typical and unusual packets of network data.

The proposed technique was tested in the Matlab simulator with

the KDD cup dataset. According to the consequences. After

comparing the proposed method to others, it was shown to be far

more accurate. Furthermore, the suggested approach showed

excellent specificity and sensitivity in identifying both typical and

non-standard packets of network traffic.To prevent the influence

of attacks, Polepally, V., et al., [20] create a unique IDS

framework employing cloud data. In this case, the incursions are

discovered using the spark architecture. In order to remove

artifacts and noise from the incoming data, pre-processing is used.

Slave nodes then carry out the feature extraction and fusion. The

ExpSSA algorithm, which is a proposed method, is used to

perform the feature fusion. For effective intrusion detection, the

fused characteristics are taken into account in a deep-stacked

autoencoder (Deep SAE). Deep SAE is trained using the modified

ExpSSA to tune optimal weights. The suggested ExpSSA is a

hybrid of the exponential weighted moving average (EWMA) and

the squirrel search algorithm (SSA). The suggested ExpSSA-

based Deep SAE outperformed competing methods in terms of

accuracy, finding rate (0.846), besides false positive rate (FPR).

For the sake of intrusion detection besides secure cloud data

storage, Preethi et al. [21] suggested an MDBGRNN-ID-

SCESOA, which stands for multi-scale bidirectional gated

recurrent neural network with optimal encryption scheme. As a

first step in data preparation, we use Domain Transform Filtering

(DTF) to tokenize, reduce dimensions, and do semantic analysis

using the KDD CUP 99 and DS2OS datasets. In order to separate

intrusion data from non-intrusion data, MDBGRNN is then used.

In addition, a two-way encryption method that combines

Elliptical Curve with the Sine Cosine Egret Swarm Optimization

Algorithm (ECC-SCESOA) improves data security with little

computing overheads. An effective method of concealing

sensitive content is developed through steganography to ensure

the security of encrypted data while it is at rest in the cloud.

Accuracy, specificity, sensitivity, execution time, memory

utilization, and Matthews correlation coefficient (MCC) are some

of the performance evaluation measures that show how effective

MDBGRNN-ID-SCESOA is. Significant improvements in

computing efficiency and data security are revealed by comparing

with previous methodologies. Offering a potential path for

safeguarding sensitive data in cloud surroundings, this complete

solution tackles important security concerns in cloud computing.

A hyper-automation processes in the IIoT is presented by Souri,

A., et al., [22] and is based on Trees Detection algorithm. The

design is able to predict harmful attacks. Depending on factors

such as network traffic, computation time, malicious behaviors,

and types of assaults, the suggested architecture employs a

priority-based feature approach in conjunction with Analysis of

Variance (ANOVA) to determine the most suitable features. The

next step is to run experiments with the technical data sets NSL-

KDD and UNSW-NB15. Optimisation of large-scale cyber-attack

systems for key hyper-automation processes in an IIoT context is

effectively achieved by the suggested design, according to the

simulation findings, which outperform existing case studies and

prediction models.

An strategy to improve cloud intrusion detection using CNN is

proposed by Ali, S. Y., et al., [23]. Cloud computing security

presented its own set of unique issues, which our deep learning

architecture reacted to. The CNN-based intrusion finding scheme

demonstrated in this study takes benefit of the network's capacity

to autonomously learn hierarchical attributes from raw data, as

opposed to conventional IDS schemes that depend on signature-

or rule-based approaches. Gathering broad and representative

information from cloud systems, including both normal network

traffic and other forms of attacks, is an important part of this

study. Using these datasets, the CNN is taught the natural patterns

of normal behavior and how to spot anomalies intrusion. The

suggested system maintains its adaptability to changing threats by

regularly retraining with new data to update its expertise.

Extensive tests are used to evaluate the CNN-based intrusion

detection scheme, comparing its performance to that of

established approaches. The results demonstration that the CNN-

based methodology is more IDS methods, suggesting that it could

be a good choice for cloud computing intrusion detection systems.

3. PROPOSED METHODOLOGY
An IoT network detection approach that is automated is

presented in this work. Flow data acquired by sensors is fed into
feature engineering algorithm techniques in our suggested model.
Methods from feature engineering, including feature imbalance
and feature selection, will be active. Recursive Feature Elimination
besides Principal Component Analysis are two feature selection
methods that can improve model accuracy, decrease training time,
and eliminate overfitting, among other data concerns. To find out
how each deep learning model performs and how long it takes to

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.44, October 2024

38

run, we will run a number of them. Here is the study work flow
diagrammed in Figure 1.

Figure 1: Workflow of the Research Work

a. Description of Bot-IoT Dataset

A fresh set of development data In the experiment, Bot-IoT is
utilized to identify simulated assaults through the use of the IoT
network [24]. Information gathered from the IoT, the Cyber Range
Lab at UNSW Canberra, regular traffic patterns, and botnet traffic
patterns induced by different kinds of attacks are all part of the
collection. To generate a useful dataset with detailed traffic
statistics, a realistic testbed was utilized. The presentation of the
machine learning representations was enhanced by adding and
labeling additional features. The extraction of features was
supported by three subcomponents: investigative analysis,
networking structure, and simulated IoT services.

The Internet of Things system may collect weather data in real-
time and use it to change the settings. While one smart device
controls the lights, another provides information about the fridge's
temperature and cooling system. When they sense movement,
these lights will automatically switch on. A smart thermostat that
can change the temperature on its own and an Internet of Things
smart door that takes probabilistic input are also on the list.
Characteristics of attacks on the data are detailed in Table 1.

With the use of targets, an IoT system may better categorize
network data as either safe or harmful, facilitating the separation
of the two. The BoT-IoT dataset aims to capture the following
types of data:

i. The benign category includes typical, lawful, and non-
malicious Internet of Things (IoT) network operations.

ii. A attacks using TCP can make a network unavailable to
legitimate users by overwhelming it with requests;

iii. DDoS that are focused on UDP: these overwhelm
networks with service outages.

iv. DDoS attacks that are HTTP-based: these overwhelm
web servers with requests, causing them to become
unresponsive or unavailable.

v. Attacks that are TCP-based: these take advantage of
vulnerabilities in the TCP stack to exhaust network and
device resources. - Attacks that are focused on UDP:
these overwhelm targets with packets, causing
disruptions outages.

vi. Attacks that are HTTP-based: these overwhelm web

requests, causing them to become unresponsive or

unavailable.

vii. Keylogging: secretly keeping track of keystrokes on an

infected device, with the intention of stealing sensitive

information.

viii. Data capture: illegally taking data from infected Internet

of Things networks or devices.

.

Target Category Count

Benign BENIGN 9654

Attack DDoS TCP 19,547,60

Attack DDoS UDP 18,965,10

Attack DDoS HTTP 19,71

Attack DoS-TCP 12,35,897

Attack DoS UDP 20,69,491

Attack DoS HTTP 29,607

Keylogging Key logging 109

Data theft Data -theft 118

- Total 73,370,443

Table 1. Bot-IoT dataset

b. Data Preprocessing

An integral part of building models is the pre-processing of

data. In order to progress the suggested model, we used the
following pre-processing methods throughout the process. Data
cleansing includes data filtering, data conversion, and missing data
checks in the pre-processing phase. Data filtration involves finding
and removing null and duplicate values. One step in data
transformation is format conversion, which may involve going
from a categorial to a numerical format, among others. Data can be
cleaned up and made ready for analysis with the help of several
Python programs [25].

c. Feature Selection using JBOA

For nonlinear equations, one of the significant enhancements
to Newton's approach is Jarratt's method, which may be expressed
as:

{
𝑦𝑛 = 𝑥𝑛 −

2𝑓(𝑥𝑛)

3𝑓′(𝑥𝑛)

𝑥𝑛+1 = 𝑥𝑛 − (
3𝑓′(𝑦𝑛)+𝑓′(𝑥𝑛)

6𝑓′(𝑦𝑛) − 2𝑓′(𝑥𝑛)
)

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

()

An integral part of building models is the pre-processing of
data. In order to progress the suggested model, we used the
following pre-processing methods throughout the process. Data
cleansing includes data filtering, data conversion, and missing data
checks in the pre-processing phase. Data filtration involves finding
and removing null and duplicate values. One step in data
transformation is format conversion, which may involve going
from a categorial to a numerical format, among others.

Data can be cleaned up and made ready for analysis with the help
of several Python programs [25].

that is (𝑥𝑛), 𝑓′(𝑥𝑛) , and 𝑓′(𝑦𝑛). Thus, Jarratt’s method because its
equals 23−1 = 4 , and hence it is optimal. In addition, Jarratt's

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.44, October 2024

39

method has been the subject of a great deal of research, with
numerous proposals for enhancements.

With a fourth- method approaches four significant digits, or the
number of correct decimals after each iteration, and hence
multiplies by four. This nonlinear equation example should help to
illustrate the concept of Jarratt's technique. Think about 𝑓(𝑥) =
cos(𝑥) − 𝑥. The equation is a=0:739085133215. We set the initial
solution x0=1:7.

As table, the approximation of the root advances by a factor of
four with each repetition, until approaching the precise root. But,
there are a few drawbacks to Jarratt's method that are common to
iterative approaches: problems with divergence, local optima
trapping, and beginning value selection

d. Butterfly optimization algorithm (BOA)

The scent and texture of each fragrance in BOA is unique. The
BOA stands apart from other metaheuristic algorithms due to its
smell, which is determined in the following way::

𝑓 = 𝑐𝐼𝑎(2)

where f reflects the intensity of the scent, which in turn indicates
how other butterflies rate the scents, Among the several sensory
modalities that distinguish odor, "c" stands for fragrance.
Parameter a's value is related to the butterfly's aroma. We can
pretend that all butterflies have the same scent if we suppose that
a=1. Since each butterfly has the same threshold for olfactory
perception, there can be no aroma absorption. So, it's easy to get to
one optimal solution, which is typically the global one. On the
other hand, when a=0, no other butterfly will be able to detect the
scent that one butterfly is producing.

For optimal solution finding, the BOA algorithm mimics the flight
patterns of butterflies, which are characterized by the following
essential features:

1. Butterflies can entice one another through the scent they
release.

2. The butterflies will either flit about at random or converge
around the one with the strongest scent.

3. The number of stimuli a butterfly is exposed to is
pretentious by the goal function.

All metaheuristic algorithms have three stages: initialization,
iteration, and finalization. BOA is no exception. At the outset, the
algorithm specifies the goal space of possible solutions.
Furthermore, the values of BOA parameters are also assigned.
After that, in order to optimize, the algorithm generates a starting
population of butterflies. Since the quantity of butterflies does not
fluctuate during the BOA fixed memory size is assigned to them
to store their data. Iteration is the following process in BOA. The
algorithm is iterated several times. At each iteration, the fitness
value of every butterfly in the key space is calculated. At their
respective sites, the butterflies produce aromas according to
Equation (2). The algorithm can toggle between a global search
and a local search. As part of their global search, butterflies aim to
land on the optimal solution, or butterfly with the highest fitness
value. One way to express the global search equation is as (3):

𝑥𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 × 𝑔 − 𝑥𝑖
𝑡) × 𝑓𝑖 (3)

where X_i^t represents the key vector x_i of butterfly in
repetition t, while g* is the greatest solution for the current
repetition. f_i characterizes the butterfly, and r is a random sum
between 0 besides 1.

𝑥𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑟2 × 𝑥𝑗
𝑡 − 𝑥𝑘

𝑡) × 𝑓𝑖 (4)

where X_i^t and x_j^t are butterflies space. Thus,
Equation (24) performs a local walk.

BOA uses the probability value p, which is typically
among 0 and 1, to toggle between common global search
and intense local search. The iteration phase continues
until a termination criterion is satisfied. Nevertheless,
there are a few methods that the standards are established;
for example, by computing CPU time, going beyond a
particular number of iterations, or attaining a particular
error rate. In the last step, we choose the option that
maximizes fitness.

e. Jarratt-Butterfly optimization algorithm

(JBOA)

BOA is an effective optimization procedure that has found use in

many different contexts. But the NFL theorem states that no

procedure can solve every problem perfectly. In addition, when

solving NSE, BOA could get stuck at local optima or encounter

divergence issues. Thus, JBOA's presentation in solving the

optimal solution for BGRU has enhanced by integrating BOA and

Jarratt's methods.

Each new version of BOA uses Jarratt's technique. The first step

is to consider the BOA's top-ranked spot for the butterfly as a

potential site. In most circumstances, the Jarratt approach

enhances the butterfly location by using the candidate site as

input. In most cases, the Jarratt approach enhances butterfly

location and is fed the candidate site. At last, the results from

Jarratt's methodologies are evaluated against the potential

locations, and the most fit one is selected. Because of

convergence, Jarratt's approach can generate more precise

solutions with less repetition. Consequently, JBOA's search

strategy for solving NSE is enhanced. At the end of each iteration,

JBOA implements the alterations noted in the red box1. The

position of Jarratt's method (X_(n+1)) and the location of the

BOA butterfly x_bj^(t.) are compared using fitness values. In the

end, the best solution is the one that finds the appropriate position

based on fitness measurements.

4. CLASSIFICATION USING MLSTM
The features that were selected are then input into LSTM in

order to determine the type of incursion. One DL design that uses
an artificial recurrent neural network (RNN) to represent time
series data is Long Short-Term Memory (LSTM). LSTM features
feedback connections amid hidden units linked to discrete time
steps, unlike traditional feed-forward neural networks. This allows
for the learning of long-term sequence dependencies and the
prediction of a transaction label from a series of past transactions.
In order to address the problem of vanishing and exploding
gradients that might arise during the training of conventional
RNNs, LSTMs were created. The construction of the LSTM unit
is shown in Fig. 2.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.44, October 2024

40

Figure 2: Construction of LSTM.

Each LSTM layer is made up gates: an input gate (𝑖𝑔𝑡), forget gate
(𝑓𝑔𝑡), and an output gate ((𝑜𝑔𝑡)). The three gates regulate the
incoming and outgoing data flows into and out of the cell, which
stores the values of random time intervals. Conversely, traditional
LSTM training methods suffer from a slower convergence issue
and fail to find the error function due to gradient descent becoming
stuck in local minima with bias and weight selection that is
random. A derivative-free approach to optimizing complicated
problems is the Morlet Wavelet Kernel Function (MWKF).
Traditional LSTM uses a MWKF in place of the original LSTM's
random selection of gate weights and biases. When compared to
basic LSTM, this integration performs better for data
categorization and non-linear function approximation.
MWKFLSTM is the name given to this MWKF-based weight and
bias assortment in LSTM. The equations for 𝑖𝑔t, 𝑓𝑔t ,and 𝑜𝑔t are
given below:

𝑓𝑔𝑡 = 𝛽(𝑤𝑓𝑔(ℎ𝑡−1, 𝑞𝑡) + 𝑏𝑓𝑔) (5)

𝑖𝑔𝑡 = 𝛽(𝑤𝑖𝑔(ℎ𝑡−1, 𝑞𝑡) + 𝑏𝑖𝑔) (6)

𝑜𝑔𝑡 = 𝛽(𝑤𝑜𝑔(ℎ𝑡−1, 𝑞𝑡) + 𝑏𝑜𝑔) (7)

Where 𝛽 indicates the sigmoid function. The terms 𝑤fg,𝑤ig,and

𝑤og are the weight matrices of 𝑓𝑔𝑡
,𝑖𝑔𝑡

 ,and 𝑜gt
 respectively. The

terms 𝑏fg , 𝑏ig ,and 𝑏og are the bias matrices of 𝑓𝑔𝑡
, 𝑖𝑔𝑡

and

𝑜gt
correspondingly. The preceding output at (𝑡 − 1)𝑡ℎ timestamp

is represented as ℎt−1 , andqt characterizes the present input

vector at time stamp 𝑡. Every LSTM gate has a weight and bias

value between zero and n-1 that are randomly generated. To

improve the classifier's detection performance, we use MWKF to

find the best fit weight and bias values for the LSTM network,

rather than picking them at random. The expression for the

wavelet basis function can be given by taking a function, Η(w),

with a scale factor of z and a translation factor of x.

𝛽𝑧,𝑥(𝑤) =
1

√|𝑧|
𝜓 (

𝑤−𝑥

𝑧
) (8)

To represent a multidimensional wavelet purpose, tensor product

theory states that one can take many functions besides multiply

them together.

𝜓(𝑤) = ∏ 𝜓(𝑤𝑖)𝑛
𝑖=1 (9)

Equation (9), in where n is the sum of functions, and w_i is

variable of the i-th one- function, allows one to design a kernel

function.

𝐾(𝑤, 𝑤̅) = ∏ 𝛽 (
𝑤𝑖−𝑤̅𝑖

𝑧
)𝑛

𝑖=1 (10)

This study uses the MVKF to build the function. This is the

MVKF function:

𝛽(𝑤) = cos (1.75𝑤)𝑒𝑥𝑝 (−
𝑤2

2
) (11)

The WK purpose accumulated since the MVKF

𝐾(𝑤, 𝑤̅) = ∏ [𝑐𝑜𝑠 (1.75 ×
𝑤𝑖 − 𝑤̅𝑖

𝑧
) 𝑒𝑥𝑝 (−

(𝑤𝑖 − 𝑤̅𝑖)2

2𝑧2
)]

𝑛

𝑖=1

 (12)

Where 𝑤idescribes the standards of the three gates' weights. The

approximation qualities of the wavelet function over to the

MWKF by virtue of its construction utilizing the wavelet

function's kernel. Therefore, LSTM will perform better in

classification tasks when a MW function is used as the kernel

function. Each of the three gates' weight values undergoes the

aforementioned kernel computations. The calculation for the

bias values gates is also executed in the same manner. In

addition to the output, the terms for the cell state and applicant

cell state are

𝒦𝑡
𝜔 = tanh (𝑤𝑘[ℎ𝑡−1, 𝑞𝑡] + 𝑏𝑘) (13)

𝑘𝑡 = 𝑓𝑔𝑡
∗ 𝑘𝑡−1 + 𝑖𝑔𝑡 ∗ 𝑘𝑡 (14)

ℎ𝑡 = 𝑜𝑔𝑡 ∗ tanh (𝑘𝑡) (15)

Where 𝑘t besides 𝑘t−1 represents the new and preceding cell

states of 𝑡and also𝑡 − 1. The term 𝒦𝑡
𝜔 characterizes candidate

cell public at t, and *symbolizes the multiplication of vectors.

5. RESULTS AND DISCUSSION
This experiment was carried out using a DELL laptop running

Windows 10 with 16 GB of RAM besides an Intel Core i5-

10210U processor in order to apply and assess the suggested

method on the dataset under consideration. Several libraries,

including matplotlib (version 3.3.2), numpy (version 1.19.2),

pandas (version 1.1.3), scikit-learn (version 0.23.2), keras

(version 2.6.0), besides tensor flow (version 2.6.0), are

implemented using Spyder Python (version 3.8).

We use the following metrics to measure the efficacy of the

projected system: Accuracy, Precision, Recall, F1-Score, True

Positive Degree, and False Positive Degree. The ratio of

correctly sum of records or counts is used to measure accuracy,

as shown in Equation (16):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (16)

The accuracy rate of abnormal instance predictions relative to

the total sum of abnormal instance predictions is called

precision, and it is calculated using Equation (17):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑃 (17)

According to Equation (18), recall is the proportion of correctly

estimated abnormal cases to the entire sum of actual abnormal

instances:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.44, October 2024

41

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑁 (18)

According to Equation (19), the F1 Score provides a Precision

besides Recall for evaluating the scheme's accuracy:

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2((𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
 𝑅𝑒𝑐𝑎𝑙𝑙)) (19)

f. Validation Analysis of Proposed Model

Table 2 offers the investigational study of proposed classicalwith

existing techniques in terms of diverse metrics.

Method ACC Recall Precision F1-Score

XGBoost 93.12 94.21 92.31 93.42

DBN 95.75 95.78 93.08 94.30

CNN 96.51 96.94 94.29 95.19

RNN 97.61 97.04 95.14 96.51

LSTM 98.44 98.39 97.66 97.93

MLSTM 99.22 99.51 98.48 98.58

Table 2: Validation study of proposed perfect with existing

procedures

In the proposed perfect with existing procedures, the XGBoost

technique accuracy as 93.12 also recall of 94.21 and precision

as92.31alsof1-score as 93.42. Then the DBN technique accuracy

as 95.75 also recalls of 95.78 and precision as 93.08 also the f1-

score as 94.30 correspondingly. Then the CNN technique

accuracy as 96.51 also recall of 96.94 and precision as 94.29 also

the f1-score as 95.19 correspondingly. Then the RNN technique

accuracy as 97.61 also recalls of 97.04 and precision as 95.14 also

the f1-score as 96.51 correspondingly. Then the LSTM technique

accuracy as 98.44 also recalls of 98.39 and precision as 97.66 also

the f1-score as 97.93 correspondingly. Then the MLSTM

technique accuracy as 99.22 also recalls of 99.51 and precision as

98.48 also the f1-score as 98.58 correspondingly.

Figure 3: Graphical Description of proposed perfect with existing

performances

Algorithm Training

Accurancy

Test

Accuracy

Training

Time(s)

XGBoost 0.9101 0.9144 244

DBN 0.9319 0.9382 229

CNN 0.9407 0.9423 324

RNN 0.9594 0.9534 251

LSTM 0.9600 0.9653 260

MLSTM 0.9743 0.9777 236

Table 3: Timing Analysis

The XGBoost technique has a training accuracy of 0.9101, a

testing accuracy of 0.9144, and a training time of 244 in the timing

analysis of various techniques. Subsequently, the DBN technique

yielded training accuracy of 0.9319, testing accuracy of 0.9382,

and training time of 229 in accordance. Subsequently, the CNN

technique yielded training accuracy of 0.9407, testing accuracy of

0.9423, and training time of 324 in accordance. Subsequently, the

RNN technique yielded training accuracy of 0.9594, testing

accuracy of 0.9534, and a corresponding training time of 251.

Next, the training accuracy and testing accuracy of the LSTM

technique are 0.9600 and 0.9653, respectively, and the training

time is 260. Next, the training accuracy and testing accuracy of

the MLSTM technique are 0.9743 and 0.9777, respectively, and

the training time is 236 respectively.

Figure 4: Visual Representation of the proposed model for

timing analysis

6. CONCLUSION
In order to detect breaches in the IoT-Cloud infrastructure, this

paper proposes a new MLSTM. To help the MLSTM choose

features, pre-processing and JBOA are provided. Running

simulations on the BoT-IoT dataset allows us to verify the models'

efficacy. The MLSTM is able to notice all types of network

threats with a better degree of precision. When associated to state-

of-the-art methodologies graphed in the literature, MLSTM offers

a greater detection accuracy. When compared to other approaches

on the same dataset, the model achieves the best throughput ratio,

lowest false alarm rate, and shortest delay. The enhanced

efficiency of MLSTM's data packet transfer from cloud-based IoT

devices is demonstrated by their higher performance. Following

normalcy classification, the data was safely stored on the cloud.

But, there are convinced restrictions on the system, such as the

reliability of the data used to create the input besides output. In a

similar vein, the data imbalance is a significant problem with the

dataset that needs fixing in the next stage.

7. REFERENCES
[1] Al-Ghuwairi, A. R., Sharrab, Y., Al-Fraihat, D., AlElaimat,

M., Alsarhan, A., & Algarni, A. (2023). Intrusion detection

in cloud computing based on time series anomalies utilizing

machine learning. Journal of Cloud Computing, 12(1), 127.

[2] Mohamed, D., & Ismael, O. (2023). Enhancement of an IoT

hybrid intrusion detection system based on fog-to-cloud

computing. Journal of Cloud Computing, 12(1), 41.

[3] Samunnisa, K., Kumar, G. S. V., & Madhavi, K. (2023).

Intrusion detection system in distributed cloud computing:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.44, October 2024

42

Hybrid clustering and classification methods. Measurement:

Sensors, 25, 100612.

[4] Attou, H., Guezzaz, A., Benkirane, S., Azrour, M., &

Farhaoui, Y. (2023). Cloud-based intrusion detection

approach using machine learning techniques. Big Data

Mining and Analytics, 6(3), 311-320.

[5] Tariq, M., & Suaib, M. (2023). A review on intrusion

detection in cloud computing. International Journal of

Engineering and Management Research, 13(2), 207-215.

[6] Kavitha, C., Gadekallu, T. R., K, N., Kavin, B. P., & Lai, W.

C. (2023). Filter-based ensemble feature selection and deep

learning model for intrusion detection in cloud computing.

Electronics, 12(3), 556.

[7] Attou, H., Mohy-eddine, M., Guezzaz, A., Benkirane, S.,

Azrour, M., Alabdultif, A., & Almusallam, N. (2023).

Towards an intelligent intrusion detection system to detect

malicious activities in cloud computing. Applied Sciences,

13(17), 9588.

[8] Lin, H., Xue, Q., Feng, J., & Bai, D. (2023). Internet of things

intrusion detection model and algorithm based on cloud

computing and multi-feature extraction extreme learning

machine. Digital Communications and Networks, 9(1), 111-

124.

[9] Maheswari, K. G., Siva, C., & Priya, G. N. (2023). An

optimal cluster based intrusion detection system for defence

against attack in web and cloud computing environments.

Wireless Personal Communications, 128(3), 2011-2037.

[10] Maheswari, K. G., Siva, C., & Nalinipriya, G. (2023).

Optimal cluster based feature selection for intrusion

detection system in web and cloud computing environment

using hybrid teacher learning optimization enables deep

recurrent neural network. Computer Communications, 202,

145-153.

[11] Vashishtha, L. K., Singh, A. P., & Chatterjee, K. (2023).

HIDM: A hybrid intrusion detection model for cloud based

systems. Wireless Personal Communications, 128(4), 2637-

2666.

[12] Srilatha, D., & Thillaiarasu, N. (2023). Implementation of

Intrusion detection and prevention with Deep Learning in

Cloud Computing. Journal of Information Technology

Management, 15(Special Issue), 1-18.

[13] Alzughaibi, S., & El Khediri, S. (2023). A cloud intrusion

detection systems based on dnn using backpropagation and

pso on the cse-cic-ids2018 dataset. Applied Sciences, 13(4),

2276.

[14] Alheeti, K. M. A., Lateef, A. A. A., Alzahrani, A., Imran, A.,

& Al_Dosary, D. (2023). Cloud Intrusion Detection System

Based on SVM. International Journal of Interactive Mobile

Technologies, 17(11).

[15] Bingu, R., & Jothilakshmi, S. (2023). Design of intrusion

detection system using ensemble learning technique in cloud

computing environment. International Journal of Advanced

Computer Science and Applications, 14(5).

[16] Wankhade, N., & Khandare, A. (2023). Optimization of deep

generative intrusion detection system for cloud computing:

challenges and scope for improvements. EAI Endorsed

Transactions on Scalable Information Systems, 10(6).

[17] Laassar, I., Hadi, M. Y., Arifullah, H. R., & Khan, F. S.

(2024). Proposed algorithm base optimisation plan for

feature selection-based intrusion detection in cloud

computing. Indonesian Journal of Electrical Engineering and

Computer Science, 33(2), 1140-1149.

[18] Chaudhari, A., Gohil, B., & Rao, U. P. (2024). A novel

hybrid framework for cloud intrusion detection system using

system call sequence analysis. Cluster Computing, 27(3),

3753-3769.

[19] Ziheng, G. E., & Jiang, G. A Novel Intrusion Detection

Mechanism in Cloud Computing Environments based on

Artificial Neural Network and Genetic Algorithm.

Telecommunications and Radio Engineering.

[20] Polepally, V., Jagannadha Rao, D. B., Kalpana, P., &

Nagendra Prabhu, S. (2024). Exponential Squirrel Search

Algorithm-Based Deep Classifier for Intrusion Detection in

Cloud Computing with Big Data Assisted Spark Framework.

Cybernetics and Systems, 55(2), 331-350.

[21] Preethi, B. C., Vasanthi, R., Sugitha, G., & Lakshmi, S. A.

(2024). Intrusion detection and secure data storage in the

cloud were recommend by a multiscale deep bidirectional

gated recurrent neural network. Expert Systems with

Applications, 255, 124428.

[22] Souri, A., Norouzi, M., & Alsenani, Y. (2024). A new cloud-

based cyber-attack detection architecture for hyper-

automation process in industrial internet of things. Cluster

Computing, 27(3), 3639-3655.

[23] Ali, S. Y., Farooq, U., Anum, L., Mian, N. A., Asim, M., &

Alyas, T. (2024). Securing cloud environments: a

Convolutional Neural Network (CNN) approach to intrusion

detection system. Journal of Computing & Biomedical

Informatics, 6(02), 295-308.

[24] The Bot-Iot Dataset; IEEE: Piscataway, NJ, USA, 2019;

Volume 5.

[25] Fan, C.; Chen, M.; Wang, X.; Wang, J.; Huang, B. A Review

on Data Preprocessing Techniques toward Efficient and

Reliable Knowledge Discovery From Building Operational

Data. Front. Energy Res. 2021, 9, 652801

IJCATM : www.ijcaonline.org

